#### SUPPLEMENTARY MATERIALS

A Comparative 'Bottom Up' Proteomics Strategy for the Site-specific Identification and Quantification of Protein Modifications By Electrophilic Lipids

Bingnan Han<sup>1,3</sup>, Michael Hare<sup>2</sup>, Samanthi Wickramasekara<sup>2</sup>, Yi Fang<sup>4</sup> and Claudia S. Maier<sup>1,2</sup>\*

 <sup>1</sup>Department of Chemistry and <sup>2</sup>Environmental Health Sciences Center Oregon State University, Corvallis, OR 97331
 <sup>3</sup>Department of Ocean Science and Engineering, Zhejiang University, Hangzhou, China 310028
 <sup>4</sup>Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906

#### **Content**

#### **Model Protein Data**

**Figure S1.** Affinity enrichment of HNE conjugated peptides from the  $d_0/d_4$ - succinic anhydride-labeled tryptic digest of HNE adducted *E. coli* TRX.

**Figure S2.** MALDI tandem mass spectrometric identification of the  $d_0/d_4$ - succinic anhydride-labeled, HNE-modified peptide T2\*-HNE (m/z 2088.0 and 2096.2) from *E.coli* Trx.

#### **Mitochondrial Data**

**Table S1**. Oxylipid peptide conjugates of cardiac mitochondrial proteins identified using

 Affi gel-Hz enrichment and nanoLC MALDI tandem mass spectrometry.

 Table S2. Identified oxylipid peptide conjugates of cardiac mitochondrial proteins after

 post-digestion labeling with succinic anhydride, Affi gel-Hz enrichment and nanoLC

 MALDI tandem mass spectrometry.

**Table S3.** Comparison of experimental vs expected d0/d4 ratios for oxylipid peptide conjugates from 1:1 mixtures of mitochondrial proteome preparations.

**Figures S3-1 through 34.** MALDI tandem mass spectra of oxylipid peptide conjugates. Peptides were separated by nanoLC ( $C_{18}$ ) and 20sec-fractions spotted onto a MALDI target using a Probot spotter. MALDI-MS/MS analyses were performed on an ABI 4700 ToF/ToF instrument. Precursor ions were selected by a time-gated window of approximately 3-10 Da width. Gas (air) pressure in the collision cell was set to 6 x 10-7 Torr. A collision energy of 1 kV was used. MS/MS data interpretation was assisted by MASCOT. N.A; not assigned.











Affinity enrichment of HNE conjugated peptides from the  $d_0/d_4$ - succinic anhydridelabeled tryptic digest of HNE adducted *E. coli* TRX.

(A) MALDI mass spectrum of the unfractionated,  $d_0/d_4$ - succinic anhydride labeled tryptic digest of HNE-modified thioredoxin. The ion pairs at m/z 1988.0, 1992.2 and 2088.0, 2096.2 correlate with tryptic T2-HNE peptides tagged with one or two isotopically labeled succinic anhydrides, respectively.

The following ion pairs containing no HNE were also observed: T2 (1831.9 Da) and T2\*

(1931.9 Da), IIHLTDDSFDTDVLK; T4 (1905.9 Da) and T4\* + Na (2028.0 Da),

MIAPILDEIADEYQGK; T6 (1367.7 Da) and T6\* + Na (1489.7 Da),

LNIDQNPGTAPK; T8 (1101.7 Da) and T8\* + Na (1231.8 Da), GIPTLLLFK. The peaks annotated with \* represent the bi-succinic anhydride labeled peptide.

(B) MALDI mass spectrum of the capture flow through of the  $d_0/d_4$ -succinic anhydridelabeled tryptic digest of HNE adducted *E. coli* TRX. (C) MALDI mass spectrum of the enriched fraction containing the  $d_0/d_4$ - succinic anhydride -labeled HNE-conjugate of peptides T2-HNE and T2\*-HNE. The enriched ion pairs with the expected 1:1 ratio as  $d_0$ -and  $d_4$ -labeled isotopomeric ion pairs from the crude fraction indicated the specificity of this method.

#### Figure S2.



MALDI tandem mass spectrometric identification of the  $d_0/d_4$ - succinic anhydridelabeled, HNE-modified peptide T2\*-HNE (m/z 2088.0 and 2096.2) from *E.coli* Trx. Fragment ions marked with an asterisk \* retained the HNE moiety during high-energy collision induced fragmentation. The ion at m/z 266.2 corresponds to the immonium ion of the HNE-conjugated histidine residue. The prominent ions at m/z 1831.9 and 1836.0 indicate neutral loss of the HNE moiety.

**Table S1.** Oxylipid peptide conjugates of cardiac mitochondrial proteins identified after Affi-gel Hz enrichment and nanoLC separation. Annotated MALDI tandem mass spectra are shown as supplementary materials, Figure S4-1 through S4-34.

| Protein Name                                                 | Sprot ID                       | Peptide sequence and<br>oxylipid modification | MASCOT<br>score          | Residue            | Figure<br>S3-x   |   |
|--------------------------------------------------------------|--------------------------------|-----------------------------------------------|--------------------------|--------------------|------------------|---|
| Complex I                                                    |                                |                                               |                          |                    |                  |   |
| NADH-ubiquinone oxidoreductase                               |                                | NAC*GSDYDFDVFVVR <sup>b</sup>                 | 87                       | C <sup>187</sup>   | 1                |   |
|                                                              | NADH-ubiquinone oxidoreductase | NUBM_RAT                                      | LVEGC*LVGGR <sup>a</sup> | 35                 | C <sup>142</sup> | 2 |
|                                                              |                                | LFNISGHVNHPC*TVEEEMSVPLK <sup>a</sup>         | 19                       | C <sup>286</sup>   | 3                |   |
| NADH-ubiquinone oxidoreductase<br>75 kDa subunit             | NUAM_RAT                       | VDSDNLC*TEEIFPTEGAGTDLR <sup>a</sup>          | 54                       | C <sup>367</sup>   | 4                |   |
| NADH-ubiquinone oxidoreductase<br>9.6kDa subunit             | ACPM_MOUSE                     | LMC*PQEIVDYIADKK <sup>a</sup>                 | 76                       | C <sup>140</sup>   | 5                |   |
| NADH-ubiquinone oxidoreductase chain 3                       | NU3M_RAT                       | ANPYEC*GFDPTSSAR <sup>a</sup>                 | 50                       | C <sup>39</sup>    | 6                |   |
| NADH dehydrogenase 1 alpha<br>subcomplex subunit 5           | NDUA5_RAT                      | TTGLVGLAVC*DTPHER <sup>a</sup>                | 41                       | C <sup>16</sup>    | 7                |   |
| NADH dehydrogenase 1 alpha<br>subcomplex subunit 6           | NDUA6_MOUSE                    | FFH*ETETPRPK <sup>b</sup>                     | 21                       | H <sup>111</sup>   | 8                |   |
| NADH dehydrogenase 1 alpha<br>subcomplex subunit 7           | NDUA7_MOUSE                    | LSNNYYC*TR <sup>a</sup>                       | 37                       | C <sup>54</sup>    | 9                |   |
| Complex II                                                   |                                |                                               |                          |                    |                  |   |
| Succinate dehydrogenase<br>[ubiquinone] flavoprotein subunit |                                | TYFSC*TSAHTSTGDGTAMVTR <sup>a,d</sup>         | 92                       | C <sup>258</sup>   | 10,11            |   |
|                                                              | DHSA_RAT                       | GVIALC*IEDGSIHR <sup>a</sup>                  | 31                       | C <sup>238</sup>   | 12               |   |
|                                                              |                                | TLNEADC*ATVPPAIR <sup>a</sup>                 | 54                       | C <sup>646</sup>   | 13               |   |
| Complex III                                                  |                                |                                               |                          |                    |                  |   |
| Ubiquinol-cytochrome-c reductase                             | LICCR1 MOUSE                   | NALISH*LDGTTPVC*EDIGR <sup>a,b</sup>          | 56                       | $H^{402}, C^{410}$ | 14               |   |
| complex core protein I                                       |                                | NALISHLDGTTPVC*EDIGR <sup>a</sup>             | 45                       | C <sup>410</sup>   | 15               |   |

| Ubiquinol-cytochrome-c reductase complex core protein II | UQCR2_RAT | NALANPLYC*PDYR <sup>a,b,c,d</sup>    | 66 | C <sup>191</sup> | 16-19 |
|----------------------------------------------------------|-----------|--------------------------------------|----|------------------|-------|
| Cytochrome c1, heme protein, mitochondrial               | CY1_MOUSE | HLVGVC*YTEEEAK <sup>a</sup>          | 86 | C <sup>139</sup> | 20    |
| Complex IV                                               |           |                                      |    |                  |       |
| Cytochrome c oxidase subunit VIa                         |           | GDH*GGAGANTWR <sup>b,c</sup>         | 28 | H <sup>20</sup>  | 21,22 |
| isoform 2                                                | CX6AZ_RAT | HNPH*VNPLPTGYEQP <sup>b</sup>        | 35 | H <sup>83</sup>  | 23    |
| Cytochrome c oxidase subunit VIb isoform 1               | CX6B1_RAT | GGDVSVC*EWYR <sup>b</sup>            | 23 | C <sup>53</sup>  | 24    |
| Cytochrome c oxidase subunit VIIa isoform 2              | CX7A2_RAT |                                      | 42 | H <sup>44</sup>  | 25    |
| Complex V                                                |           |                                      |    |                  |       |
| ATP synthase beta subunit                                | ΑΤΡβ_RAT  | IMDPNIVGSEH*YDVAR <sup>b</sup>       | 81 | H <sup>417</sup> | 26    |
| ATP synthase O subunit                                   | ATPO_RAT  | GEVPC*TVTTAFPLDEAVLSELK <sup>a</sup> | 72 | C <sup>141</sup> | 27    |
| Citric Acid Cycle                                        |           |                                      |    |                  |       |
| Aconitate hydratase                                      | ACON_RAT  | VAVPSTIH*CDHLIEAQLGGEK <sup>a</sup>  | 30 | H <sup>125</sup> | 28    |
| Malate dehydrogenase                                     | MDHM_RAT  | GYLGPEQLPDC*LK <sup>a</sup>          | 37 | C <sup>89</sup>  | 29    |
| ß-Oxidation                                              |           |                                      |    |                  |       |
| Long-chain fatty-acid-CoA ligase 1                       | ACSL1_RAT | GIQVSNDGPC*LGSR <sup>a</sup>         | 28 | C <sup>109</sup> | 30    |
| Other                                                    |           |                                      |    |                  |       |
| ADP/ATP translocase 1                                    |           | GADIMYTGTVDC*WR <sup>a,b</sup>       | 79 | C <sup>256</sup> | 31,32 |
|                                                          | ADTI_KAT  | EFNGLGDC*LTK <sup>a</sup>            | 61 | C <sup>159</sup> | 33    |
| Voltage-dependent anion-selective channel protein 1      | VDAC1_RAT | EHINLGC*DVDFDIAGPSIR <sup>a</sup>    | 68 | C <sup>140</sup> | 34    |

<sup>1</sup> The site of oxylipid conjugation is marked with an asterisk (\*). The chemical nature of the oxylipid modification is indicated by the following superscripts: a, acrolein, b, HHE, c, ONE, d, HNE.

**Table S2.** Identified oxylipid peptide conjugates of cardiac mitochondrial proteins after post-digestion labeling with succinic anhydride, Affi gel-Hz enrichment and nanoLC MALDI tandem mass spectrometry.

| Protein Name                                                               | Sprot ID     | Peptide sequence                           |     | Residue          |  |  |  |
|----------------------------------------------------------------------------|--------------|--------------------------------------------|-----|------------------|--|--|--|
| Complex I                                                                  |              |                                            |     |                  |  |  |  |
| NADH-ubiquinone oxidoreductase 13 kDa-A subunit                            | NUMM_MOUSE   | ITH*TGQVYDEK <sup>▷</sup>                  | 70  | H <sup>33</sup>  |  |  |  |
| NADH dehydrogenase [ubiquinone] iron-sulfur protein 3                      | NDUS3_MOUSE  | ILTDYGFEGH*PFR <sup>b</sup>                | 28  | H <sup>195</sup> |  |  |  |
| NADH-ubiquinone oxidoreductase 75 kDa subunit                              | NDUS1_RAT    | 1_RAT VDSDNLC*TEEIFPTEGAGTDLR <sup>b</sup> |     | C <sup>367</sup> |  |  |  |
| NADH dehydrogenase 1 alpha subcomplex subunit 5                            | NDUA5_RAT    | TTGLVGLAVC*DTPHER <sup>a</sup>             | 51  | C <sup>16</sup>  |  |  |  |
| NADH dehydrogenase 1 alpha subcomplex subunit 10                           | NDUAA_MOUSE  | KQC*VDHYNEIK <sup>a</sup>                  | 78  | C <sup>183</sup> |  |  |  |
| Complex II                                                                 |              |                                            |     |                  |  |  |  |
|                                                                            |              | GVIALC*IEDGSIHR <sup>a</sup>               | 33  | C <sup>238</sup> |  |  |  |
| Succinate denydrogenase [ubiquinone] flavoprotein                          | DHSA_RAT     | TYFSC*TSAHTSTGDGTAMVTR <sup>a</sup>        | 124 | C <sup>258</sup> |  |  |  |
|                                                                            |              | TLNEADC*ATVPPAIR <sup>a,b</sup>            | 68  | C <sup>646</sup> |  |  |  |
| Succinate dehydrogenase [ubiquinone]iron-sulfur protein DHSB_MOUSE IK*NEVD |              | IK*NEVDSTLTFR <sup>b</sup>                 | 38  | K <sup>82</sup>  |  |  |  |
| Complex III                                                                |              |                                            |     |                  |  |  |  |
| Libiquipol-cytochrome-c reductase complex core protein l                   | LIOCR1 MOUSE | NALISHLDGTTPVC*EDIGR <sup>a,b</sup>        | 73  | C <sup>410</sup> |  |  |  |
|                                                                            |              | YFYDQC*PAVAGYGPIEQLSDYNR <sup>b</sup>      | 33  | C <sup>453</sup> |  |  |  |
| Ubiquinol-cytochrome-c reductase complex core protein II                   | UQCR2_RAT    | NALANPLYC*PDYR <sup>a,b,c,d</sup>          | 77  | C <sup>191</sup> |  |  |  |
| Cytochrome c1, heme protein, mitochondrial                                 | CY1_MOUSE    | HLVGVC*YTEEEAK <sup>a</sup>                | 117 | C <sup>139</sup> |  |  |  |
| Complex IV                                                                 |              |                                            |     |                  |  |  |  |
| Cytochrome c oxidase subunit VIa isoform 2                                 | CX6A2_RAT    | GDH*GGAGANTWR <sup>a,b,c</sup>             | 88  | H <sup>20</sup>  |  |  |  |
| Cytochrome c oxidase subunit VIb isoform 1                                 | CX6B1_RAT    | GGDVSVC*EWYR <sup>♭</sup>                  | 28  | C <sup>53</sup>  |  |  |  |
| Cytochrome c oxidase subunit VIIa isoform 2                                | CX7A2_RAT    | LFQEDNGMPVH*LK <sup>b</sup>                | 51  | H <sup>44</sup>  |  |  |  |
| Cytochrome c oxidase subunit 4 isoform 1                                   | COX41_RAT    | DYPLPDVAH*VK <sup>b</sup> 4 <sup>c</sup>   |     | H <sup>51</sup>  |  |  |  |
| Cytochrome c oxidase subunit 3                                             | COX3_RAT     | EGTYQGHH*TPIVQK <sup>b</sup>               |     | H <sup>71</sup>  |  |  |  |
| Cytochrome c oxidase polypeptide VIIc                                      | COX7C_RAT    | SH*YEEGPGK <sup>b</sup>                    | 41  | H <sup>18</sup>  |  |  |  |

| Complex V                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |    |                  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----|------------------|--|
| ATP synthese bots subunit                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IMDPNIVGSEH*YDVAR <sup>b, c</sup>  | 71 | H <sup>417</sup> |  |
| ATF Synthase beta Subunit                           | ΑΤΡΡ_ΚΑΙ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EGNDLYH*EMIESGVINLK <sup>b</sup>   | 71 | $H^{248}$        |  |
| ATP synthase B chain                                | AT5F1_RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EGEH*MINWVEK <sup>b</sup>          | 42 | $H^{214}$        |  |
| Citric Acid Cycle                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |    |                  |  |
| Malate dehydrogenase                                | MDHM_RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VNVPVIGGH*AGK <sup>b</sup>         | 30 | H <sup>200</sup> |  |
| Isocitrate dehydrogenase [NADP]                     | IDHP_RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HAH*GDQYK <sup>b</sup>             | 41 | H <sup>247</sup> |  |
| Creatine kinase, sarcomeric mitochondrial precursor | KCRS_RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ITH*GQFDER <sup>b</sup>            | 29 | H <sup>152</sup> |  |
| ß-Oxidation                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |    |                  |  |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C*IGAIAMTEPGAGSDLQGVR <sup>b</sup> | 40 | C <sup>166</sup> |  |
|                                                     | ACADL_KAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AFVDSC*LQLHETK <sup>a</sup>        | 81 | C <sup>351</sup> |  |
| Acetyl-CoA acetyltransferase THIL_RAT               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IHMGNC*AENTAK <sup>a</sup> 45 (    |    |                  |  |
| Other                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |    |                  |  |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GADIMYTGTVDC*WR <sup>a,b</sup>     | 48 | C <sup>256</sup> |  |
|                                                     | $\begin{array}{l} \mbox{ATP}_{\beta}\mbox{RAT} & \mbox{IMDPNIVGSEH*YDVAR}^{b,c} & \mbox{IMDPNIVGSEH*YDVAR}^{b,c} & \mbox{IEGNDLYH*EMIESGVINLK}^{b} & \mbox{IEGEH*MINWVEK}^{b} & \mbox{IEGEH*MINWVEK}^{b} & \mbox{IEGEH*MINWVEK}^{b} & \mbox{IEGEH*MINWVEK}^{b} & \mbox{IIDHP}\mbox{RAT} & VNVPVIGGH*AGK^{b} & \mbox{IDHP}\mbox{RAT} & HAH*GDQYK^{b} & \mbox{IDHP}\mbox{RAT} & ITH*GQFDER^{b} & \mbox{IITH*GQFDER}^{b} & \mbox{IITH*GQFDER}^{b} & \mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}\mbox{IITH}IIT$ |                                    |    | H <sup>39</sup>  |  |
| NAD(P) transbydrogonasa, mitochondrial presyraar    | NNTM MOUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AISPDKDNFH*FEVK <sup>b</sup>       | 40 | H <sup>407</sup> |  |
| TAD(F) transnydrogenase, mitochonunai precursor     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GITH*IGYTDLPSR <sup>b</sup>        | 40 | H <sup>370</sup> |  |

<sup>1</sup> The site of oxylipid conjugation is marked with an asterisk (\*). The chemical nature of the oxylipid modification is indicated by the following superscripts: a, acrolein, b, HHE, c, ONE, d, HNE.

**Table S3.** Comparison of experimental vs expected  $d_0/d_4$  ratios for oxylipid peptide conjugates from 1:1 mixtures of mitochondrial proteome preparations. After post-digestion labeling with  $d_0$ - and  $d_4$ -succinic anhydride, respectively, labeled mixtures were combined, subjected to AffiGel-Hz enrichment and analyzed by nanoLC MALDI-MS/MS.

| Sprot ID     | Peptide sequence <sup>1</sup>       | $d_0 / d_4$ (Expected Ratio = 1.00), n=3 |                |                |         |   |      |
|--------------|-------------------------------------|------------------------------------------|----------------|----------------|---------|---|------|
|              |                                     | sample 1                                 | sample 2       | sample 3       | Average | ± | SD   |
| NDUA5_RAT    | TTGLVGLAVC*DTPHER <sup>a</sup>      | 0.84                                     | 0.97           | 0.85           | 0.89    | ± | 0.07 |
| DHSA_RAT     | TLNEADC*ATVPPAIR <sup>a</sup>       | 1.15                                     | 1.23           | 1.05           | 1.14    | ± | 0.09 |
|              | TYFSC*TSAHTSTGDGTAMVTR <sup>a</sup> | 1.04                                     | 1.08           | 1.09           | 1.07    | ± | 0.03 |
| UQCR2_RAT    | NALANPLYC*PDYR <sup>a</sup>         | 1.23                                     | 1.05           | 1.12           | 1.13    | ± | 0.09 |
|              | NALANPLYC*PDYR <sup>b</sup>         | 0.97                                     | 0.95           | 1.01           | 0.98    | ± | 0.03 |
| CX6A2_RAT    | GDH*GGAGANTWR <sup>a</sup>          | 1.17                                     | 1.05           | 1.04           | 1.09    | ± | 0.07 |
|              | GDH*GGAGANTWR <sup>♭</sup>          | 0.96                                     | 0.99           | 1.01           | 0.99    | ± | 0.03 |
|              | GDH*GGAGANTWR <sup>°</sup>          | 0.91                                     | 0.96           | 1.24           | 1.04    | ± | 0.18 |
| CX7A2_RAT    | LFQEDNGMPVH*LK <sup>b</sup>         | 1.00                                     | 1.02           | 0.85           | 0.96    | ± | 0.09 |
| COX41_RAT    | DYPLPDVAH*VK <sup>b</sup>           | 0.90                                     | 1.05           | 0.98           | 0.98    | ± | 0.08 |
| COX3_RAT     | EGTYQGHH*TPIVQK <sup>▷</sup>        | 1.48                                     | 1.00           | 1.03           | 1.17    | ± | 0.27 |
| CX6B1_RAT    | GGDVSVC*EWYR <sup>b</sup>           | 1.05                                     | 1.01           | 0.96           | 1.01    | ± | 0.05 |
| ATPβ_RAT     | IMDPNIVGSEH*YDVAR <sup>♭</sup>      | 1.15                                     | 1.05           | 1.02           | 1.07    | ± | 0.07 |
| KCRS_RAT     | ITH*GQFDER <sup>b</sup>             | 0.97                                     | 0.90           | 0.96           | 0.94    | ± | 0.04 |
| MDHM_RAT     | GC*DVVVIPAGVPR <sup>b</sup>         | 0.96                                     | 1.26           | 1.03           | 1.08    | ± | 0.16 |
| ACADL_RAT    | C*IGAIAMTEPGAGSDLQGVR <sup>♭</sup>  | 1.13                                     | 1.02           | 1.04           | 1.06    | ± | 0.06 |
|              | GADIMYTGTVDC*WR <sup>a</sup>        | 0.93                                     | 0.93           | 1.11           | 0.99    | ± | 0.10 |
| ADT1_RAT     | GADIMYTGTVDC*WR <sup>b</sup>        | 1.05                                     | 1.11           | 1.01           | 1.06    | ± | 0.05 |
|              | LLLQVQH*ASK <sup>b</sup>            | 0.96                                     | 1.06           | 0.90           | 0.97    | ± | 0.08 |
| Average ± SD |                                     | 1.04 ±<br>0.15                           | 1.04 ±<br>0.09 | 1.02 ±<br>0.09 | 1.03    | ± | 0.07 |

<sup>1</sup> The site of oxylipid conjugation is marked with an asterisk (\*). The chemical nature of the oxylipid modification is indicated by the following superscripts: a, acrolein, b, HHE, c, ONE, d, HNE

# Figure S3-1 4700 MS/MS Precursor 1820.81



### Figure S3-2 4700 MS/MS Precursor 1058.62



#### Figure S3-3 4700 MS/MS Precursor 2636.37



Figure S3-4 4700 MS/MS Precursor 2438.24



# Figure S3-5 4700 MS/MS Precursor 1821.94



# Figure S3-6 4700 MS/MS Precursor 1670.78



# Figure S3-7 4700 MS/MS Precursor 1724.96



# Figure S3-8 4700 MS/MS Precursor 1502.73 ]



# Figure S3-9 4700 MS/MS Precursor 1189.59



#### Figure S3-10 4700 MS/MS Precursor 2249.95



# Figure S3-11 4700 MS/MS Precursor 2350.12



# Figure S3-12 4700 MS/MS Precursor 1538.81



# Figure S3-13 4700 MS/MS Precursor 1626.88



#### Figure S3-14 4700 MS/MS Precursor 2167.2



# Figure S3-15 4700 MS/MS Precursor 2067.05



# Figure S3-16,17,18



Figure S3-19 4700 MS/MS Precursor 1665.89



Figure S3-20 4700 MS/MS Precursor 1533.79



#### Figure S3-21 4700 MS/MS Precursor 1312.68



#### Figure S3-22 4700 MS/MS Precursor 1352.65



#### Figure S3-23 4700 MS/MS Precursor 1813.9



#### Figure S3-24 4700 MS/MS Precursor 1384.65



# Figure S3-25 4700 MS/MS Precursor 1641.84



# Figure S3-26 4700 MS/MS Precursor 1930.02



# Figure S3-27 4700 MS/MS Precursor 2375.33



Figure S3-28 4700 MS/MS Precursor 2273.18



#### Figure S3-29 4700 MS/MS Precursor 1488.76



# Figure S3-30 4700 MS/MS Precursor 1458.76



# Figure S3-31 4700 MS/MS Precursor 1643.77



#### Figure S3-32 4700 MS/MS Precursor 1701.77



# Figure S3-33 4700 MS/MS Precursor 1252.59



# Figure S3-34 4700 MS/MS Precursor 2127.06

