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ABSTRACT  We discuss the activation of thin-filament-regu-
lated muscles by calcium ion in terms of a qualitative model based
on nearest-neighbor lattice statistics. For the most part, the model
takes into account only the essential features of the phenome-
non—that there must be an interaction between calcium adsorp-
tion to troponin and crossbridge reaction with actin for calcium
ion to activate contraction and that the relevant stationary states
are nonequilibrium ones. Even so, the model predicts the follow-
ing features which are seen experimentally but have generally not
been considered in previous models: (i) the relative activations of
stationary-state isometric force and ATPase are not equal; (if) in
general, neither activation of force nor that of ATPase is propor-
tional to calcium adsorption to the activating sites; and (ii) the
slopes of the relations between the activations and the logarithm
of the calcium ion concentration generally depend on the neces-
sary interaction between calcium ion adsorption and crossbridge
reaction with actin. Thus, these relations show cooperative effects
even if there is no interaction between calcium adsorption sites.

There is significant understanding of the relations between the
molecular events and their phenomenological manifestations in
the activation of muscle contraction by calcium ion (1-4). Yet
this understanding is not complete. Much of it is based on con-
cepts from the theory of equilibrium systems and from other
limiting cases, whereas contraction and its activation are dis-
tinctly nonequilibrium phenomena, even at the stationary state,
and the limiting cases are so particular that they would not seem
to obtain in muscle. We have recently begun to develop a model
of cooperative systems with nonequilibrium stationary states
(5), and in this paper we use this model to offer insights into
these facets of the Ca®* activation process. We will attempt to
show that some of the previous interpretations of this process
have been based on untenable assumptions. We will also offer
explanations for some puzzling aspects of the phenomenon, but
we will not attempt to develop a complete quantitative model;
our goal is qualitative rather then quantitative. We will consider
only essential aspects of the phenomenon so that the model re-
flects its basic features. (Derivations of the approximations and
details of other points are available upon request.) The model
should thus be considered a paradigm for more accurate models.

THE MODEL

We picture the thin filament as a lattice of two classes of sites:
those on troponin that adsorb Ca®* and the actins. Contraction
is brought about by a cyclic reaction of projections of myosin
from the thick filament, the crossbridges, with the actins and
is powered by an ATPase located on the myosins (1-4). It is
generally acknowledged that a crossbridge may exist in various
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states, both when it is reacting with an actin and when it is not
reacting. However, because we are concerned with the acti-
vation of contraction, not the contraction itself, a two-state
crossbridge cycle (Fig. 1B) in which an actin is either reacting
or not reacting with a crossbridge suffices here. Indeed, two-
state cycles have been useful prototypes for models of contrac-
tion itself (2, 6). In this simple picture, the ATPase rate is simply
the rate of crossbridge cycling. It might also be noted that one
of the transition paths in Fig. 1B may be taken as effectively one
way (7); we neglect k_y. The Ca®* sites on troponin are ade-
quately described as being either occupied by a Ca®* or un-
occupied, with transitions as shown in Fig. 1A.

As the concentration of Ca?* is raised, it is adsorbed onto
troponin (1, 8, 9) and the reaction of crossbridges with actins
is stimulated, resulting in increases in the stationary-state iso-
metric force and ATPase in fibers (9-11) and an increase in
ATPase in myofibrils (10). To take into account the promotion
of crossbridge reaction with actins by Ca** adsorption to tro-
ponin, we assume that when a Ca®* site is occupied and a near-
est-neighbor actin is reacting with a crossbridge, there is an
attractive (<0) free energy of interaction w,,. Because the to-
pology of the interactions is not clear, we must be content at
this point to say that each Ca®* site has c,; actins as nearest
neighbors (in the sense of interactions, not structure), and each
actin has c,, nearest-neighbor Ca®* sites. (c;M; = cgM,,
where M, is the total number of actins and M, the total number
of calcium adsorption sites.) For example, if each actin were
controlled by one troponin and only two Ca?* sites on troponin
were responsible for activation, then ¢;, would be two. With
these same conditions, if each troponin controlled seven actins,
then c,; would be seven. If, on the other hand, four Ca®* sites
on troponin were responsible for activation and the other con-
ditions remained the same, then c;, would be four, but ¢y,
would still be seven.

There is also some evidence of possible interactions between
the Ca?* sites (9, 12) and between the actins (13, 14). We assume
that each Ca®* site has c, other Ca?" sites as nearest neighbors
and that each actin has c, other actins as nearest neighbors, with
interaction energies w, when two nearest-neighbor Ca®* sites
are occupied and w, when two nearest-neighbor actins are re-
acting with crossbridges. In the actual muscle, all three of the
interactions may be mediated wholly or in part by tropomyosin
(1, 4). Some possible implications of this are discussed later.

We must now express the effects of these interaction energies
on the rate constants of Fig. 1. We follow Hill (15) and assume
that the interaction energy, @, of the activated complex (Eyring
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Fic. 1. (A) Transitions for an isolated Ca2* adsorption site (the
square); (B) crossbridge cycle for a single actin. In both A and B, ks
denote rate constants.

rate theory) for transitions between some state A with inter-
action energy w, and another state B with interaction energy
wg is given by a linear weighted average of w, and wg: @ =
fasws + (1 — fag)wg, where f,5 is a real constant (16) which
may be chosen independently of all other parameters and vari-
ables. Note that in general there will be a distinct f for each of
the two transition paths of Fig. 1B because detailed balance at
equilibrium is required for each path independently of the
other. However, if the interactions affect the rate constants for
both paths equally, one need consider only one f; a mathemat-
ical detailed balance that offers considerable simplification ob-
tains even at nonequilibrium stationary states (15). We treat
only this “quasi-equilibrium” case here, but we discuss some
implications of the removal of this constraint in the last section.

We must take into account one further complicating aspect
of muscle contraction. For the cycle of Fig. 1B to be coupled
to a net force production, there must be a dependence of its rate
constants on some mechanical parameter (7). Relevant macro-
scopic observable quantities for the muscle fiber are obtained
only after averaging over the mechanical parameter. However,
a perturbation expansion shows that to first order the number
of actins with crossbridges attached and the number of occupied
Ca®* sites are given by the unaveraged quantities in the iso-
metric stationary state. Furthermore, to the same approxima-
tion, the force under the same conditions is proportional to the
number of actins with crossbridges attached, so that the relative
force (defined below) is identical to the relative number of actins
with crossbridges attached. We will use these results here be-
cause we do not want to introduce effects that result from a
particular choice for the mechanical dependence of the rate
constants of Fig. 1B. That this approximation is reasonable is
indicated by the qualitative similarity between measurements
of the Ca®* activation of ATPase in isometric fibers (10, 11) and
those in myofibrils (17).

This model of the Ca?* activation of muscle contraction is
formally equivalent to one we have presented earlier (5). Un-
fortunately, no closed form solution is available for the general
model even at equilibrium, much less under the nonequilib-
rium conditions we consider here. Two approximations have
been presented, however (5). The Bragg-Williams approxi-
mation does not take into account, for example, that in general
0,1,...c;, of a given actin’s c,, nearest-neighbor Ca®* sites may
be occupied and 0,1,. . .c; of the actin’s nearest-neighbor actins
may be reacting with a crossbridge. Rather, only an “average”
actin with an average number of occupied nearest-neighbor
Ca®* sites and an average number of nearest-neighbor actins
reacting with crossbridges is considered. An “average” Ca2"* site
is similarly defined. The Bragg-Williams approximation yields
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qualitatively reasonable results, and we will use it for the most
part. However, it does lack topological information; when we
ask for such information, we must turn to the more elaborate
quasi-chemical approximation, which daes retain some topolog-
ical constraints and happens to be exact for several special cases.
This approximation assumes that pairs of nearest neighbors are
independent.

The Bragg-Williams approximation yields the following sta-
tionary state Ca®* adsorption isotherm (5):

o,
.20 ) + CoWely + Co1wy20, , (1]
.

In (gg29) = In (1
where g, = k,/k_, is the partition function (binding constant)
of a single isolated Ca®* site; z, is the activity of Ca®*, which
we take equal to its concentration; 6, is the average fraction of
Ca®* sites that are occupied; 6, is the average fraction of actins
reacting with crossbridges (i.e., M’, 6, is the number of cross-
bridges reacting with actins, where M’ is the total number of
actins in the region of overlap of the thin and thick filaments);
and the interaction energies have been normalized to temper-
ature through the Boltzmann constant (i.e., wherever a w is
written, one should read w/kT). (For those who prefer pCa
= —log,o[Ca®*] as a measure of Ca®* concentration, we note
that natural logarithms may be converted to logarithms to the
base 10 through the factor In 10 = 2.303.) Similarly, we have

ln q, = lﬂ ( ) + Clwlel + 012w1202 N [2]

1
1 - 01
where g, = k,/(k; + k_,) is the probability that a single actin
subject to no interactions is reacting with a crossbridge. The
stationary-state rate of crossbridge cycling or ATPase, which we
refer to as a flux, is given by (5):

J= k def(clwnol"‘clztvmoz)el . [3]

RESULTS

The Ca®* activation of stationary-state isometric force and flux
calculated from the Bragg—Williams approximation under two
sets of appropriate conditions are shown in Figs. 2 and 3. As is
customary, we have plotted the relative values of these quan-
tities, ¢’ and J', respectively. The relative activation of force
is defined as

_ ¢ - ¢o

- ¢* - o,

where ¢ is the force, ¢, = lim0 &, and ¢* = alziml ¢. Actually,
G— —>

in our approximation (see above), ¢ is replaced by 8,. J' is de-
fined analogously to ¢'. The calculations were carried out by
first solving Eq. 2 for 6, as a function of 6, for the given choice
of parameters. In(g,z,) was then obtained from Eq. 1. Finally,
J was calculated from Eq. 3. Note that k4 cancels out when J’
is calculated.

In Fig. 2 we have set w; = w, = 0 and considered only the
necessary interaction between Ca®* adsorption and crossbridge
reaction with actins. Fig. 2A shows the relations of the activa-
tions to the concentration of Ca?*, z,. An elementary calculation
shows that both activations generally rise much more steeply
with increasing z, than does the corresponding analogue of the
Langmuir adsorption isotherm, showing what is often referred
to as “positive cooperativity.” We also note that J' # ¢’ and the
ratio @'/J’ generally increases with increasing z,; i.e., the rel-
ative tension cost decreases with increasing activation, as is
often but not always observed (10, 11). From Eq. 3 we see that

¢I
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Fi6. 2. The dependence of the activations of stationary-state iso-
metric force ¢' (—) and flux J' (——-) on Ca®* concentration, z, (A),
and Ca®* adsorption, 8, (B); calculated from the Bragg-Williams ap-
proximation with Eq. 3 for the flux. ¢, = 0.001, ¢;owy, = —3.0, ¢y
=175 Cig W1 = W = 0, f= 0.5.

with w; = 0 the tension cost J/ 6, will decrease with increasing
activation if f > 0, because w;, must be negative for Ca®>* to
activate contraction. Our choice of parameters for this figure
is in fact particularly fortuitous in that it reproduces the sort of
relationship between the two activations seen by Schidler (18).

Under some experimental conditions (18), it is observed that
¢' and J' intersect as shown in Fig. 3. An intersection cannot
be predicted by Eq. 3; however, this equation assumes that the
effects on the rate constants of Fig. 1B of the interactions of the
actins with other actins (w;) and with Ca2* sites (w,,) may be
expressed by the same constant, f. There is no fundamental

reason why this should be so; thus, we can generalize Eq. 3 to
read

J=k 4 (e.ﬁclwxoleﬁzvuwu@z)ol , [4]

which was used instead of Eq. 3 for the calculation of Fig. 3.
Also of interest are the relations between the activations and
Ca®* adsorption, as shown in Figs. 2B and 3B. We see that
neither ¢’ nor J' equals 6, and that the slopes of both these
curves increase with increasing activation. If we neglect the
possibility of phase transitions (5) for the moment [1 + c;w, 6,
(1 — 8,) > 0], this follows for ¢ from Eqs. 1 and 2 with the re-
quirements w;y < 0 and lim 6; < 0.5. (In the overlap zone,

Go—1
the ratio of the total number of myosin crossbridges to the total
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Fic. 3. The dependence of the activations of stationary-state iso-
metric force ¢’ (—) and flux J' (——-) on Ca2* concentration, z, (A),
and Ca?* adsorption, 6, (B); calculated from the Bragg-Williams ap-
proximation with Eq. 4 for the flux. In q; = —In(999) — 0.011
_‘6.918, CioWi9 = _ln(lll) +1.089 = _3.621, Cyy = 1.75 C19, LWy
_11.0, Colg = _3.88, le = 08, fl =0.0.

n

number of actins is approximately 14/72, which implies that if
all crossbridges were reacting with an actin, then the fraction
of actins reacting with a crossbridge would be 14/72 = 0.19.)

DISCUSSION

These results are in general agreement with data in the liter-
ature. However, we (19, 17) and others (10) have not previously
analyzed or discussed the data in this way. First of all, we know
of no one who has attempted to deal with the difference between
the activations of force and ATPase other than to attribute the
difference essentially to an artifact rooted in the difference of
strain in the myofilament lattice of unloaded myofibrillar prep-
arations as compared to the loaded skinned muscle fiber (18).
Yet we (11) and others (10) have found a difference in the ac-
tivations of stationary-state force and ATPase of loaded skinned
fibers prepared from either heart or skeletal muscle. Our results
show that this difference between the activations of force and
ATPase by Ca®" is to be expected unless f; = fi, = f = 0.
From Egs. 1-4 we also see that the deviations of the slopes
of the activations vs. the logarithm of the Ca?* concentration
from that of appropriate analogues of the Langmuir adsorption
isotherm in general depend on all three interaction energies w;,
ws, and w;,. The standard approach, however, has been to in-
terpret the slopes as being due only to the interaction between
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the Ca®* sites, w, (9, 20, 21). However, the slopes are steeper
than the corresponding Langmuir analogues even if the only
nonzero interaction energy is the necessary one between Ca®*
adsorption and crossbridge reaction with the actins (Fig. 2).
(This statement is entirely true only for the Bragg-Williams
approximation. In the quasi-chemical approximation, whose
qualitative topological properties we expect to be correct, the
magnitude of the slope of the relative activation of isometric
force vs. In z, is independent of wy, if ¢;; = ¢,y = 1. However,
this condition is unlikely to obtain in muscle, and for other lat-
tice topologies the quasi-chemical approximation agrees with
the Bragg-Williams approximation about this point.)

Furthermore, the interpretation of the slopes in terms of an
interaction between Ca®* sites is often based on a generalization
of the Hill equation (22). In this context, the slopes of the ac-
tivations are taken to be some measure of a lower limit for the
number of interacting Ca®* sites per “functional unit”. Although
the parameters of the Hill equation may be useful in charac-
terizing the dependence of the activation of stationary-state
isometric force and that of ATPase on the concentration of Ca2*,
its use beyond that is inappropriate for the following reasons:
The Hill equation is an equilibrium formulation, whereas mus-
cle contracts actively only under nonequilibrium conditions.
The Hill equation has been seen to follow from more general
models in the limit that the ratio of an interaction energy to
temperature becomes infinitely negative (23). This is unlikely
for biological systems in general and muscle in particular, be-
cause their effective temperature range is small and in the
neighborhood of 300 K. Finally, even supposing an analogue
of the Hill equation could be used to describe the interaction
between Ca®" sites, one must still reckon with the interaction
between Ca®* sites and crossbridge reaction with actin.

We mention another point here. Under some conditions,
analysis via the Hill equation yields a lower limit of more than
four interacting Ca®* sites per functional unit (24). Some in-
vestigators (24) have noted that, because there are only four
Ca®* sites per troponin in vertebrate skeletal muscle, factors
additional to any interaction between these sites must be con-
sidered. In terms of the results presented here, at least part of
the explanation lies in the other interactions and the reasons for
the inappropriateness of the Hill equation as just discussed. In
addition, there are still other factors which are mentioned in
the next section.

A second major discrepancy between our present results and
previous analyses concerns the relations between the activa-
tions of force and flux and adsorption to the Ca®* sites (Figs.
2B and 3B). In calculating model curves for comparison with
data, many investigators (25, 26) have assumed that the acti-
vations are proportional, or nearly so (8), to the extent of oc-
cupation of appropriate Ca®* sites. This assumption is not born
out in Figs. 2B and 3B, a central feature of which is that very
little activation occurs with initial Ca®>* adsorption but that ac-
tivation occurs more and more rapidly with increasing occu-
pation of the Ca®* sites. With the assumption of near propor-
tionality though, the interpretation of this feature has been that
there are two classes of Ca®* sites—only one of which is re-
sponsible for the activation of contraction—and that most of the
initial adsorption when little activation occurs is to the nonac-
tivating class, whereas most of the adsorption when activation
is increasing is to the activating class (8, 9, 13). This is an at-
tractive hypothesis, because there is a good deal of evidence
now that there are two classes of Ca®* sites on troponin (27).
In fact, partially on the basis of this argument, Potter and
Gergely (8) have reasoned that Ca?* binding to the Ca®*-spe-
cific sites on troponin is responsible for activation. This point
of view is strengthened by kinetic measurements showing that
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Ca®* exchange with the Ca?*-specific sites is rapid enough to
occur during a twitch of fast skeletal muscle (28) or a beat of the
heart (29), whereas Ca®* exchan%e with the other sites is slow.
Yet, even the titration of the Ca**-specific sites is not propor-
tional to activation of stationary-state force or ATPase (8, 29).
Moreover, conclusions made from comparisons of the activation
of myofilament force or ATPase (or both) to Ca®* adsorption to
troponin in solution must be viewed with caution because such
conclusions ignore the effect of the interaction of Ca®* adsorp-
tion and crossbridge reaction with actins on the Ca®* adsorption
itself. (This is equivalent to using Eqs. 1-3 or 1, 2 and 4 to cal-
culate ATPase but setting 6, equal to zero in Eq. 1 to calculate
Ca®* adsorption.) There must be such an interaction, because
otherwise Ca®* adsorption to troponin would not affect the re-
action of crossbridges with actins (and therefore contraction).
It is important to emphasize that a feature of the model we
have presented here is that it considers only one class of Ca®*
sites and predicts an increasing slope in the relation between
activation and Ca®* adsorption, although the Ca®* sites in our
model are equivalent in all respects. We have argued above on
the basis of the Bragg—Williams approximation that this feature
is to be expected. However, we would also expect the lattice
topology to have some effect that would not be manifest in this
approximation. The quasi-chemical approximation though pre-
dicts generally that proportionality between the activation of
force and Ca®* adsorption requires w;, = 0 and ¢;, = 1—i.e.,
that each actin interacts with only one Ca®* site. Given what
is known about the structure of muscle (3), this seems unlikely.

FURTHER CONSIDERATIONS

Up to this point we have neglected several aspects of the Ca%*
activation of muscle contraction that we feel will have to be in-
cluded in a fuller treatment of the problem. The three inter-
actions we have considered here are probably mediated at least
in part by tropomyosin. Inclusion in the model of tropomyosin
with its attendant states and interactions is straightforward in
principle, and the necessary generalization has been outlined
previously (5). By assuming the quasi-equilibrium conditions,
we have considered only equilibrium-type effects of the inter-
action energies on population properties (16). However, there
are other possible effects—dissipative ones—which would be
expected at nonequilibrium stationary states. Such dissipative
couplings appear in Shimizu’s work (30) and have been dis-
cussed in the context of interacting enzyme systems by Hill (31).
Relaxation of the quasi-equilibrium conditions is straightfor-
ward in the Bragg-Williams approximation to models with two-
state crossbridge cycles (5, 31), although such a generalization
may not be possible for the quasi-chemical approximation (T.
L. Hill, personal communication). A further factor which must
eventually be taken into account is the mechanical dependence
of the rate constants of Fig. 1B, as discussed above.

We would like to mention one final matter: Does muscle
display a phase transition? There is some evidence that it may.
In measurements of the Ca®* activation of isometric force in
contractile threads, Crooks and Cooke (32) first maximally con-
tracted the threads by increasing the Ca®* concentration. The
concentration was then lowered to the level where baseline
force had been recorded, but the force was reduced to only
about one-half of the maximal value. This hysteresis may rep-
resent a phase transition, as in ferromagnetism. A further piece
of evidence is presented by the equilibrium adsorption of
myosin subfragment 1 to regulated F-actin (33). The data in the
presence of EGTA are certainly suggestive of a phase transition.
The importance of the question of phase transitions may be
understood by noting that the quasi-chemical approximation
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places topological constraints (minimum numbers of nearest
neighbors) on the conditions for such behavior (5). Thus, if hys-
teresis is conclusively demonstrated in the Ca®* activation of
contraction, it could imply certain information about the to-
pology of the relevant interactions. Unfortunately, most exper-
iments to date have been performed so as to minimize the pos-
sibility of observing any hysteresis (22). It would seem im-
portant to repeat such experiments maximizing any hysteresis
that may be present.

Note Added in Proof. The hysteresis predicted above has now been
demonstrated. After we submitted this paper, two:abstracts (34, 35)
were published showing contraction-relaxation hysteresis in single fi-
bers of the barnacle. Unpublished experiments in our own laboratory
have shown a similar hysteresis in chemically skinned bundles of heart
muscle fibers. The results show that the steady-state force-free Ca2*
relations depend on whether a particular free Ca®* is achieved by step-
ping down to the free Ca2* from a higher level or by stepping up to the
free Ca2* from a lower level. Tension is higher in the step down than
in the step up, indicating that the sensitivity of tension development
to free Ca** depends on the history of the preparation. The results also
suggest that during relaxation a given level of free Ca®* can maintain
a higher level of tension than it can produce during contraction.
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