Parameter-tuning-free identification system of transcriptional regulation motifs in genome DNA sequences based on direct comparison scheme of signal/noise distributions

Ryo Nakaki¹, Jiyoung Kang¹, and Masaru Tateno²

¹ Graduate School of Pure Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki 305-8577, Japan

² Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan

Corresponding should be addressed to *tateno@sci.u-hyogo.ac.jp*

Table S1. The 65 yeast datasets exploited in this study and the number of DNA fragments in each dataset

To evaluate the accuracy of the six programs (the five existing programs and ours), 65 datasets, which were experimentally extracted from the yeast genome DNA sequences by using the ChIP-on-chip technique in the previous study (1), were exploited. The number of DNA fragments involved in each dataset is distinct.

Table S2. The experimental conditions of the datasets that were used for the identification of mammalian TFBMs in the present study

The accuracy of our system was tested with the use of four mammalian datasets extracted by ChIP-on-chip and ChIP-seq techniques.

Tables S3-S16. Results of the TFBM identification using the six programs

Identification of TFBMs was performed under the following conditions: 1) The reduction of SSRs using RepeatMasker (http://www.repeatmasker.org/) was performed or not. 2) For MDscan, the sequences in either the descending or unsorted order were utilized.

Then, "logo", which represents information contents of the identified PSSMs, was generated by Weblogo (2) for each identified TFBM. Also, the frequency of each identified TFBM (the cluster sizes in our system), the (maximum) correlation coefficient between the corresponding elements of the obtained and reference PSSMs (see the text), the rank, and the identified TFBM are shown in Tables S3-S16.

Table S17. The top rank motifs that were identified using the six programs, with respect to the four mammalian datasets.

Figure S1. Determination of R value

For the determination of the most suitable *R* value (i.e., the ratio of "noise"; see subsection 2.5), various *R* values were tested.

Figures S2-S7. The cumulative frequencies of "Ranks 1-5" of the 65 datasets, with respect to the six programs under the various conditions

The cumulative frequency c(r) (*r* represents "Rank", i.e., r=1, ..., 5) in equation 13 is plotted with respect to the six programs executed under various conditions.

TF	File name	Number of	TF	File name	Number of
	The nume	fragments ^a	11	The function	fragments
ABF1	ABF1_YPD.fsa	177	RAP1	RAP1_YPD.fsa	108
ACE2	ACE2_YPD.fsa	70	RCS1	RCS1_H2O2Hi.fsa	40
AFT2	AFT2_H2O2Lo.fsa	75	RDS1	RDS1_H2O2Hi.fsa	48
AZF1	AZF1_YPD.fsa	23	REB1	REB1_YPD.fsa	98
BAS1	BAS1_SM.fsa	16	RFX1	RFX1_YPD.fsa	24
CAD1	CAD1_YPD.fsa	28	RLR1	RLR1_YPD.fsa	34
CBF1	CBF1_SM.fsa	194	RPN4	RPN4_H2O2Lo.fsa	69
CIN5	CIN5_H2O2Lo.fsa	117	SFP1	SFP1_SM.fsa	36
DAL82	DAL82_SM.fsa	61	SIG1	SIG1_H2O2Hi.fsa	15
DIG1	DIG1_YPD.fsa	65	SIP4	SIP4_SM.fsa	23
FHL1	FHL1_YPD.fsa	130	SKN7	SKN7_H2O2Lo.fsa	147
FKH1	FKH1_YPD.fsa	103	SNT2	SNT2_YPD.fsa	45
FKH2	FKH2_YPD.fsa	90	SOK2	SOK2_BUT14.fsa	72
GAL4	GAL4_RAFF.fsa	36	SPT23	SPT23_YPD.fsa	47
GAT1	GAT1_RAPA.fsa	48	SPT2	SPT2_YPD.fsa	52
GCN4	GCN4_SM.fsa	142	STB1	STB1_YPD.fsa	22
GLN3	GLN3_RAPA.fsa	78	STB4	STB4_YPD.fsa	27
HAP1	HAP1_YPD.fsa	131	STB5	STB5_YPD.fsa	43
HAP4	HAP4_YPD.fsa	53	STE12	STE12_Alpha.fsa	141
HSF1	HSF1_H2O2Lo.fsa	73	SUM1	SUM1_YPD.fsa	50
INO2	INO2_YPD.fsa	34	SUT1	SUT1_YPD.fsa	75
INO4	INO4_YPD.fsa	31	SWI4	SWI4_YPD.fsa	129
LEU3	LEU3_SM.fsa	31	SWI6	SWI6_YPD.fsa	120
MBP1	MBP1_H2O2Hi.fsa	91	TEC1	TEC1_YPD.fsa	36
MCM1	MCM1_Alpha.fsa	76	THI2	THI2_Thifsa	48
MET4	MET4_SM.fsa	36	TYE7	TYE7_YPD.fsa	65
MSN2	MSN2_H2O2Hi.fsa	73	UME1	UME1_YPD.fsa	35
NDD1	NDD1_YPD.fsa	93	UME6	UME6_YPD.fsa	92
NRG1	NRG1_H2O2Hi.fsa	107	YAP1	YAP1_H2O2Lo.fsa	36
PDR1	PDR1_YPD.fsa	67	YAP7	YAP7_H2O2Hi.fsa	100
PHD1	PHD1_BUT90.fsa	102	YDR026c	YDR026c_YPD.fsa	14
PHO2	PHO2_H2O2Hi.fsa	13	ZAP1	ZAP1_YPD.fsa	17
PHO4	PHO4 Pifsa	23			

Table S1. The 65 yeast datasets exploited in this study, and the number of DNA fragments in each dataset.

^a The number of target DNA fragments involved in each dataset.

Table S2. The experimental conditions of the datasets used for mammalian TFBM identification in the present study.

TF	Species	Experimental technique ^a	Number of DNA fragments ^b	Reference	Reference TFBM ^c (JASPAR ID ^d)
Estrogen receptor (ER)	human	ChIP-on-chip	1910	Nat Genet, 38 , 1289-1297 (2006)	(MA0112.2)
Tefep211	mouse	ChIP-seq	3842	<i>Cell</i> , 133 , 1106-1117 (2008)	(MA0145.1)
Androgen receptor (AR)	human	ChIP-seq	1160	EMBO J, 30 , 3962-3976 (2011)	(MA0007.1)
Vitamin D receptor (VDR)	human	ChIP-seq	461	Genome Res, 20 , 1352-1360 (2010)	(MA0074.1)

^a The experimental techniques used for the identification of each TFBM.

^b The number of DNA fragments of chromosomes 1 and 2.

^c TFBMs used as the reference.

^d The JASPAR ID for each reference TFBM.

TE	Idontified motif	Fraguanau	Correlation	Donk	1	TE	Idantified motif	Fraguanau	Correlation	Donk
IF		rrequency	coefficient	капк		Ir		rrequency	coefficient	капк
ABF1	ATCACTAT	211	0.9201	1		RAP1	TGTATGGG	143	0.9554	1
ACE2	-	-	-	DA		RCS1		67	0.9808	1
AFT2		101	0.911	1		RDS1	CGGCCGA	29	0.9801	1
AZF1	-	-	-	DA		REB1		133	0.9781	1
BAS1	ТСАСТС	28	0.9529	1		RFX1	TGACAAC	32	0.8853	1
CAD1	-	-	-	DA		RLR1	CATTT-T	123	0.8936	1
CBF1		274	0.98	1		RPN4	GGTGGCAA	101	0.9914	1
CIN5		161	0.9337	1		SFP1	CCATACA	58	0.9762	1
DAL82		68	0.9611	2		SIG1	-	-	-	DA
DIG1		107	0.9803	1		SIP4		24	0.8098	2
FHL1	ACCCATAC	172	0.9011	1		SKN7	CTGCCC	116	0.8382	1
FKH1	TGTTTAC.	268	0.9698	1		SNT2	GCGCTA_C	35	0.986	1
FKH2		146	0.9778	1		SOK2	TGCAG	104	0.9367	1
GAL4	C CCG	49	0.8195	1		SPT23	TTGATTT	108	0.96	2
GAT1		74	0.8858	4		SPT2	-	-	-	DA
GCN4	TGACTCAT	207	0.9481	1		STB1		68	0.8694	1
GLN3		130	0.9214	1		STB4	G_C_GA	37	0.8653	1
HAP1	TATCGG.	151	0.8346	1		STB5	Acc CCG	55	0.944	1
HAP4	-Тсаттсс	81	0.9561	1		STE12		331	0.9748	1
HSF1		100	0.851	1		SUM1		39	0.8396	2
INO2	CACATGC	55	0.99	1		SUTI	C_CCGC	76	0.9077	2
INO4		52	0.9694	1		SWI4		194	0.98	1
LEU3	GGTTC=G=	33	0.8578	1		SWI6	AAAcGcg	194	0.8278	1
MBP1	⁺ ⊤_ ¢ÇÇÇ Ţ	163	0.9325	1		TEC1	GAATGT	49	0.9156	1
MCM1	TT-GGAAA	220	0.9234	1		THI2	-	-	-	DA
MET4		34	0.9233	1		TYE7	C_cGTGAT	82	0.955	1
MSN2		88	0.981	1		UME1	-	-	-	DA
NDD1	-	-	-	DA		UME6	GCGGCTA	146	0.9855	1
NRG1		129	0.9811	1		YAP1	AGTAAGC	36	0.901	1
PDR1	-	-	-	DA		YAP7	Ттастаат	176	0.9339	1
PHD1	C GCA	214	0.8417	2		YDR026c		17	0.996	1
PHO2	-	-	-	DA		ZAP1	CTTTAGGG	19	0.9518	1
PHO4	CACGTG	41	0.9789	1						

Table S3. The identification results of our system, without any dataset pre-treatments.

TF	Identified motif	Frequency	Correlation coefficient	Rank	1	TF	Identified motif	Frequency	Correlation coefficient	Rank
ABF1	⁺ <mark>▲тА_≈Т</mark> GAT	223	0.9269	1		RAP1	TGT_TGGG	153	0.9584	1
ACE2		64	0.9038	1		RCS1		64	0.979	1
AFT2	GGGTGCA	103	0.9123	1		RDS1		28	0.963	1
AZF1	-	-	-	DA		REB1	TTACCCG	134	0.9804	1
BAS1	ТСАСтс	30	0.9495	1		RFX1	TGACAAC	30	0.8914	1
CAD1	GCT_AC_A	30	0.9356	3		RLR1		114	0.899	3
CBF1	TCACGTG	272	0.9772	1		RPN4	GGTGGCAA	107	0.9914	1
CIN5		146	0.9281	2		SFP1		58	0.9747	1
DAL82		69	0.9639	2		SIG1	-	-	-	DA
DIG1	TGTTTCA	80	0.9723	1		SIP4	-	-	-	DA
FHL1	GT_TGGGT	171	0.9032	1		SKN7	CTGCCC	114	0.8397	1
FKH1		248	0.971	1		SNT2	GCGCTA C	37	0.9839	1
FKH2	GTAAACA	134	0.9751	1		SOK2		104	0.9369	1
GAL4	-	-	-	DA		SPT23	TTATT	91	0.9479	5
GAT1	-	-	-	DA		SPT2	-	-	-	DA
GCN4	TGACTCAT	220	0.9522	1		STB1		48	0.935	1
GLN3	⁺ <mark>⊤cTTATC</mark> ₽	126	0.9511	1		STB4	GC_GA	28	0.8818	2
HAP1	CCGATAA	124	0.824	1		STB5	AA_ CCG_	52	0.9409	1
HAP4	ТеАтТСе	81	0.9561	1		STE12	TGTTCA	314	0.9769	1
HSF1	Т_Ста GAA	98	0.8505	1		SUM1	TG_C_C	87	0.9277	1
INO2	CACATGC	57	0.9912	1		SUT1		79	0.9042	3
INO4	TCACATG	50	0.9814	1		SWI4	TTCGCGTT	149	0.9449	1
LEU3	GGTTCcG	35	0.8652	1		SWI6	AAACGCG	182	0.8306	1
MBP1	CGCGT-	175	0.9829	1		TEC1		50	0.9171	2
MCM1	TTTCC	213	0.9257	1		THI2	-	-	-	DA
MET4	CACA_TT	39	0.9275	2		TYE7		62	0.9666	1
MSN2		79	0.944	1		UME1	-	-	-	DA
NDD1	-	-	-	DA		UME6	TAGCCGC	139	0.9857	1
NRG1	AGGGTCC	118	0.9843	1		YAP1	CT-AC-AA	71	0.9312	1
PDR1	-	-	-	DA		YAP7		151	0.9453	1
PHD1		227	0.839	2		YDR026c		18	0.9952	1
PHO2	-	-	-	DA		ZAP1	CCCTAAAG	19	0.9518	1
PHO4		35	0.9599	1						

Table S4. The identification results of our system, conducted after the SSR reduction.

TE	Frequency	Correlation	Donk	TE	Fraguanov	Correlation	Donk
11	riequency	coefficient	Nalik	II	riequency	coefficient	Nalik
ABF1	205	0.8004	1	RAP1	144	0.9884	1
ACE2	-	-	DA	RCS1	92	0.9514	1
AFT2	126	0.9676	1	RDS1	-	-	DA
AZF1	-	-	DA	REB1	95	0.9786	1
BAS1	34	0.9623	1	RFX1	-	-	DA
CAD1	-	-	DA	RLR1	-	-	DA
CBF1	301	0.9802	1	RPN4	60	0.9982	1
CIN5	-	-	DA	SFP1	53	0.9864	1
DAL82	-	-	DA	SIG1	-	-	DA
DIG1	-	-	DA	SIP4	-	_	DA
FHL1	176	0.9904	1	SKN7	286	0.8624	2
FKH1	139	0.9909	1	SNT2	-	_	DA
FKH2	-	_	DA	SOK2	-	_	DA
GAL4	-	-	DA	SPT23	104	0.9248	1
GAT1	-	-	DA	SPT2	-	-	DA
GCN4	-	_	DA	STB1	45	0.9743	1
GLN3	115	0.9777	1	STB4	-	-	DA
HAP1	-	-	DA	STB5	-	_	DA
HAP4	93	0.8413	1	STE12	-	_	DA
HSF1	-	-	DA	SUM1	-	_	DA
INO2	81	0.8943	1	SUT1	-	_	DA
INO4	51	0.9658	1	SWI4	173	0.9498	2
LEU3	53	0.9404	1	SWI6	253	0.9193	1
MBP1	202	0.9873	1	TEC1	-	_	DA
MCM1	160	0.8057	3	THI2	-	-	DA
MET4	52	0.813	2	TYE7	98	0.968	1
MSN2	-	-	DA	UME1	-	-	DA
NDD1	-	-	DA	UME6	84	0.9947	1
NRG1	-	-	DA	YAP1	90	0.8003	1
PDR1	-	-	DA	YAP7	196	0.9828	1
PHD1	255	0.915	1	YDR026c	17	0.9898	1
PHO2	-	-	DA	ZAP1	43	0.909	1
PHO4	47	0.9792	1				

Table S5. The identification results of MDscan, without any dataset pre-treatments.

TF	Frequency	Correlation coefficient	Rank	TF	Frequency	Correlation coefficient	Rank
ABF1	281	0.9515	1	RAP1	139	0.9833	1
ACE2	-	_	DA	RCS1	70	0.9763	1
AFT2	122	0.9837	1	RDS1	45	0.9981	1
AZF1	140	0.8768	1	REB1	85	0.98	1
BAS1	-	-	DA	RFX1	40	0.916	1
CAD1	-	-	DA	RLR1	-	-	DA
CBF1	296	0.9797	1	RPN4	65	0.9995	1
CIN5	174	0.9924	1	SFP1	57	0.9837	1
DAL82	114	0.9565	1	SIG1	-	-	DA
DIG1	132	0.9785	1	SIP4	71	0.9551	1
FHL1	233	0.9643	1	SKN7	251	0.9126	1
FKH1	148	0.993	1	SNT2	58	0.9076	1
FKH2	151	0.9234	1	SOK2	-	-	DA
GAL4	45	0.8646	2	SPT23	-	-	DA
GAT1	-	-	DA	SPT2	-	-	DA
GCN4	253	0.965	1	STB1	60	0.9341	1
GLN3	100	0.9593	1	STB4	33	0.9032	1
HAP1	-	-	DA	STB5	60	0.9859	2
HAP4	81	0.9405	5	STE12	225	0.9695	1
HSF1	97	0.8429	1	SUM1	81	0.9441	1
INO2	52	0.9942	2	SUT1	185	0.9005	1
INO4	52	0.9843	1	SWI4	277	0.8207	1
LEU3	46	0.9891	1	SWI6	192	0.8849	1
MBP1	206	0.9831	1	TEC1	-	-	DA
MCM1	167	0.9322	1	THI2	-	-	DA
MET4	-	-	DA	TYE7	87	0.9932	1
MSN2	131	0.8591	1	UME1	-	-	DA
NDD1	-	-	DA	UME6	80	0.9945	1
NRG1	173	0.871	1	YAP1	83	0.8166	5
PDR1	-	-	DA	YAP7	196	0.9967	1
PHD1	236	0.9116	1	YDR026c	41	0.8427	1
PHO2	-	-	DA	ZAP1	39	0.8543	1
PHO4	38	0.9605	1				

Table S6. The identification results of MDscan, conducted after the rearrangement of the target DNA fragments.

TF F	Frequency	Correlation	Rank	TF	Frequency	Correlation	Rank
11	riequency	coefficient	Kalik	11	riequency	coefficient	Kalik
ABF1	-	-	DA	RAP1	127	0.9585	1
ACE2	-	-	DA	RCS1	-	-	DA
AFT2	140	0.9717	1	RDS1	48	0.9967	1
AZF1	-	-	DA	REB1	84	0.9798	1
BAS1	45	0.9078	1	RFX1	53	0.8599	1
CAD1	58	0.978	1	RLR1	-	-	DA
CBF1	300	0.9802	1	RPN4	65	0.9995	1
CIN5	157	0.9947	1	SFP1	55	0.9882	1
DAL82	-	-	DA	SIG1	-	-	DA
DIG1	-	-	DA	SIP4	-	_	DA
FHL1	176	0.9904	1	SKN7	290	0.8771	1
FKH1	-	-	DA	SNT2	54	0.9441	1
FKH2	119	0.983	1	SOK2	-	_	DA
GAL4	-	_	DA	SPT23	-	_	DA
GAT1	-	_	DA	SPT2	-	_	DA
GCN4	169	0.8675	1	STB1	56	0.9753	1
GLN3	-	-	DA	STB4	47	0.825	1
HAP1	227	0.802	5	STB5	-	-	DA
HAP4	-	-	DA	STE12	249	0.9525	1
HSF1	-	_	DA	SUM1	84	0.9808	1
INO2	74	0.8987	1	SUT1	122	0.8211	2
INO4	58	0.9559	1	SWI4	-	_	DA
LEU3	42	0.9947	1	SWI6	156	0.9386	1
MBP1	205	0.9835	1	TEC1	-	-	DA
MCM1	139	0.8708	1	THI2	-	-	DA
MET4	-	_	DA	TYE7	61	0.9903	1
MSN2	-	-	DA	UME1	-	-	DA
NDD1	-	-	DA	UME6	81	0.9952	1
NRG1	-	-	DA	YAP1	-	-	DA
PDR1	-	-	DA	YAP7	145	0.8639	1
PHD1	174	0.8691	2	YDR026c	24	0.955	5
PHO2	38	0.8287	2	ZAP1	-	-	DA
PHO4	39	0.987	1				

Table S7. The identification results of MDscan, conducted after the SSR reduction.

TF	Frequency	Correlation coefficient	Rank	TF	Frequency	Correlation coefficient	Rank
ABF1	289	0.9512	1	RAP1	145	0.9822	1
ACE2	-	-	DA	RCS1	66	0.9774	1
AFT2	126	0.9818	1	RDS1	55	0.9982	1
AZF1	-	-	DA	REB1	84	0.9798	1
BAS1	42	0.92	1	RFX1	44	0.9514	1
CAD1	65	0.984	3	RLR1	-	_	DA
CBF1	276	0.9737	1	RPN4	65	0.9995	1
CIN5	170	0.993	1	SFP1	60	0.9828	1
DAL82	113	0.958	1	SIG1	-	_	DA
DIG1	129	0.9468	2	SIP4	66	0.9475	1
FHL1	227	0.9666	1	SKN7	279	0.9184	1
FKH1	145	0.9906	1	SNT2	57	0.9085	1
FKH2	165	0.9142	1	SOK2	-	-	DA
GAL4	56	0.8669	3	SPT23	-	-	DA
GAT1	-	-	DA	SPT2	-	_	DA
GCN4	254	0.965	1	STB1	59	0.9347	1
GLN3	178	0.9092	1	STB4	29	0.9291	1
HAP1	-	-	DA	STB5	65	0.9826	4
HAP4	81	0.9405	5	STE12	217	0.9801	1
HSF1	94	0.8406	1	SUM1	84	0.9456	1
INO2	46	0.963	1	SUT1	185	0.902	3
INO4	46	0.9794	1	SWI4	289	0.8142	1
LEU3	58	0.9857	1	SWI6	193	0.8906	1
MBP1	206	0.983	1	TEC1	-	-	DA
MCM1	130	0.9499	1	THI2	-	-	DA
MET4	-	-	DA	TYE7	89	0.9936	1
MSN2	138	0.855	1	UME1	94	0.8747	2
NDD1	231	0.8074	3	UME6	80	0.9945	1
NRG1	176	0.873	1	YAP1	80	0.885	1
PDR1	-	-	DA	YAP7	195	0.9966	1
PHD1	273	0.9336	1	YDR026c	-	-	DA
PHO2	-	-	DA	ZAP1	41	0.8591	1
PHO4	39	0.9589	1				

Table S8. The identification results of MDscan, conducted after the SSR reduction and the rearrangement of the target DNA fragments.

TF	Frequency	Correlation coefficient	Rank	TF	Frequency	Correlation coefficient	Rank
ABF1	-	-	DA	RAP1	106	0.9938	1
ACE2	-	-	DA	RCS1	40	0.9842	1
AFT2	59	0.9806	1	RDS1	25	0.9631	1
AZF1	-	-	DA	REB1	95	0.9802	1
BAS1	18	0.9505	1	RFX1	20	0.9324	1
CAD1	-	-	DA	RLR1	-	_	DA
CBF1	155	0.9742	1	RPN4	67	0.9994	1
CIN5	64	0.865	1	SFP1	40	0.9874	1
DAL82	-	_	DA	SIG1	-	_	DA
DIG1	34	0.8538	3	SIP4	-	_	DA
FHL1	118	0.9907	1	SKN7	104	0.901	1
FKH1	94	0.9897	1	SNT2	23	0.9875	1
FKH2	60	0.9702	1	SOK2	-	-	DA
GAL4	-	-	DA	SPT23	-	_	DA
GAT1	-	-	DA	SPT2	-	_	DA
GCN4	111	0.9693	1	STB1	24	0.9033	1
GLN3	50	0.9576	1	STB4	16	0.8984	2
HAP1	77	0.8925	2	STB5	28	0.9257	1
HAP4	40	0.9553	1	STE12	93	0.9806	1
HSF1	64	0.8253	1	SUM1	44	0.9577	1
INO2	36	0.9696	1	SUT1	51	0.8333	3
INO4	34	0.9663	1	SWI4	79	0.9357	1
LEU3	17	0.9787	1	SWI6	105	0.9346	1
MBP1	115	0.9717	1	TEC1	26	0.926	1
MCM1	54	0.9649	1	THI2	-	-	DA
MET4	-	-	DA	TYE7	49	0.9833	1
MSN2	48	0.9699	1	UME1	-	-	DA
NDD1	-	-	DA	UME6	96	0.9922	1
NRG1	84	0.9869	1	YAP1	34	0.9691	1
PDR1	-	-	DA	YAP7	91	0.9458	1
PHD1	-	-	DA	YDR026c	13	0.992	1
PHO2	-	-	DA	ZAP1	15	0.8591	2
PHO4	21	0.9659	1				

Table S9. The identification results of BioProspector, without any dataset pre-treatments.

TF	Frequency	Correlation coefficient	Rank	TF	Frequency	Correlation coefficient	Rank
ABF1	-	-	DA	RAP1	107	0.9934	1
ACE2	-	_	DA	RCS1	40	0.9842	1
AFT2	55	0.9431	1	RDS1	23	0.9522	1
AZF1	-	-	DA	REB1	94	0.9805	1
BAS1	23	0.9492	1	RFX1	20	0.9263	1
CAD1	29	0.9902	1	RLR1	-	_	DA
CBF1	142	0.9663	1	RPN4	65	0.9996	1
CIN5	68	0.9594	1	SFP1	43	0.9823	1
DAL82	-	-	DA	SIG1	-	_	DA
DIG1	-	-	DA	SIP4	-	_	DA
FHL1	137	0.9903	1	SKN7	105	0.9134	1
FKH1	90	0.9718	1	SNT2	22	0.9916	1
FKH2	91	0.9671	1	SOK2	-	_	DA
GAL4	-	_	DA	SPT23	-	_	DA
GAT1	-	-	DA	SPT2	-	_	DA
GCN4	112	0.9698	1	STB1	29	0.9203	1
GLN3	48	0.9559	1	STB4	23	0.8177	1
HAP1	-	-	DA	STB5	26	0.933	1
HAP4	40	0.9375	1	STE12	87	0.992	1
HSF1	51	0.8243	2	SUM1	45	0.8792	1
INO2	35	0.9621	1	SUT1	58	0.8712	1
INO4	29	0.9738	1	SWI4	94	0.9779	1
LEU3	22	0.9673	1	SWI6	90	0.9161	1
MBP1	114	0.9711	1	TEC1	-	_	DA
MCM1	54	0.9636	1	THI2	-	_	DA
MET4	-	-	DA	TYE7	55	0.9744	1
MSN2	49	0.9813	1	UME1	-	_	DA
NDD1	-	-	DA	UME6	89	0.9934	1
NRG1	89	0.9851	1	YAP1	29	0.9824	1
PDR1	-	-	DA	YAP7	82	0.8948	1
PHD1	75	0.8944	2	YDR026c	14	0.9906	1
PHO2	-	-	DA	ZAP1	-	-	DA
PHO4	21	0.9567	1				

Table S10. The identification results of BioProspector, conducted after the SSR reduction.

TF F	Frequency	Correlation	Rank	TF	Frequency	Correlation	Rank
11	riequency	coefficient	Kalik	11	riequency	coefficient	Kalik
ABF1	-	-	DA	RAP1	72	0.958	1
ACE2	-	-	DA	RCS1	18	0.9628	1
AFT2	52	0.951	1	RDS1	16	0.9693	1
AZF1	-	-	DA	REB1	57	0.9752	1
BAS1	17	0.8644	1	RFX1	14	0.9662	1
CAD1	-	-	DA	RLR1	30	0.8544	2
CBF1	168	0.9869	1	RPN4	40	0.9971	1
CIN5	-	-	DA	SFP1	20	0.9785	1
DAL82	-	-	DA	SIG1	-	-	DA
DIG1	-	-	DA	SIP4	-	-	DA
FHL1	60	0.9893	1	SKN7	90	0.9787	1
FKH1	103	0.9879	1	SNT2	46	0.8717	1
FKH2	-	-	DA	SOK2	28	0.8079	2
GAL4	-	_	DA	SPT23	-	_	DA
GAT1	2	0.8035	4	SPT2	-	_	DA
GCN4	143	0.9591	1	STB1	14	0.8967	1
GLN3	-	-	DA	STB4	5	0.856	1
HAP1	-	-	DA	STB5	-	-	DA
HAP4	-	-	DA	STE12	-	-	DA
HSF1	38	0.8417	1	SUM1	46	0.9621	1
INO2	32	0.945	1	SUT1	31	0.8322	2
INO4	32	0.9324	1	SWI4	-	_	DA
LEU3	17	0.9772	1	SWI6	121	0.9357	1
MBP1	92	0.9888	1	TEC1	-	-	DA
MCM1	-	_	DA	THI2	-	_	DA
MET4	5	0.8428	1	TYE7	37	0.9974	1
MSN2	2	0.8574	2	UME1	-	-	DA
NDD1	-	-	DA	UME6	47	0.9949	1
NRG1	40	0.977	1	YAP1	-	-	DA
PDR1	3	0.8376	2	YAP7	101	0.9947	1
PHD1	15	0.9116	3	YDR026c	11	0.9729	1
PHO2	-	-	DA	ZAP1	-	-	DA
PHO4	13	0.9531	1				

Table S11. The identification results of MEME, without any dataset pre-treatments.

TE	Frequency	Correlation	Rank	TF	Frequency	Correlation	Rank
11	riequency	coefficient	IXAIIK	11	riequency	coefficient	Kalik
ABF1	-	-	DA	RAP1	72	0.958	1
ACE2	-	-	DA	RCS1	18	0.9628	1
AFT2	29	0.9281	1	RDS1	16	0.9693	1
AZF1	-	-	DA	REB1	62	0.9755	1
BAS1	17	0.8644	1	RFX1	13	0.9664	1
CAD1	-	-	DA	RLR1	-	-	DA
CBF1	163	0.9864	1	RPN4	40	0.9971	1
CIN5	-	-	DA	SFP1	18	0.9757	1
DAL82	-	-	DA	SIG1	-	-	DA
DIG1	-	-	DA	SIP4	-	-	DA
FHL1	55	0.9892	1	SKN7	98	0.9818	1
FKH1	104	0.9849	1	SNT2	45	0.8692	1
FKH2	-	-	DA	SOK2	-	-	DA
GAL4	-	-	DA	SPT23	-	-	DA
GAT1	2	0.8035	3	SPT2	-	_	DA
GCN4	124	0.9624	1	STB1	14	0.9036	1
GLN3	-	-	DA	STB4	5	0.874	1
HAP1	-	-	DA	STB5	-	-	DA
HAP4	-	-	DA	STE12	2	0.9668	1
HSF1	38	0.8417	1	SUM1	49	0.9138	1
INO2	30	0.9484	1	SUT1	31	0.8181	2
INO4	30	0.9336	1	SWI4	24	0.8211	1
LEU3	17	0.9772	1	SWI6	33	0.8272	1
MBP1	92	0.9909	1	TEC1	-	-	DA
MCM1	-	-	DA	THI2	-	_	DA
MET4	4	0.8646	1	TYE7	38	0.9925	1
MSN2	2	0.8939	4	UME1	-	_	DA
NDD1	-	_	DA	UME6	47	0.9949	1
NRG1	40	0.977	1	YAP1	-	_	DA
PDR1	18	0.967	1	YAP7	-	_	DA
PHD1	16	0.8887	5	YDR026c	11	0.9729	1
PHO2	-	-	DA	ZAP1	-	-	DA
PHO4	13	0.9531	1				

Table S12. The identification results of MEME, conducted after the SSR reduction.

TF	Frequency	Correlation coefficient	Rank	TF	Frequency	Correlation coefficient	Rank
ABF1	18	0.888	3	RAP1	66	0.9831	1
ACE2	23	0.8852	1	RCS1	26	0.9883	1
AFT2	43	0.9603	1	RDS1	39	0.8589	1
AZF1	13	0.9365	1	REB1	89	0.9803	1
BAS1	9	0.8958	1	RFX1	12	0.9707	1
CAD1	-	-	DA	RLR1	8	0.8477	4
CBF1	149	0.9694	1	RPN4	67	0.9991	1
CIN5	38	0.9575	2	SFP1	25	0.9814	1
DAL82	-	-	DA	SIG1	-	-	DA
DIG1	14	0.9287	2	SIP4	-	_	DA
FHL1	89	0.9911	1	SKN7	-	-	DA
FKH1	47	0.9713	1	SNT2	26	0.9496	1
FKH2	40	0.9714	1	SOK2	-	-	DA
GAL4	-	-	DA	SPT23	-	-	DA
GAT1	-	-	DA	SPT2	-	-	DA
GCN4	56	0.9637	1	STB1	18	0.9047	1
GLN3	21	0.8598	1	STB4	-	-	DA
HAP1	-	-	DA	STB5	15	0.8997	1
HAP4	26	0.9735	1	STE12	47	0.9668	1
HSF1	28	0.8382	1	SUM1	21	0.9073	1
INO2	23	0.9578	1	SUT1	-	-	DA
INO4	20	0.9819	1	SWI4	63	0.963	1
LEU3	22	0.9343	1	SWI6	74	0.8951	1
MBP1	65	0.9624	1	TEC1	11	0.8398	1
MCM1	26	0.9279	1	THI2	-	-	DA
MET4	10	0.8482	3	TYE7	36	0.9821	1
MSN2	31	0.8937	1	UME1	10	0.8765	3
NDD1	-	-	DA	UME6	74	0.9923	1
NRG1	63	0.9873	1	YAP1	17	0.9788	1
PDR1	-	-	DA	YAP7	27	0.8429	1
PHD1	-	-	DA	YDR026c	13	0.9921	1
PHO2	-	-	DA	ZAP1	-	-	DA
PHO4	13	0.9678	1				

Table S13. The identification results of DME, without any dataset pre-treatments.

TF	Frequency	Correlation coefficient	Rank	TF	Frequency	Correlation coefficient	Rank
ABF1	18	0.888	3	RAP1	68	0.9839	1
ACE2	23	0.8852	1	RCS1	26	0.9883	1
AFT2	43	0.9603	1	RDS1	26	0.941	1
AZF1	12	0.9365	1	REB1	88	0.9801	1
BAS1	9	0.8958	1	RFX1	12	0.9707	1
CAD1	10	0.9773	2	RLR1	8	0.8477	4
CBF1	159	0.9688	1	RPN4	68	0.9991	1
CIN5	19	0.9575	1	SFP1	25	0.9814	1
DAL82	-	-	DA	SIG1	-	-	DA
DIG1	13	0.9071	2	SIP4	-	-	DA
FHL1	91	0.9919	1	SKN7	-	-	DA
FKH1	51	0.9713	1	SNT2	20	0.991	1
FKH2	36	0.9714	1	SOK2	-	-	DA
GAL4	-	-	DA	SPT23	8	0.8839	4
GAT1	8	0.9217	3	SPT2	-	-	DA
GCN4	56	0.9637	1	STB1	18	0.9047	1
GLN3	18	0.8598	1	STB4	-	-	DA
HAP1	34	0.8906	1	STB5	15	0.8997	1
HAP4	26	0.9735	1	STE12	39	0.9666	1
HSF1	56	0.8382	1	SUM1	21	0.9073	1
INO2	23	0.9578	1	SUT1	-	-	DA
INO4	20	0.9819	1	SWI4	61	0.9642	1
LEU3	22	0.9343	1	SWI6	71	0.9	1
MBP1	71	0.9614	1	TEC1	11	0.8398	1
MCM1	26	0.9279	1	THI2	-	-	DA
MET4	10	0.8482	3	TYE7	32	0.9801	1
MSN2	31	0.8937	1	UME1	8	0.8808	5
NDD1	-	-	DA	UME6	74	0.9923	1
NRG1	63	0.9873	1	YAP1	16	0.979	1
PDR1	-	_	DA	YAP7	27	0.8429	1
PHD1	-	-	DA	YDR026c	13	0.9921	1
PHO2	-	-	DA	ZAP1	-	-	DA
PHO4	14	0.9663	1				

Table S14. The identification results of DME, conducted after the SSR reduction.

TF	Frequency	Correlation coefficient	Rank	TF	Frequency	Correlation coefficient	Rank
ABF1	231	0.9575	1	RAP1	55	0.9718	1
ACE2	-	-	DA	RCS1	59	0.9836	1
AFT2	83	0.9957	1	RDS1	24	0.9925	1
AZF1	-	-	DA	REB1	88	0.9972	1
BAS1	44	0.9835	1	RFX1	-	-	DA
CAD1	17	0.9417	1	RLR1	-	-	DA
CBF1	344	0.9998	1	RPN4	86	0.9959	1
CIN5	87	0.9438	1	SFP1	35	0.9709	1
DAL82	-	-	DA	SIG1	-	-	DA
DIG1	-	-	DA	SIP4	-	-	DA
FHL1	143	0.9893	1	SKN7	22	0.8465	4
FKH1	635	0.9707	1	SNT2	36	0.9762	1
FKH2	624	0.9614	1	SOK2	142	0.8589	1
GAL4	-	-	DA	SPT23	59	0.8006	2
GAT1	-	-	DA	SPT2	-	-	DA
GCN4	199	0.9922	1	STB1	46	0.9657	1
GLN3	277	0.9515	1	STB4	25	0.9224	1
HAP1	-	-	DA	STB5	26	0.9283	1
HAP4	143	0.9639	1	STE12	352	0.9184	1
HSF1	92	0.8422	1	SUM1	39	0.9105	2
INO2	50	0.9608	1	SUT1	29	0.9151	1
INO4	30	0.9956	1	SWI4	83	0.9815	1
LEU3	14	0.9901	1	SWI6	169	0.9398	1
MBP1	186	0.9845	1	TEC1	-	_	DA
MCM1	158	0.8618	1	THI2	-	_	DA
MET4	-	_	DA	TYE7	108	0.99	1
MSN2	31	0.9555	1	UME1	-	_	DA
NDD1	58	0.8051	2	UME6	84	0.9956	1
NRG1	58	0.9862	1	YAP1	80	0.9475	1
PDR1	-	-	DA	YAP7	201	0.9797	1
PHD1	-	-	DA	YDR026c	29	0.9961	1
PHO2	-	-	DA	ZAP1	-	-	DA
PHO4	54	0.9911	1				

Table S15. The identification results of Weeder, without any dataset pre-treatments.

TF	Frequency	Correlation coefficient	Rank	TF	Frequency	Correlation coefficient	Rank
ABF1	231	0.9575	1	RAP1	55	0.9718	1
ACE2	-	-	DA	RCS1	44	0.9601	1
AFT2	83	0.9957	1	RDS1	22	0.9947	1
AZF1	-	-	DA	REB1	87	0.9972	1
BAS1	44	0.9835	1	RFX1	20	0.9311	1
CAD1	17	0.9417	1	RLR1	-	_	DA
CBF1	344	0.9998	1	RPN4	86	0.9959	1
CIN5	85	0.9438	1	SFP1	35	0.9955	1
DAL82	-	-	DA	SIG1	-	-	DA
DIG1	-	-	DA	SIP4	-	-	DA
FHL1	142	0.9895	1	SKN7	-	-	DA
FKH1	603	0.971	1	SNT2	36	0.9762	1
FKH2	592	0.9618	1	SOK2	142	0.8589	1
GAL4	-	-	DA	SPT23	-	-	DA
GAT1	-	-	DA	SPT2	-	-	DA
GCN4	197	0.9919	1	STB1	46	0.9657	1
GLN3	209	0.9457	1	STB4	25	0.9224	2
HAP1	-	-	DA	STB5	25	0.9296	1
HAP4	143	0.9639	1	STE12	322	0.92	1
HSF1	78	0.8545	2	SUM1	39	0.9105	2
INO2	49	0.9627	1	SUT1	29	0.9151	1
INO4	30	0.9956	1	SWI4	81	0.9815	1
LEU3	14	0.9901	1	SWI6	167	0.9398	1
MBP1	183	0.9846	1	TEC1	31	0.8521	2
MCM1	153	0.8621	1	THI2	-	-	DA
MET4	-	-	DA	TYE7	98	0.993	1
MSN2	31	0.9555	1	UME1	-	-	DA
NDD1	-	-	DA	UME6	84	0.9956	1
NRG1	58	0.9862	1	YAP1	96	0.9318	1
PDR1	15	0.9497	1	YAP7	192	0.9796	1
PHD1	-	-	DA	YDR026c	29	0.9961	1
PHO2	-	-	DA	ZAP1	-	-	DA
PHO4	54	0.9911	1				

Table S16. The identification results of Weeder, conducted after the SSR reduction.

		MDscan	MEME		BioProspector		
TF	SSR reduction	Motif	Frequency	Motif	Frequency	Motif	Frequency
hEP	×		362		288	[‡] <u>stetetÇÎÇTete</u> Çt	277
	0		779	[*] TTT _F TTT _F TTTTTTTT	187		667
mTefen2l1	×	GGTTTGGTTTGGTTG	125		3811		2622
meepzn	0	[*] C ççQ₂₂, ,, Ç ççQ₂,	917		2683		2297
hAR	×		328	Å <mark>ç, AAAz</mark>	823	А <mark>әектана</mark>	764
ilak	0	[₽] <mark>₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</mark>	228		100	[₽] Ţ <mark>ŢŢŢŢŢ</mark>	426
WDR	×		55	Å <u>ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ</u>	110	Act CCTCCCATTAC	83
hVDR	0		362		3	с т ССт.	236
		· <u>····································</u>		14 4 4 4 1 4 1 4 1 4 1 1 4 4 5 5 5 5 5 5		,Ğ╤⋨⋏⋰ ∀ ₩⋏¢⋧	
TF	SSR reduction	Weeder		DME		MODIC	
TF	SSR reduction	Weeder Motif	Frequency	DME Motif	Frequency	MODIC Motif	Frequency
TF	SSR reduction	Weeder Motif	Frequency 23	DME Motif ³ CTGACCCCACGTCAGT	Frequency 16	MODIC Motif	Frequency 247
TF	SSR reduction × o	Weeder Motif GGTCA_ACTGAC GGTCA_ACTGAC	Frequency 23 23	DME Motif *CTGACCCCACGTCACT *CTGACCCCACGTCACT	Frequency 16 16	MODIC Motif	Frequency 247 224
TF hER mTcfm2ll	SSR reduction × 0 ×	Weeder Motif GGTCA_ACTGAC GGTCA_ACTGAC GGTCA_ACTGAC Cc_GTTC_ACCC	Frequency 23 23 125	DME Motif CTGACCCCACGTCACT CTGACCCCACGTCACT CTGACCCCACGGTGACT	Frequency 16 16 8	MODIC Motif AGGTCA TGACCT	Frequency 247 224 1322
TF hER mTcfcp2ll	SSR reduction × · · · · · · · · · · · · · · · · · ·	Weeder Motif GGTCA_ACTGAC GGTCA_ACTGAC GGTCA_ACTGAC CC_GTTC_ACCC CC_GTTC_ACCC	Frequency 23 23 125 103	DME Motif *CTGACCCCACGTCACT *CTGACCCCACGTCACT *CTGACCCCACGTCACT *CTGGCTCTCACTCCCT *CTGGCTCTCACTCCCT *CTGCTTTGCCCTCCCT	Frequency 16 16 8 242	MODIC Motif AGGTCA. TGACCT AGGTCA. TGACCT AGGTCA. TGACCT CC.G. CC.G CC.GG	Frequency 247 224 1322 1100
TF hER mTcfcp2ll	SSR reduction ×	Weeder Motif GGTCA_ACTGAC GGTCA_ACTGAC GGTCA_ACTGAC CC_GTTCAACCC CC_GTTCAACCC AAAATAAAAAA AAAATAAAAAAA	Frequency 23 23 125 103 91	DME Motif *CTGACCCCACGTCACT *CTGACCCCACGTCACT *CTGACCCCACGTCACT *CTGGCTCTCACTCCCT *CTGGCTCTCACTCCCT *CTGCTTTSQLCTCCCT *CAATAATATTTQTTG	Frequency 16 16 242 43	MODIC Motif MODIC Motif MODIC Motif MODIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOT	Frequency 247 224 1322 1100 152
TF hER mTcfcp211 hAR	SSR reduction ×	Weeder Motif GGTCA_ACTGAC GGTCA_ACTGAC GGTCA_ACTGAC CC_GTTC_ACCC CC_GTTC_ACCC CC_GTTC_ACCC AAAATAAAAA AAAATAAAAAA AAACATACTGTAC	Frequency 23 23 125 103 91 12	DME Motif *CTGACCCCACGTCACT *CTGACCCCACGTCACT *CTGACCCCACGTCACT *CTGGCTCTCACTCCCT *CTGGCTCTCACTCCCT *CTGCTTTSQCCTCGCT *CAATAATATTTQTTG *CAATAAATATTTQTTG *CAATAACAA	Frequency 16 16 8 242 43 66	MODIC Motif MODIC Motif MODIC Motif MODIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOT	Frequency 247 224 1322 1100 152 159
TF hER mTcfcp211 hAR	SSR reduction ×	Weeder Motif GGTCA_ACTGAC GGTCA_ACTGAC GGTCA_ACTGAC CC-GTTCAACCC CC-GTTCAACCC CC-GTTCAACCC AAAATAAAAA AAAATAAAAAA AAACATACTGTAC GGTCAAAGAGTT	Frequency 23 23 125 103 91 12 16	DME Motif *CTGACCCCACGTCACT *CTGACCCCACGTCACT *CTGACCCCACGTCACT *CTGG&TCTCACTCCCT *CTGG&TCTCACTCCCT *CTGGTITE&&CTGGT *CAAIAAATAITT&TG *CAAIAAAAAAAAAAATAITT&TG *AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Frequency 16 16 242 43 66 11	MODIC Motif MODIC Motif MODIC Motif MODIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOTIC MOTIC MODIC MOTIC MODIC MOTIC MODIC MOT	Frequency 247 224 1322 1100 152 159 60

Table S17. The top rank motifs that were identified using the six programs, with respect to the four mammalian datasets.

Figure S1. For the determination of the most suitable R value (i.e., the ratio of "noise"; see subsection 2.5), 0.6, 0.7, 0.8, and 0.9 were tested. As a result of the analysis, 0.7 was selected such that the number of "Rank 1" was maximized for all 65 yeast datasets.

Figure S2. The cumulative frequency c(r) (*r* represents "Rank", i.e., r=1, ..., 5) from equation 13 is plotted with respect to our system; i.e., c(r) of our system, without any dataset pre-treatments (rhombuses), and c(r) of our system conducted after the SSR reduction (squares).

Figure S3. The cumulative frequency c(r) (*r* represents "Rank", i.e., r=1, ..., 5) from equation 13 is plotted with respect to our system; i.e., c(r) of MDscan without any dataset pre-treatments (rhombuses), c(r) of MDscan conducted after the rearrangement of the target DNA fragments (triangles), c(r) of MDscan conducted after SSR reduction (squares), and c(r) of MDscan conducted after the SSR reduction and the rearrangement of the target DNA fragments (crosses).

Figure S4. The cumulative frequency c(r) (*r* represents "Rank", i.e., r=1, ..., 5) from equation 13 is plotted with respect to BioProspector; i.e., c(r) of BioProspector without any dataset pre-treatments (rhombuses) and c(r) of BioProspector conducted after the SSR reduction (squares).

Figure S5. The cumulative frequency c(r) (*r* represents "Rank", i.e., r=1, ..., 5) from equation 13 is plotted with respect to MEME; i.e., c(r) of MEME without any dataset pre-treatments (rhombuses) and c(r) of MEME conducted after the SSR reduction (squares).

Figure S6. The cumulative frequency c(r) (*r* represents "Rank", i.e., r=1, ..., 5) from equation 13 is plotted with respect to DME; i.e., c(r) of DME without any dataset pre-treatments (rhombuses) and c(r) of DME conducted after the SSR reduction (squares).

Figure S7. The cumulative frequency c(r) (*r* represents "Rank", i.e., r=1, ..., 5) from equation 13 is plotted with respect to Weeder; i.e., c(r) of Weeder without any dataset pre-treatments (rhombuses) and c(r) of Weeder conducted after the SSR reduction (squares).

References

- Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford, T.W., Hannett, N.M., Tagne, J.B., Reynolds, D.B., Yoo, J. *et al.* (2004) Transcriptional regulatory code of a eukaryotic genome. *Nature*, **431**, 99-104.
- 2. Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004) WebLogo: a sequence logo generator. *Genome Res*, **14**, 1188-1190.