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1. Data acquisition 
 

Experimental data 

We downloaded seven different mRNA expression profiles from Gene Expression Omnibus 

(GEO) database (1) and Stanford Microarray Database (SMD) (2). The seven different stresses 

are Adenine dropout (3), DNA damage (gamma radiation) (4), Glycerol (5), H2O2 (6), Heat 

shock (3), NaCl (7) and Sorbitol treatments (3). We neglected all the ORFs that have at least one 

missing value in their time-series data. Then, we have converted the time-series data into one 

dimensional data using principle component analysis (PCA) (8). We also downloaded growth 

fitness defect score data from (9). The growth fitness score indicates the ratio of the mean 

control intensity to the chemical (stress) treatment intensity of yeast homozygous deletion (9). 

Sensitivity and specificity of mRNA and growth fitness defect score data were compared to 

those of our score (see Computation section and Fig. S1). 

 

Network data 

We have constructed the yeast regulatory network from BioGRID (10) 

(http://www.thebiogrid.org/downloads.php). We downloaded BioGRID Version 3.0.64 and 

collected the information on molecular interactions based on biochemical activity. Then, we 

have incorporated the phosphorylation/dephosphorylation network acquired from the literature 

(11). In the next, we have integrated the transcriptional networks acquired from high-throughput 

ChIP-chip experiments (12) (http://fraenkel.mit.edu/improved_map/latest_maps.html, 

orfs_by_factor_p0.001_cons0.txt). Then, we have also integrated the network from Science 

Signaling database (13-15) (http://stke.sciencemag.org/cgi/collection/specific_pathways), and 

other molecular regulation based on manual curation (16). Finally, we have constructed the 

whole regulatory network composed of 9,438 links and 3,170 nodes. 

 

Gold standards 

We downloaded Gene Ontology terms from Saccharomyces Genome Database (SGD)  (17). 

We assumed that those ORFs containing only GO: 0003674 (molecular function) or GO: 

0008150 (biological process) (or containing no GO term) are functionally ‘unknown’. 5,412 

ORFs in total were found to be related to specific biological processes. We also found several 

stress-regulated pathways or stress-related functions from literature (Table S1). From these, we 

have identified the gold standards of positives that have stress-specific GO terms (Table S1). 

The rest of genes are considered as gold standards of negatives that are not responding to any 

specific stress. The list of gold standards of positives is in Supplementary file 2. 
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YeastNet score 

We can have better inference results about hidden functional characteristics by using multiple 

genomic data sources than single data (18-19). Because most of the genomic data are noisy and, 

moreover, each genomic data have its own biological features, Jansen et al. showed that protein 

interactions can be more accurately predicted when mixed multiple genomic data are used than 

only single experimental measurement is used (18). There are many genome-wide experimental 

data of yeast, but most experiments are not performed in a specific stress condition. Thus, those 

genome-wide experimental data cannot be directly used to extract stress-specific information. 

To resolve this problem, we have employed functional linkage data integrated with multiple 

genomic data (20). The functional linkage data provides us with the information about a 

network composed of genes (nodes) and the functional similarity (link) of each pair of genes. 

The link strength indicates the degree of functional similarity between genes. To calculate the 

‘activation level’ of an ORF in a specific stress condition, we have assigned the sum of link 

strengths to the ORF where only those links having gold standards of positives with the ORF 

are considered. Thus, an ORF having more strong functional linkages with gold standards of 

positives will have a larger stress-specific score. 

  In this study, our goal is to understand how a cell processes information through complex 

molecular interactions against various stresses. One might imagine that something similar to the 

CRM can be obtained using the YeastNet, but that is very different from our CRM and the goal 

of our study cannot be achieved with this since the YeastNet is a functional network and 

therefore does not include the information on molecular regulatory interactions. This is the 

reason why we integrated several types of molecular regulatory networks and reconstructed a 

global regulatory network. 

 

 

2. Computation 
 

Computing the log likelihood ratio 

Log likelihood ratio, L is defined as follows: 

ln
( | )

( | )
L

P f positive

P f negative


 
 
 

 

where f, positive, and negative indicate the target dataset, gold standards of positives, and gold 

standards of negatives, respectively. P(f|positive) is the probability with which an ORF included 

in the gold standards of positives (positive) has a certain feature (f). In practice, we can 

discretize the continuous feature space (e.g., log-ratio of mRNA expression levels) for this 
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purpose. In this paper, we divided the log-ratio of mRNA expression levels into five bins. For 

instance, if there are 100 gold standards of positives (positive) and 10 of them are included in a 

certain bin, P(f|positive) of the ORFs in this bin will be 0.1. P(f|negative) can be computed 

similarly. In our study, we have randomly divided the feature space into five bins and computed 

the probabilities 100 times iteratively. Then, we assigned the average P(f|positive) (or 

P(f|negative)) value to each ORF. Finally, the log likelihood ratio is calculated using these 

P(f|positive) and P(f|negative). 
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Figure S1. The sensitivity and specificity of three different scores of log likelihood ratio. 

We plotted ROC curves using the scores of the log likelihood ratio based on each dataset for 

DNA damage stress. For all the other stress conditions, those based on YeastNet showed always 

the best performance (data not shown). 
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Figure S2. A schematic diagram illustrating the algorithm for identification of a CRM. (1) 

As a first step, we computed the stress-specific ORF scores by transforming the functional 

linkage score between ORFs of the "YeastNet". In this example, the node score of C for stress 1 

is 2.1 since C has functional linkage with the gold standard of positives A and B, for stress 1, 

and the linkage scores of C with A and B are 1.2 and 0.9, respectively. (2) In the second step, 

we computed the stress-specific ORF scores based on log likelihood ratios. (3) Then, we found 

SRN for each stress by solving the MWCS problem based on the global regulatory network 

(523 nodes and 2,093 links where all nodes are regulatory molecules and links are directed 

molecular regulatory interactions) and the stress-specific ORF scores obtained by utilizing the 

"YeastNet". (4) Finally, the CRM is obtained by investigating the common subset of seven 

SRNs. The key concept of this procedure is to find biologically active regulatory molecules 

from various stresses based on a priori knowledge from a network perspective. 
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Figure S3. An illustrative example of computing the hierarchy destruction score. (A) 

Diagrams showing an original network and a perturbed network where node '2' is removed. (B) 

A list of hierarchical orders of each node in the original network and the perturbed network. In 

this example, the hierarchy destruction score for node 2 is 1.5. 
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Figure S4. Variance of gene expression profiles between CRs and NCRs. Gene expression 

profiles were employed from (21). A box plot show a five-number summary of data: the 25th, 

50th, 75th percentiles of the samples, and the two most extreme values within 1.5 times of the 

interquartile range (distance between 25th and 75th percentiles). P-values were computed using 

Wilcoxon’s rank-sum test. 
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Figure S5. Variance of gene expression profiles between CRs and NCRs. Gene expression 

profiles were employed from (22) and T1-6 indicate each time point described therein. Each box 

plot shows a five-number summary of data: the 25th, 50th, 75th percentiles of the samples, and 

the two most extreme values within 1.5 times of the interquartile range (distance between 25th 

and 75th percentiles). P-values were computed using Wilcoxon’s rank-sum test. NS indicates 

'not significant at P<0.05.' 
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Figure S6. The ratio of MDR genes from all genes, CRs, and NCRs. The MDR gene lists 

were employed from (9). We computed the 'All' fixing 6,000 genes in total. P-values were 

computed using Hypergeometric test. NS indicates 'not significant at P<0.05.' 
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Table S1. Gold standards of positives and negatives for a particular stress condition. 

Abbreviations: Adenosine monophosphate; AMP, Ribonucleotide-diphosphate reductase; RNR, 

High osmolarity glycerol; HOG, Glutathione; GSH, Target of rapamycin; TOR, Protein kinase 

C; PKC, Protein kinase A; PKA 

 

Stress 

type 

# of gold 

standards of 

positives 

# of gold 

standards of 

negatives 

Regulated pathways or 

related functions 
References 

Adenine 

dropout 
205 5,207 

AMP biosynthesis, adenine nucleotide 

synthesis, Ty1 transposition, Proton transport, 

Pyridine nucleotide metabolic process, 

glycine, adenine, response to starvation 

(23-24) 

DNA 

damage 
303 5,109 

DNA repair pathway, RNR pathway, DNA 

polymerase activity, response to radiation, 

response to DNA damage 

(25-26) 

Glycerol 469 4,943 

HOG pathway, MAPK pathway, Glycerol 

pathway, Glycolytic pathway, Energy 

production pathway, cellular carbohydrate 

catabolic process, glycerol 

(27-28) 

H2O2 226 5,186 

Thiolredoxin pathway, GSH pathway, Yap1 

pathway, Hydroperoxide pathway, TOR 

pathway, Pentose phosphate pathway, 14-3-3 

pathway, Sir 2 pathway, Oxidative stress 

(29-31) 

Heat 

shock 
798 4,614 

Cell integrity pathway, PKC pathway, MAPK 

pathway, ubiquitin-proteasome pathway, Heat 

shock pathway, HOG pathway, response to 

heat 

(32-34) 

NaCl 230 5,182 

HOG pathway, Calcineurin pathway, TOR 

pathway, PKA pathway, snf1p pathway, 

Rim101p pathway, Sodium ion transport 

(35) 

Sorbitol 953 4,459 

HOG pathway, polyol pathway, Cell integrity 

pathway, PKC pathway, Xylose pathway, 

Sorbitol pathway 

(28,36-39) 
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Table S2. GO term enrichment analysis of the CRM. CRM is computed according to various 

CRs/NCRs classifications based on different noise levels (σ). N=±5 (10)% indicates the 

networks obtained by randomly adding (or removing) 5 (10) % of links. Sample frequency is 

defined as the genes in the CRM and background frequency is denoted with respect to the 523 

regulators. P-values were computed using Hypergeometric test and all the P-values were 

Bonferroni corrected. P-values smaller than 0.05 are shown in boldface. 

 

GO terms Noise level Sample frequency
Background 

frequency 
P-value 

σ=0.00 42/130 (32.3%) 94/523 (18.0%) 0.004 

σ=0.05 42/127 (33.1%) 94/523 (18.0%) 0.002 

σ=0.10 40/119 (33.6%) 94/523 (18.0%) 0.002 

σ=0.15 38/109 (34.9%) 94/523 (18.0%) 0.002 

σ=0.20 38/102 (37.3%) 94/523 (18.0%) 2E-04 

σ=0.25 33/92 (35.9%) 94/523 (18.0%) 0.005 

σ=0.30 31/79 (39.2%) 94/523 (18.0%) 0.001 

σ=0.35 26/64 (40.6%) 94/523 (18.0%) 0.005 

σ=0.30, N=+5% 26/72 (36.1%) 94/523 (18.0%) 0.067 

σ=0.30, N=-5% 26/69 (37.7%) 94/523 (18.0%) 0.027 

σ=0.30, N=+10% 28/77 (36.4%) 94/523 (18.0%) 0.027 

Regulation of cell 

cycle (GO:0051726)

σ=0.30, N=-10% 25/69 (36.2%) 94/523 (18.0%) 0.090 

σ=0.00 52/130 (40.0%) 136/523 (26.0%) 0.055 

σ=0.05 50/127 (39.4%) 136/523 (26.0%) 0.146 

σ=0.10 49/119 (41.2%) 136/523 (26.0%) 0.038 

σ=0.15 47/109 (43.1%) 136/523 (26.0%) 0.012 

σ=0.20 45/102 (44.1%) 136/523 (26.0%) 0.010 

σ=0.25 40/92 (43.5%) 136/523 (26.0%) 0.058 

σ=0.30 39/79 (49.4%) 136/523 (26.0%) 0.001 

σ=0.35 30/64 (46.9%) 136/523 (26.0%) 0.111 

σ=0.30, N=+5% 34/72 (47.2%) 136/523 (26.0%) 0.028 

σ=0.30, N=-5% 34/69 (49.3%) 136/523 (26.0%) 0.008 

σ=0.30, N=+10% 36/77 (46.8%) 136/523 (26.0%) 0.020 

Response to stress 

(GO:0006950) 

σ=0.30, N=-10% 34/69 (49.3%) 136/523 (26.0%) 0.008 
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Table S3. GO term enrichment analysis of the regulated genes by the CRM. CRM is 

computed according to various CRs/NCRs classifications based on different noise levels (σ). 

N=±5 (10)% indicates the networks obtained by randomly adding (or removing) 5 (10)% of 

links. Sample frequency is defined as the ratio of genes regulated by the CRM and background 

frequency is denoted as the ratio of genes regulated by all 523 regulators. P-values were 

computed using Hypergeometric test and all the P-values were Bonferroni corrected. P-values 

smaller than 0.05 are shown in boldface. 

 

GO terms Noise level 
Sample 

frequency 

Background 

frequency 
P-value 

σ=0.00 354/2033 (17.4%) 428/3006 (14.2%) 1.50E-10 

σ=0.05 354/2025 (17.5%) 428/3006 (14.2%) 6.03E-11 

σ=0.10 339/1957 (17.3%) 428/3006 (14.2%) 2.30E-08 

σ=0.15 331/1835 (18.0%) 428/3006 (14.2%) 4.17E-11 

σ=0.20 318/1718 (18.5%) 428/3006 (14.2%) 6.80E-12 

σ=0.25 307/1656 (18.5%) 428/3006 (14.2%) 8.06E-11 

σ=0.30 275/1420 (19.4%) 428/3006 (14.2%) 6.32E-11 

σ=0.35 268/1383 (19.4%) 428/3006 (14.2%) 2.62E-10 

σ=0.30, N=+5% 273/1405 (19.4%) 428/3006 (14.2%) 8.96E-11 

σ=0.30, N=-5% 276/1431 (19.3%) 428/3006 (14.2%) 1.54E-10 

σ=0.30, N=+10% 281/1435 (19.6%) 428/3006 (14.2%) 3.84E-12 

Cell cycle 

(GO:0007049) 

σ=0.30, N=-10% 275/1391 (19.8%) 428/3006 (14.2%) 3.24E-12 

σ=0.00 244/2033 (12.0%) 293/3006 (9.7%) 7.35E-07 

σ=0.05 244/2025 (12.0%) 293/3006 (9.7%) 3.95E-07 

σ=0.10 239/1957 (12.2%) 293/3006 (9.7%) 2.30E-07 

σ=0.15 234/1835 (12.8%) 293/3006 (9.7%) 1.44E-09 

σ=0.20 226/1718 (13.2%) 293/3006 (9.7%) 1.90E-10 

σ=0.25 219/1656 (13.2%) 293/3006 (9.7%) 8.99E-10 

σ=0.30 198/1420 (13.9%) 293/3006 (9.7%) 4.65E-10 

σ=0.35 192/1383 (13.9%) 293/3006 (9.7%) 4.43E-09 

σ=0.30, N=+5% 198/1405 (14.1%) 293/3006 (9.7%) 1.64E-09 

σ=0.30, N=-5% 202/1431 (14.1%) 293/3006 (9.7%) 4.17E-10 

σ=0.30, N=+10% 204/1435 (14.2%) 293/3006 (9.7%) 8.98E-11 

Negative regulation 

of biological process 

(GO:0048519) 

σ=0.30, N=-10% 198/1391 (14.2%) 293/3006 (9.7%) 4.68E-10 
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Table S4. Topological properties of the CRM compared to random CRs/NCRs 

classifications. P-values of the topological properties of the CRM according to various 

CRs/NCRs classifications based on different noise levels (σ). N=±5 (10)% indicates the 

networks obtained by randomly adding (or removing) 5 (10)% of links. P-values smaller than 

0.05 are shown in boldface. For hierarchy destruction score, P-values were computed using 

Wilcoxon's Rank-sum test and, for the others, P-values were computed based on randomly 

selected sub-networks with the same number of nodes (1,000 times).  

 

Noise level Number of the 

Middle nodes in 

the CRM 

Hierarchy 

destruction score 

Number of two-

node feedback 

loops in the CRM

Number of feed-

forward loops in 

the CRM 

σ=0.00 0.008 2E-04 0.001 0.028 

σ=0.05 0.021 3E-04 0.002 0.030 

σ=0.10 0.013 2E-04 0.001 0.054 

σ=0.15 0.016 0.002 0.005 0.063 

σ=0.20 0.003 0.002 0.001 0.050 

σ=0.25 0.006 2E-04 0.001 0.064 

σ=0.30 0.002 6E-04 0.008 0.036 

σ=0.35 0.001 2E-04 0.001 0.001 

σ=0.30, N=+5% 0.001 3E-04 0.007 0.015 

σ=0.30, N=-5% 0.021 3E-04 0.001 0.015 

σ=0.30, N=+10% 0.001 1E-04 0.001 0.005 

σ=0.30, N=-10% 0.001 1E-04 0.001 0.032 
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Table S5. Number of feedback loops in the CRM. P-values of the topological properties of 

the CRM according to various CRs/NCRs classifications based on different noise levels (σ). 

N=±5 (10)% indicates the networks obtained by randomly adding (or removing) 5 (10)% of 

links. P-values smaller than 0.05 are shown in boldface. P-values were computed based on 

randomly selected sub-networks with the same number of nodes (1,000 times).  

 

Noise level Number of three-node 

feedback loops in the 

CRM 

Number of four-node 

feedback loops in the 

CRM 

Number of five-node 

feedback loops in the 

CRM 

σ=0.00 0.001 0.004 0.001 

σ=0.05 0.004 0.011 0.014 

σ=0.10 0.003 0.008 0.009 

σ=0.15 0.009 0.013 0.013 

σ=0.20 0.004 0.007 0.008 

σ=0.25 0.032 0.113 0.226 

σ=0.30 0.017 0.060 0.141 

σ=0.35 0.002 0.004 0.004 

σ=0.30, N=+5% 0.013 0.049 0.097 

σ=0.30, N=-5% 0.001 0.006 0.004 

σ=0.30, N=+10% 0.003 0.006 0.006 

σ=0.30, N=-10% 0.005 0.028 0.143 
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Table S6. Genetic properties of the CRM compared with random CRs/NCRs 

classifications. P-values of the genetic properties of the CRM according to various CRs/NCRs 

classifications based on different noise levels (σ). N=±5 (10)% indicates the networks obtained 

by randomly adding (or removing) 5 (10)% of links. P-values smaller than 0.05 are shown in 

boldface. For the ratio of synthetic lethal pairs, P-values were computed using Fisher's exact test 

and, for the others, P-values were computed based on Wilcoxon's Rank-sum test.  

 

Noise level Evolutionary rate 

(Rank) 

Interstrain 

variance 

Ratio of synthetic 

lethal pairs 

Growth rate defect

σ=0.00 6E-08 0.008 <2E-16 0.002 

σ=0.05 4E-07 0.009 <2E-16 0.002 

σ=0.10 1E-05 0.026 <2E-16 0.003 

σ=0.15 1E-06 0.023 <2E-16 0.004 

σ=0.20 9E-07 0.009 <2E-16 0.002 

σ=0.25 7E-07 0.021 <2E-16 6E-04 

σ=0.30 5E-07 0.043 <2E-16 0.007 

σ=0.35 2E-06 0.034 <2E-16 0.008 

σ=0.30, N=+5% 8E-09 0.020 <2E-16 0.009 

σ=0.30, N=-5% 3E-07 0.005 <2E-16 0.003 

σ=0.30, N=+10% 1E-07 0.014 <2E-16 0.019 

σ=0.30, N=-10% 2E-07 0.021 <2E-16 0.004 
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Table S7. Genetic properties of the CRM compared with random CRs/NCRs 

classifications. P-values of the genetic properties of the CRM according to various CRs/NCRs 

classifications based on different noise levels (σ). N=±5 (10)% indicates the networks obtained 

by randomly adding (or removing) 5 (10)% of links. P-values smaller than 0.05 are shown in 

boldface. For the ratio of MDR genes in CRs, P-values were computed using Hypergeometric 

test and, for the others, P-values were computed based on Wilcoxon's Rank-sum test. 

 
Noise level Ratio of MDR 

genes in CRs 

Expression 

variance (T5) (22)

Expression 

variance (T6) (22)

Expression 

variance (21) 

σ=0.00 0.026 0.269 0.007 0.017 

σ=0.05 0.021 0.278 0.012 0.021 

σ=0.10 0.023 0.253 0.020 0.018 

σ=0.15 0.021 0.212 0.026 0.015 

σ=0.20 0.012 0.099 0.025 0.010 

σ=0.25 0.010 0.069 0.012 0.005 

σ=0.30 0.034 0.010 0.005 0.018 

σ=0.35 0.090 0.188 0.003 0.106 

σ=0.30, N=+5% 0.007 0.071 0.006 0.014 

σ=0.30, N=-5% 0.030 0.035 6E-04 0.024 

σ=0.30, N=+10% 0.028 0.068 0.002 0.042 

σ=0.30, N=-10% 0.030 0.072 0.013 0.103 

 


