Synthesis and NMR Characterization of (*Z*,*Z*,*Z*,*Z*,*E*,*E*,ω)-Heptaprenol

Dusan Hesek, Mijoon Lee, Jaroslav Zajíček, Jed F. Fisher, and Shahriar Mobashery*

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556

Supporting Information

Contents

Experimental Procedures ····································
Table S1. Characterization data of synthesized compounds S10
Figure S1. Selected NMR spectra of intermediates (18-OH, 20-OH, and 7b)
Table S2. ¹ H and ¹³ C NMR data for 4 and 4B2 \cdots S19
Table S3. ¹ H and ¹³ C NMR data for 18-OH and 20-OH S20
Table S4. ¹ H and ¹³ C NMR data for 7b S21
References S22
1D and 2D spectra of all new compounds S23

Experimental Procedures.

General Information. All reactions were performed under an atmosphere of nitrogen, unless noted otherwise. Thin-layer chromatography was performed with Whatman reagents 0.25-mm silica gel 60-F plates. Column chromatography was carried out with silica gel 60, 230–400 mesh (0.040–0.063 mm particle size) purchased from EM Science. High-resolution mass spectra were obtained at the Department of Chemistry and Biochemistry, University of Notre Dame by ESI ionization, using Bruker micrOTOF/Q2 mass spectrometer.

NMR Spectroscopy. 1D ¹H, ¹³C{¹H}, Dept and 2D homo-COSY and heteronuclear ¹H-¹³C HETCOR spectra were recorded on a Varian INOVA-500 or Varian DirectDrive 600 spectrometer. For compounds **18-OH**, **20-OH**, **7b**, **4**, and **4B2**, 1D 1 H and $^{13}C{^{1}H}$, and 2D homo- DQF-COSY, TOCSY, ROESY and heteronuclear ¹H-¹³C HSQC, HSQC-TOCSY, HMBC spectra were recorded on a Bruker ADVANCE II 800. The structures of prenol 4 and 4B2 [10 mg of each was dissolved in 600 µL CDCl₃ containing 3 mg Eu(hfc)₃] were determined by interpretation of the homonuclear DQF-COSY, TOCSY, ROESY and heteronuclear ¹H-¹³C HSQC, HSQC-TOCSY, HMBC NMR spectra. Proton connectivities were derived from the DQF-COSY and TOCSY spectra. ¹³C resonances corresponding to carbons with directly attached protons were assigned using HSQC and HSQC-TOCSY spectra. HMBC spectra were used to assign resonances of the quaternary carbons and to validate the connectivities established by the other spectra. ROESY spectra were utilized to establish the *E* or *Z* configurations for each C=C double bond. Experiments were performed at 25 °C using a Bruker AVANCE II spectrometer equipped with a TCI cryoprobe and operating at a ¹H resonance frequency of 800.13 MHz. Standard pulse sequences were used.¹⁻⁶ Time domain data (t_2 and t_1) for 2D experiments were recorded as 2048 × 1024 complex matrices with 16 and 32 scans per t_1 increment for homonuclear and heteronuclear spectra, respectively. Relaxation delay between individual scans and spin-lock time for TOCSY experiments was 1.4 s and 60 ms, respectively. For ROESY experiments, a relaxation delay of 4 s and a spin-lock time of 400 ms gave 2048×512 complex time domain points. Linear prediction to 1024 complex points was applied in the t_1 domain. The data were zero filled to obtain final 2048 × 2048 complex matrices. In all other homonuclear 2D experiments, zero filling was used only in the t_1 domain to obtain final 2048 × 2048 complex time domain data. In heteronuclear 2D experiments, linear prediction to 2048 complex data points was employed in the t_1 domain, which was zero filled to 4096 to get final 2048 × 4096 complex time domain data. Shifted sine bell weighting functions were applied in both domains prior to double Fourier transformation. In the 3D ¹H-¹³C-HSQC-TOCSY experiments, 1024 × 48 × 128 complex time domain points in t_3 , t_2 , and t_1 domains were collected with 16 scans per time increment, relaxation delay of 1.3 s, and 60 ms spin-lock. Linear predictions to 128 and 256 complex points were utilized in the t_2 and t_1 domains. Zero filling gave 2048 × 256 × 512 complex matrices. Shifted sine bell weighting functions were applied in all three domains prior to triple Fourier transformation. Spectra were processed using Bruker TopSpin 2.1 software. ¹H spectra, the ¹H dimension in 2D heteronuclear spectra, and the 1D ¹³C {¹H} spectra were referenced to solvent (DMSO, δ_H 2.5 and δ_C 39.5; CDCl₃, δ_H 7.27 and δ_C 77.23). The ¹³C dimension in the 2D heteronuclear spectra was referenced indirectly.⁷

Six functional group transformations, used for the synthesis of compounds described in this paper, are given as general procedures A - F.

General procedure A. Deprotection of O-THP ether of prenol.

THP-protected ether (20 mmol) was dissolved in MeOH (100 mL) and TsOH·H₂O (0.6 g) was added. The resulting mixture was stirred for 6 h at room temperature. After addition of Et₃N (0.5 mL), the resulting solution was filtered through a layer of silica gel and concentrated under reduced pressure. The crude compound was used for the next step without further purification or it was purified by short-path column chromatography on silica gel.

General procedure B. Bromination of prenol.

B1. Triethylamine (3.3 mL, 24 mmol) was added to a solution of alcohol (20 mmol) in anhydrous THF (60 mL) and the solution was cooled down in an ice-water bath. To this solution, MsCl (1.9 mL, 24 mmol) was added dropwise. After stirring for 1 h in an ice-water bath, the reaction mixture was quickly filtered through a layer of Celite to a pre-cooled THF solution of LiBr (2.1 g, 24 mmol in 20 mL of THF) and Celite pad was quickly washed with THF (2×10 mL). The combined solution was stirred for 2 h in an ice-water bath. The volatiles were evaporated under reduced pressure and the resulting bromide was taken up in hexanes/ethyl acetate mixture (1:1, 200 mL). The solution was washed with water (50 mL \times 2) and brine (100 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude compound was used for the next step without further purification or it was purified by short-path column chromatography on silica gel.

B2. Phosphorus tribromide (0.83 mL, 8.7 mmol) in dry ether (20 mL) wad added to a mixture of alcohol (20 mmol) and pyridine (0.15 mL) in dry ether (50 mL) over 1 h in an ice-water bath. After stirring for 2 h in an ice-water bath, it was poured into ice-water (100 mL) and then extracted with hexanes (50 mL× 3). The organic layer was washed with water (50 mL× 2), saturated NaHCO₃ (50 mL× 2), and brine (50 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel chromatography.

B3. Same as general procedure C except using LiBr, instead of LiCl

General procedure C. Chlorination of prenol.

A cold solution of alcohol (20 mmol) and LiCl (2.1 g, 50 mmol) in DMF (200 mL) was treated with *s*-collidine (6.6 mL, 50 mmol) and MsCl (3.9 mL, 50 mmol) in an ice-water bath. After stirring in an ice-water bath for 2 h, the reaction mixture was diluted with ethyl acetate (800 mL). The mixture was washed with saturated NH₄Cl (300 mL \times 2) and brine (300 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure to afford the corresponding chloride. The crude compound was

used for the next step without further purification or it was purified by short-path column chromatography on silica gel.

General procedure D. Sulfonylation of prenyl halide.

The halide (chloride or bromide, 20 mmol) in acetonitrile (10 mL) was added dropwise to a suspension of sodium *p*-toluenesulfinate (4.3 g, 24 mmol) in DMF (120 mL) in an ice-water bath. After the reaction mixture was stirred at room temperature for 6 h, it was diluted with ethyl acetate (500 mL). The mixture was washed with water (200 mL \times 2) and brine (200 mL), dried over anhydrous MgSO₄, filtered, and concentrated to afford the corresponding sulfone. The crude compound was purified by column chromatography on silica gel.

General procedure E. Coupling of prenyl sulfone and prenyl bromide.

Sulfone (20 mmol) was dissolved in a mixture of anhydrous THF and HMPA (4:1, 80 mL) and the resulting solution was cooled to -78 °C. To this cold solution, *n*-BuLi (12.5 mL, 20 mmol, 1.6 M in hexane) was added dropwise and stirring was continued for 1.5 h. A solution of bromide (17.4 mmol) in THF-HMPA (4:1, 20 mL) was added dropwise to a solution of sulfone over 1 h. The mixture was stirred for an additional 5 h. After warming the mixture to 0 °C, it was poured into ice-water and extracted with hexanes-ether (1:1, 150 mL × 2). The extract was washed with water (150 mL) and brine (150 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the product.

General procedure F. Deprotection of benzyl ether and desulfonylation.

Transformation of 7a to 4 and 7b to 4/4B2 are given as representative examples.

Synthesis of compound 4 from 7a.

Ethylamine (150 mL) was added to a flask containing lithium (1.0 g, 0.14 mol) at -78 °C and ether (50 mL) was added. After stirring for 10 min at -78 °C, an ethereal solution of compound **7a** (6.0 g, 6.7 mmol in 50 mL) was added dropwise to the blue solution over 20 min. After stirring for 40 min at -78 °C, the reaction was quenched by addition of isoprene (10 mL) and MeOH (50 mL). After addition of saturated NH₄Cl (200 mL), the reaction mixture was extracted with ethyl acetate (100 mL × 3). The combined organic layer was washed with brine (150 mL), dried over anhydrous MgSO₄, filtered through a layer of silica gel, and concentrated under reduced pressure. The residue (2.8 g) was purified by column chromatography (silica gel, 35 g; i.d. of column, 3/4 inch; ethyl acetate:hexane, 1:7) to afford the desired product (2.0 g, 59%). The purity of **4** is >90% as assessed by ¹H NMR. As isolated by the silica flash chromatography **4** contains < 10% of impurities presumed to arise as a result of double bond isomerization. Neither the number of these impurities nor their structures were determined. The structures of the three impurities anticipated as possibly present are shown below. We anticipate greater purity of **4** can be achieved by column chromatography using silver nitrate-impregnated silica gel.⁸⁻¹⁰

Synthesis of compounds 4/4B2 from 7b.

Ethylamine (200 mL) was added to a flask containing lithium (1.9 g, 0.27 mol) at -78 °C and ether (100 mL) was added. After stirring for 10 min at -78 °C, an ethereal solution of compound **7b** (8.0 g, 9.0 mmol in 100 mL) was added dropwise to the blue solution over 20 min. After stirring for 40 min at -78 °C, the reaction was quenched by addition of isoprene (15 mL) and MeOH (70 mL). After addition of saturated NH₄Cl (300 mL), the reaction mixture was extracted with ethyl acetate (150 mL × 3). The combined organic layer was washed with brine (200 mL), dried over anhydrous MgSO₄, filtered through a layer of silica gel, and concentrated under reduced pressure. The residue (3.5 g) was purified by column chromatography (silica gel, 50 g; i.d. of column, 1 inch; ethyl acetate:hexanes, 1:7) to afford the mixture of **4/4B2** (2.8 g, 1:3 mixture, 63%). The mixture was further subjected to column chromatography (silica gel, 50 g; i.d. of column, 3/4 inch; ethyl acetate:hexanes, 1:15) to afford **4** (0.23 g), **4B2** (0.81 g), and **4/4B2** mixture (1.6 g).

Deprotection of benzyl ether and desulfonylation of 7b using LiBEt₃H/Pd(dppp)Cl₂.

25b

LiBEt₃H (10 mL, 10 mmol, 1.0 M solution in THF) was added dropwise over 15 min to a cold solution of compound **7b** (1.8 g, 2.0 mmol) and bis(diphenylphosphino)propanepalladium(II) dichloride (Pd(dppp)Cl₂ (0.24 g, 0.40 mmol) in anhydrous THF (40 mL) in an ice-water bath. Stirring was continued for 4 h, and the reaction mixture was diluted with hexanes:ether (1:1, 200 mL). The mixture was washed with saturated NH₄Cl (100 mL \times 2) and brine (100 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. ¹H NMR analysis indicated that the crude material has at least two products. TLC analysis showed that the major products were considerably less polar than expected for **4** (heptaprenol). The major material obtained from column chromatography (silica gel, 15 g; i.d. of column, 1/2 inch; hexanes) of this crude product was 0.78 g of a 1:3 mixture (by ¹H NMR analysis) of hydrocarbons (arising from reductive desulfonylation and deoxygenation). The possible structures of the two isolated reaction products are formulated as **25a** and **25b** (major). These structures are suggested by the absence any aromatic resonances, and the further absence of the resonance anticipated for the methylene of (either a free or an *O*-Bn-protected) allyl alcohol in ¹H NMR spectrum. As a result, further evaluation of this method for desulfonylation was not made.

Synthesis of compounds 17 from 14 using general procedures B1/D/A

Triethylamine (17 mL, 122 mmol) was added to a solution of **14** (26 g, 102 mmol) in anhydrous THF (300 mL) and the solution was cooled down in an ice-water bath. To this solution, MsCl (9.4 mL, 122 mmol) was added dropwise. After stirring for 1 h in an ice-water bath, the reaction mixture was quickly filtered through a layer of Celite to a pre-cooled THF solution of LiBr (10.4 g, 120 mmol in 20 mL of THF) and Celite pad was quickly washed with THF (2×100 mL). The combined solution was stirred for 2 h in an ice-water bath. The volatiles were evaporated under reduced pressure. The crude bromide was taken up in hexanes/ethyl acetate mixture (1:1, 500 mL). The solution was washed with water (300

mL) and brine (300 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude compound (**10-Br**, ~27 g) in acetonitrile (60 mL) was added dropwise to a suspension of sodium *p*-toluenesulfinate (21.4 g, 120 mmol) in DMF (250 mL) in an ice-water bath. After the reaction mixture was stirred at room temperature for 6 h, it was diluted with ethyl acetate (800 mL). The mixture was washed with water (400 mL × 2) and brine (400 mL), dried over anhydrous MgSO₄, filtered, and concentrated to afford crude compound. It was purified by column chromatography (silica gel, 350 g; i.d. of column, 3 inch; ethyl acetate:hexanes, 1:5 to 1:3) to give **8** (31 g, 78%) and **8/15** mixture (3 g). A small amount of **8** was taken for the next step. Compound **8** (1.0 g, 2.5 mmol) was dissolved in MeOH (10 mL) and TsOH·H₂O (0.1 g) was added. The resulting mixture was stirred for 6 h at room temperature. After addition of Et₃N (50 µL), the resulting solution was filtered through a layer of silica gel and concentrated under reduced pressure. The crude compound was purified by column chromatography (silica gel, 10 g; i.d. of column, 1/2 inch; ethyl acetate:hexanes, 1:1) to give **17** (0.63 g, 80%).

Synthesis of compounds 16/17 from 14 using general procedures C/D/A

A cold solution of **14** (10 g, 39 mmol) and LiCl (4.1 g, 97 mmol) in DMF (300 mL) was treated with *s*-collidine (13 mL, 98 mmol) and MsCl (7.6 mL, 98 mmol) in an ice-water bath. After stirring at ice-water temperature for 2 h, the reaction mixture was diluted with ethyl acetate (800 mL). The mixture was washed with saturated NH₄Cl (300 mL \times 2) and brine (300 mL \times 2), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure to afford **10-Cl**. The crude compound (**10-Cl**, \sim 10 g)

in acetonitrile (20 mL) was added dropwise to a suspension of sodium *p*-toluenesulfinate (8.2 g, 46 mmol) in DMF (200 mL) in an ice-water bath. After the reaction mixture was stirred at room temperature for 6 h, it was diluted with ethyl acetate (600 mL). The mixture was washed with water (200 mL \times 2) and brine (200 mL), dried over anhydrous MgSO₄, filtered, and concentrated to afford a mixture of compounds **8** and **15** (8.2 g, 53% combined yield). NMR analysis showed a 5:4 ratio of **8**:15. A sample of the mixture (1.0 g) was purified by column chromatography (silica gel, 15 g; i.d. of column, 1/2 inch; ethyl acetate:hexanes, 1:5) to give **8** (0.35 g) and **15** (0.30 g).

The **8/15** mixture (2.0 g, 5.1 mmol) was dissolved in MeOH (20 mL) and TsOH·H₂O (0.2 g) was added. The resulting mixture was stirred for 6 h at room temperature. After addition of Et₃N (100 μ L), the resulting solution was filtered through a layer of silica gel and concentrated under reduced pressure. The crude compound was purified by column chromatography (silica gel, 30 g; i.d. of column, 3/4 inch; ethyl acetate:hexanes, 1:1) to give **16/17** as a mixture (1.3 g, 81% combined yield). The mixture was subjected to column chromatography (silica gel, 20 g; i.d. of column, 1/2 inch; ethyl acetate:hexanes, 2:3) to give **16** (0.30 g), **17** (0.40 g), and a **16/17** mixture (0.50 g).

Table S1. Characterization data of synthesized compounds.

Spectral data of synthesized compounds are given in Table S1. The used preparation procedure used for each compound is indicated. When the compound was known in the literature, the literature is given.

Compound No	
8	
Procedure used	B1 or B3 followed by D
Yield	31 g (78%, B1) and 2 g (57%, B3) from 14
Lit	Ref ¹¹
	No spectroscopic characterization is given.
¹ H NMR	(500 MHz, CDCl ₃) δ 1.46 - 1.61 (m, 4H), 1.64 - 1.68 (m, 1H), 1.70 (2 × s, 6H), 1.73 -
	1.83 (m, 3H), 1.93 (q, J = 7.6 Hz, 2H), 2.41 (s, 3H), 3.45 - 3.51 (m, 1H), 3.77 (dd, J =

¹³ C NMR	7.8, 3.2 Hz, 2H), 3.80 - 3.86 (m, 1H), 4.00 (dd, $J = 20.5$, 11.4 Hz, 2H), 4.53 (t, $J = 3.4$ Hz, 1H), 5.18 (q, $J = 7.2$ Hz, 2H), 7.30 (d, $J = 8.0$ Hz, 2H), 7.72 (d, $J = 8.2$ Hz, 2H) (126 MHz, CDCl ₃) δ 19.3 (CH ₂), 21.5 (CH ₃), 21.6 (CH ₃), 23.4 (CH ₃), 25.4 (CH ₂), 25.5 (CH ₂), 30.5 (CH ₂), 31.9 (CH ₂), 55.7 (CH ₂), 62.0 (CH ₂), 65.0 (CH ₂), 97.1 (CH), 111.2 (vinyl CH), 128.1 (vinyl CH), 128.3 (CH), 129.5 (CH), 132.6 (C), 135.8 (C), 144.4 (C), 145.3 (C)
HRMS (ESI)	calcd for $C_{22}H_{32}NaO_4S$ (M+Na ⁺) 415.1914, found 415.1912
15	
Procedure used	C followed by D
Yield	8.2 g (53%, as 5:4 mixture of 8:15) from 14
	0.3 g (15 , isolated from 1.0 g of 8/15 mixture)
¹ H NMR	$(500 \text{ MHz}, \text{CDCl}_3) \delta 1.43 - 1.55 \text{ (m, 4H)}, 1.56 \text{ (s, 3H)}, 1.62 - 1.68 \text{ (m, 1H)}, 1.69 \text{ (s, 3H)}, 1.78 \text{ (t, } J = 7.7 \text{ Hz}, 3\text{H}), 1.84 - 1.94 \text{ (m, 2H)}, 2.39 \text{ (s, 3H)}, 3.41 - 3.51 \text{ (m, 1H)}, 3.71 - 3.77 \text{ (m, 2H)}, 3.78 - 3.86 \text{ (m, 1H)}, 4.02 \text{ (d, } J = 11.6 \text{ Hz}, 1\text{H}), 4.53 \text{ (t, } J = 3.6 \text{ Hz}, 1\text{H}), 5.16 \text{ (t, } J = 7.7 \text{ Hz}, 1\text{H}), 5.24 \text{ (dd, } J = 7.0, 6.2 \text{ Hz}, 1\text{H}), 7.28 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 7.69 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H})$
¹³ C NMR	(126 MHz, CDCl ₃) δ 13.9 (CH ₃), 19.3 (CH ₂), 21.5 (CH ₃), 23.3 (CH ₃), 25.3 (CH ₂), 25.5 (CH ₂), 30.5 (CH ₂), 31.3 (CH ₂), 55.8 (CH ₂), 62.0 (CH ₂), 72.5 (CH ₂), 97.4 (CH), 111.0 (vinyl CH), 126.3 (vinyl CH), 128.2 (CH), 129.4 (CH), 132.6 (C), 135.7 (C), 144.3 (C), 145.4 (C)
HRMS (ESI)	calcd for $C_{22}H_{32}NaO_4S$ (M+Na ⁺) 415.1914, found 415.1902
16	$HO \xrightarrow{8}_{9} \xrightarrow{10}_{5} \xrightarrow{4}_{4} \xrightarrow{10}_{1} \xrightarrow{2}_{9} \xrightarrow{0}_{1} \xrightarrow{0} \xrightarrow{0}_{1} \xrightarrow{0}_{1} \xrightarrow{0}_{1} $
Procedure used	Α
Yield	1.3 g (81%) from 8/15 mixture
	0.3 g (16 , isolated from 16/17 mixture)
¹ H NMR	(600 MHz, DMSO- <i>d</i> ₆) δ 1.47 (s, 3H, H-9), 1.67 (s, 3H, H-10), 1.81 (s, 4H, H-4, H-5),
	2.38 (s, 3H, H-11), 3.72 (s, 2H, H-8), 3.94 (d, $J = 7.7$ Hz, 2H, H-1), 5.05 (t, $J = 7.8$
	Hz, 1H, H-2), 5.20 (br. s., 1H, H-6), 7.41 (d, <i>J</i> = 7.9 Hz, 2H), 7.71 (d, <i>J</i> = 8.3 Hz, 2H)
¹³ C NMR	(151 MHz, DMSO- <i>d</i> ₆) δ 13.4 (C-9), 21.0 (C-11), 23.2 (C-10), 25.2, 31.2 (C-4, C-5), 54.8 (C-1), 66.3 (C-8), 111.3 (C-2), 122.7 (C-6), 127.9, 129.6, 135.7, 136.1, 144.1, 144.7
HRMS (ESI)	calcd for $C_{17}H_{24}NaO_3S$ (M+Na ⁺) 331.1338, found 331.1334

17	$HO = \begin{cases} 9 \\ 5 \\ 5 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
Procedure used	Α
Yield	0.6 g (80%) from 8
Lit	Ref ¹¹
	No spectroscopic characterization is given.
¹ H NMR	(600 MHz, CDCl ₃) δ 1.69 (s, 3H, H-10), 1.72 (s, 3H, H-9), 1.76 - 1.86 (m, 2H, H-4), 1.89 - 2.03 (m, 2H, H-5), 2.40 (s, 3H, H-11), 3.74 (d, <i>J</i> = 7.9 Hz, 2H, H-1), 4.00 (s, 2H, H-8), 5.12 (q, <i>J</i> = 8.2 Hz, 2H, H-6, H-2), 7.29 (d, <i>J</i> = 8.1 Hz, 2H), 7.69 (d, <i>J</i> = 8.1
12	Hz, 2H)
¹³ C NMR	(126 MHz, CDCl ₃) & 21.3 (C-9), 21.5 (C-11), 23.4 (C-10), 25.5 (C-5), 32.0 (C-4), 55.7 (C-1), 61.0 (C-8), 110.9 (C-2), 126.7 (C-6), 128.2, 129.5, 135.3, 135.7, 144.5, 145.7
HRMS (ESI)	calcd for $C_{17}H_{24}NaO_3S$ (M+Na ⁺) 331.1338, found 331.1330
18	
Procedure used	E
Yield	35 g (63%) from 8
Lit	Ref ¹¹
	No spectroscopic characterization is given.
¹ H NMR	(500 MHz, CDCl ₃) δ 1.60, 1.64, 1.72 (4 × s, 12H), 1.44 -1.91 (m, 10H), 1.92 - 2.10 (m, 4H), 2.41 (s, 3H), 2.46 (dt, <i>J</i> = 11.4, 6.6 Hz, 1H), 2.68 (d, <i>J</i> = 13.2 Hz, 1H), 3.44 - 3.57 (m, 1H), 3.80 - 3.90 (m, 2H), 3.91 - 4.07 (m, 4H), 4.41 - 4.51 (m, 2H), 4.54 (br. s., 1H), 4.95 (d, <i>J</i> = 10.6 Hz, 1H), 5.07 - 5.20 (m, 2H), 5.41 (t, <i>J</i> = 6.4 Hz, 1H), 7.21 - 7.40 (m, 6H), 7.66 - 7.74 (m, 2H)
¹³ C NMR	(126 MHz, CDCl ₃) δ 19.3, 19.4, 21.5, 21.6, 23.2, 23.4, 23.5, 25.4, 25.4, 26.4, 30.1, 30.1, 30.5, 32.0, 32.1, 32.1, 62.0, 63.1, 63.2, 65.0, 65.0, 66.2, 72.0, 97.2, 97.3, 117.8, 122.1, 127.4, 127.7, 128.0, 128.1, 128.1, 128.2, 129.1, 129.3, 130.4, 132.4, 132.4, 134.8, 138.4, 139.9, 144.3, 144.6, 144.6
HRMS (ESI)	calcd for $C_{39}H_{54}NaO_5S$ (M+Na ⁺) 657.3584, found 657.3587
18-OH	
Procedure used	Α
Yield	14 g (93%) from 18
Lit	Ref ¹¹

	No spectroscopic characterization is given.
¹ H NMR/ ¹³ C NMR	Full assignment is given in Table S3.
HRMS (ESI)	calcd for $C_{34}H_{46}NaO_4S$ (M+Na ⁺) 573.3009, found 573.3010
19	BrOBn
Procedure used	B2
Yield	10 g (74%) from 18-OH
Lit	Ref ¹¹
	No spectroscopic characterization
¹ H NMR	¹ H NMR (600 MHz, CDCl ₃) δ 1.59, 1.68, 1.71, 1.78 (4 × s, 12H), 1.65 - 1.91 (m, 4H),
	1.94 - 2.11 (m, 4H), 2.42 (s, 3H), 2.66 (d, <i>J</i> = 13.2 Hz, 1H), 3.79 - 3.94 (m, 3H), 3.97
	(d, J = 6.8 Hz, 2H), 4.48 (s, 2H), 4.99 (d, J = 10.6 Hz, 1H), 5.12 - 5.27 (m, 2H), 5.40
12	(t, J = 6.1 Hz, 1H), 7.23 - 7.37 (m, 6H), 7.72 (d, J = 8.1 Hz, 2H)
¹³ C NMR	(151 MHz, CDCl ₃) δ 21.6, 21.8, 23.3, 23.4, 23.7, 26.0, 26.4, 30.4, 31.4, 31.9, 32.0,
	63.3, 66.2, 72.0, 118.0, 122.1, 127.4, 127.7, 128.1, 128.2, 129.1, 129.3, 130.2, 130.4,
	132.2, 134.8, 138.4, 139.8, 144.2, 144.4
HRMS (ESI)	calcd for $C_{34}H_{45}BrNaO_3S$ (M+Na ⁺) 635.2165, found 635.21/0
20	
Procedure used	E
Yield	38 g (83%) from 11
¹ H NMR	(500 MHz, CDCl ₃) δ 1.61, 1.63, 1.77, 1.79 (4 × s, 12H), 1.47 - 1.90 (m, 10H), 1.96 -
	2.06 (m, 2H), 2.11 (q, J = 7.3 Hz, 2H), 2.41 (s, 3H), 2.59 (m, J = 11.7, 6.3 Hz, 1H),
	2.74 - 2.82 (m, 1H), 3.51 (dd, $J = 11.0$, 5.0 Hz, 1H), $3.85 - 3.99$ (m, 3H), $3.99 - 4.13$
	(m, 2H), 4.43 - 4.50 (m, 2H), 4.59 (t, J = 3.1 Hz, 1H), 4.82 (t, J = 6.4 Hz, 1H), 5.29 (t, J = 6.0 Hz, 1H), 5.22 + 5.45 (m, 2H), 7.24 + 7.20 (m, 6H), 7.71 (d, J = 8.0 Hz, 2H)
¹³ C NR (R	J = 6.9 Hz, 1H), 5.35 - 5.45 (m, 2H), 7.24 - 7.39 (m, 6H), 7.71 (d, $J = 8.0$ Hz, 2H)
C NMR	$(126 \text{ MHZ}, \text{CDCl}_3) \circ 19.4 (\text{CH}_2), 21.5 (\text{CH}_3), 21.7 (\text{CH}_3), 23.2 (\text{CH}_3), 23.3 (\text{CH}_2), 25.4 (\text{CH}_3), 25.8 (\text{CH}_3), 25.9 (\text{CH}_3), 20.6 (\text{CH}_3), 21.2 (\text{CH}_3), 22.1 (\text{CH}_3), 25.9 (\text{CH}_3), 25.9 (\text{CH}_3), 21.2 (\text{CH}_3), 22.1 (\text{CH}_3), 23.3 (\text{CH}_2), 25.8 (\text{CH}_3), 2$
	23.4 (CH ₂), 25.8 (CH ₂), 25.9 (CH ₂), 30.0 (CH ₂), 51.5 (CH ₂), 52.1 (CH ₂), 62.0 (CH ₂), 62.1 (CH ₂), 65.1 (CH ₂), 66.1 (CH ₂), 72.1 (CH ₂), 97.3 (CH) 119.4 122.4 126.3
	1275 1276 1283 1286 1287 1294 1323 1351 1353 1381 1383 1393
	144.3
HRMS (ESI)	calcd for $C_{39}H_{54}NaO_5S$ (M+Na ⁺) 657.3584, found 657.3591
20-ОН	
Procedure used	Α
Yield	16 g (80%) from 20

HRMS (ESI)	calcd for $C_{34}H_{46}NaO_4S$ (M+Na ⁺) 573.3009, found 573.2995
21	
Procedure used	B1 or B2
Yield	3.4 g (55%) or 10.8 (88%) from 20-OH
¹ H NMR	¹ H NMR (500 MHz, CDCl ₃) δ 1.40 - 1.57 (m, 1H), 1.64, 1.68, 1.82, 1.86 (4 × s, 12H), 1.73 - 1.94 (m, 3H), 2.01 - 2.19 (m, 4H), 2.44 (s, 3H), 2.56 - 2.67 (m, 1H), 2.78 - 2.88 (m, 1H), 3.90 - 4.03 (m, 5H), 4.49 (s, 2H), 4.88 (t, <i>J</i> = 6.5 Hz, 1H), 5.27 - 5.45 (m, 3H), 7.28 - 7.40 (m, 7H), 7.74 (d, <i>J</i> = 8.2 Hz, 2H)
¹³ C NMR	(126 MHz, CDCl ₃) & 21.6, 21.9, 23.3, 23.4, 26.0, 26.3, 31.4, 31.4, 32.0, 66.2, 66.3, 72.1, 119.8, 122.4, 126.4, 127.5, 127.7, 128.3, 128.8, 129.4, 130.6, 132.1, 135.3, 137.7, 138.3, 139.4, 144.4
HRMS (ESI)	calcd for $C_{34}H_{45}BrNaO_3S$ (M+Na ⁺) 635.2165, found 635.2170
22	
Procedure used	Ε
Yield	9.0 g (71%) from 12
¹ H NMR ¹³ C NMR	(500 MHz, acetone- d_6) δ 1.58, 1.59, 1.61, 1.65, 1.74 (5 × s, 15H), 1.09 - 1.30 (m, 3H), 1.59 (d, $J = 4.6$ Hz, 6H), 1.61 (s, 3H), 1.65 (s, 4H), 1.74 (s, 3H), 1.92 - 2.12 (m, 14H), 2.43 (s, 3H), 2.50 (dd, $J = 13.0$, 11.4 Hz, 1H), 2.70 (dd, $J = 13.2$, 2.4 Hz, 1H), 3.98 (td, $J = 11.0$, 3.2 Hz, 1H), 4.02 (d, $J = 6.8$ Hz, 2H), 4.48 (s, 2H), 4.95 (d, $J = 10.0$ Hz, 1H), 5.06 - 5.16 (m, 2H), 5.21 (br. s., 1H), 5.33 - 5.44 (m, 1H), 7.23 - 7.29 (m, 1H), 7.31 - 7.37 (m, 3H), 7.42 (d, $J = 8.2$ Hz, 2H), 7.75 (d, $J = 8.2$ Hz, 2H) (126 MHz, CDCl ₃) δ 15.9 (CH ₃), 16.3 (CH ₃), 17.6 (CH ₃), 21.6 (CH ₃), 23.4 (CH ₃), 23.4 (CH ₃), 23.4 (CH ₃), 26.6 (CH ₂), 29.6 (CH ₂), 32.1 (CH ₂), 39.6 (CH ₂), 39.7 (CH ₂), 63.5 (CH), 66.3 (CH ₂), 72.1 (CH ₂), 117.0 (CH), 122.1 (CH), 123.3 (CH), 124.1 (CH), 127.4 (CH), 127.7 (CH), 127.7 (CH), 127.8 (CH), 128.3 (CH), 129.1 (CH), 129.3 (CH), 130.6 (CH), 131.3 (CH), 134.9, 135.5, 138.4, 139.9, 144.2, 145.1
HRMS (ESI)	calcd for C ₃₉ H ₅₄ NaO ₃ S (M+Na) 625.3686, found 625.3680
23	уралина страна стран
Procedure used	F
Yield	3.6 g (71%) from 22
Lit	Ref ⁸
	¹ H, ¹³ C, HRMS
¹ H NMR	$(500 \text{ MHz}, \text{CDCl}_3) \delta 1.59, 1.60, 1.67, 1.68, 1.73 (6 \times \text{s}, 18\text{H}), 1.93 - 2.11 (m, 16\text{H}),$

	4.04 - 4.19 (m, 2H), 5.06 - 5.16 (m, 4H), 5.43 (t, J = 6.8 Hz, 1H)
¹³ C NMR	(126 MHz, CDCl ₃) δ 15.9 (CH ₃), 17.6 (CH ₃), 23.3 (CH ₃), 23.4 (CH ₃), 25.6 (CH ₃),
	26.2 (CH ₂), 26.5 (CH ₂), 26.7 (CH ₂), 31.8 (CH ₂), 32.1 (CH ₂), 39.6 (CH ₂), 58.8 (CH ₂),
	123.9 (CH), 124.1 (CH), 124.3 (CH), 124.4 (CH), 124.5 (CH), 131.1, 134.8, 135.1,
	136.0, 139.5
HRMS (ESI)	calcd for C ₂₅ H ₄₂ NaO (M+Na) 381.3128, found 381.2975
24	Ts
Procedure used	B2 followed by D
Yield	2.6 g (55%) from 23
¹ H NMR	(500 MHz, CDCl ₃) δ 1.59, 1.65, 1.67, 1.72 (6 × s, 18H), 1.74 - 1.81 (m, 2H), 1.87 (q,
	<i>J</i> = 7.3 Hz, 3H), 1.93 - 2.09 (m, 14H), 2.43 (s, 3H), 3.77 (d, <i>J</i> = 7.8 Hz, 2H), 4.94 (t, <i>J</i>
	= 6.9 Hz, 1H), 5.09 (m, 3H), 5.19 (t, J = 7.6 Hz, 1H), 7.31 (m, J = 8.0 Hz, 2H), 7.73
	(m, J = 8.2 Hz, 2H)
¹³ C NMR	(126 MHz, CDCl ₃) δ 15.9, 17.6, 21.6, 23.3, 23.5, 25.6, 25.7, 26.5, 26.5, 26.7, 31.8,
	32.0, 39.7, 55.9, 111.0, 123.8, 123.9, 124.1, 124.3, 128.4, 129.5, 131.2, 134.9, 135.2,
	135.9, 136.0, 144.4, 145.7
HRMS (ESI)	calcd for C ₃₂ H ₄₈ NaO ₂ S (M+Na) 519.3267, found 519.3261
, ,	
7a	
7a Procedure used	F
7a Procedure used Yield	F = 14 g (77%) from 19
7a Procedure used Yield Lit	$F = 14 g (77\%) \text{ from } 19$ Ref^{11}
7a Procedure used Yield Lit	$F_{T_{s}} \rightarrow F_{T_{s}} \rightarrow F_{OBn}$ E 14 g (77%) from 19 Ref ¹¹ No spectroscopic characterization is given.
7a Procedure used Yield Lit ¹ H NMR	$F_{T_{s}} \rightarrow F_{T_{s}} \rightarrow F_{OBn}$ E 14 g (77%) from 19 Ref ¹¹ No spectroscopic characterization is given. (500 MHz, CDCl ₃) δ 1.41 - 1.53 (m, 2H), 1.55, 1.56, 1.58. 1.59, 1.64, 1.67, 1.72 (8 ×
7a Procedure used Yield Lit ¹ H NMR	$F_{T_{s}} = \frac{14 \text{ g} (77\%) \text{ from } 19}{\text{Ref}^{11}}$ No spectroscopic characterization is given. (500 MHz, CDCl ₃) δ 1.41 - 1.53 (m, 2H), 1.55, 1.56, 1.58. 1.59, 1.64, 1.67, 1.72 (8 × s, 24H), 1.72 - 1.83 (m, 3H), 1.77 - 1.81 (m, 1H), 1.87 - 2.07 (m, 18H), 2.38 - 2.48
7a Procedure used Yield Lit ¹ H NMR	$F_{T_{s}} = \frac{14 \text{ g} (77\%) \text{ from } 19}{\text{Ref}^{11}}$ No spectroscopic characterization is given. (500 MHz, CDCl ₃) δ 1.41 - 1.53 (m, 2H), 1.55, 1.56, 1.58. 1.59, 1.64, 1.67, 1.72 (8 × s, 24H), 1.72 - 1.83 (m, 3H), 1.77 - 1.81 (m, 1H), 1.87 - 2.07 (m, 18H), 2.38 - 2.48 (m, 10H), 2.61 - 2.71 (m, 1H), 2.74 (d, $J = 13.6 \text{ Hz}$, 1H), 3.75 - 3.89 (m, 3H), 3.93 -
7a Procedure used Yield Lit ¹ H NMR	$F_{T_{s}} = \frac{14 \text{ g} (77\%) \text{ from } 19}{\text{Ref}^{11}}$ No spectroscopic characterization is given. (500 MHz, CDCl ₃) δ 1.41 - 1.53 (m, 2H), 1.55, 1.56, 1.58. 1.59, 1.64, 1.67, 1.72 (8 × s, 24H), 1.72 - 1.83 (m, 3H), 1.77 - 1.81 (m, 1H), 1.87 - 2.07 (m, 18H), 2.38 - 2.48 (m, 10H), 2.61 - 2.71 (m, 1H), 2.74 (d, <i>J</i> = 13.6 Hz, 1H), 3.75 - 3.89 (m, 3H), 3.93 - 4.03 (m, 2H), 4.46 - 4.51 (m, 2H), 4.87 - 5.10 (m, 7H), 5.17 (d, <i>J</i> = 8.8 Hz, 1H), 5.41
7a Procedure used Yield Lit ¹ H NMR	$F_{Ts} = 14 \text{ g} (77\%) \text{ from } 19$ Ref ¹¹ No spectroscopic characterization is given. (500 MHz, CDCl ₃) δ 1.41 - 1.53 (m, 2H), 1.55, 1.56, 1.58. 1.59, 1.64, 1.67, 1.72 (8 × s, 24H), 1.72 - 1.83 (m, 3H), 1.77 - 1.81 (m, 1H), 1.87 - 2.07 (m, 18H), 2.38 - 2.48 (m, 10H), 2.61 - 2.71 (m, 1H), 2.74 (d, <i>J</i> = 13.6 Hz, 1H), 3.75 - 3.89 (m, 3H), 3.93 - 4.03 (m, 2H), 4.46 - 4.51 (m, 2H), 4.87 - 5.10 (m, 7H), 5.17 (d, <i>J</i> = 8.8 Hz, 1H), 5.41 (t, <i>J</i> = 6.8 Hz, 1H), 7.24 - 7.38 (m, 11H), 7.65 - 7.76 (m, 5H)
7a Procedure used Yield Lit ¹ H NMR	$F_{Ts} = (500 \text{ MHz}, CDCl_3) \delta 1.41 - 1.53 \text{ (m, 2H)}, 1.55, 1.56, 1.58, 1.59, 1.64, 1.67, 1.72 \text{ (8 \times s, 24H)}, 1.72 - 1.83 \text{ (m, 3H)}, 1.77 - 1.81 \text{ (m, 1H)}, 1.87 - 2.07 \text{ (m, 18H)}, 2.38 - 2.48 \text{ (m, 10H)}, 2.61 - 2.71 \text{ (m, 1H)}, 2.74 \text{ (d, } J = 13.6 \text{ Hz}, 11\text{ H)}, 3.75 - 3.89 \text{ (m, 3H)}, 3.93 - 4.03 \text{ (m, 2H)}, 4.46 - 4.51 \text{ (m, 2H)}, 4.87 - 5.10 \text{ (m, 7H)}, 5.17 \text{ (d, } J = 8.8 \text{ Hz}, 11\text{ H)}, 5.41 \text{ (t, } J = 6.8 \text{ Hz}, 11\text{ H)}, 7.24 - 7.38 \text{ (m, 11H)}, 7.65 - 7.76 \text{ (m, 5H)} \text{ (126 MHz, CDCl_3)} \delta 15.9, 15.9, 16.2, 16.2, 17.6, 21.6, 23.2, 23.2, 23.3, 23.4,$
7a Procedure used Yield Lit ¹ H NMR	$F_{Ts} = \frac{1}{Ts} = $
7a Procedure used Yield Lit ¹ H NMR ¹³ C NMR	$F_{Ts} = F_{Ts} = F_{OBn}$ E 14 g (77%) from 19 Ref ¹¹ No spectroscopic characterization is given. (500 MHz, CDCl ₃) δ 1.41 - 1.53 (m, 2H), 1.55, 1.56, 1.58. 1.59, 1.64, 1.67, 1.72 (8 × s, 24H), 1.72 - 1.83 (m, 3H), 1.77 - 1.81 (m, 1H), 1.87 - 2.07 (m, 18H), 2.38 - 2.48 (m, 10H), 2.61 - 2.71 (m, 1H), 2.74 (d, <i>J</i> = 13.6 Hz, 1H), 3.75 - 3.89 (m, 3H), 3.93 - 4.03 (m, 2H), 4.46 - 4.51 (m, 2H), 4.87 - 5.10 (m, 7H), 5.17 (d, <i>J</i> = 8.8 Hz, 1H), 5.41 (t, <i>J</i> = 6.8 Hz, 1H), 7.24 - 7.38 (m, 11H), 7.65 - 7.76 (m, 5H) (126 MHz, CDCl ₃) δ 15.9, 15.9, 16.2, 16.2, 17.6, 21.6, 23.2, 23.2, 23.3, 23.4, 23.4, 23.5, 25.6, 25.6, 26.1, 26.1, 26.5, 26.6, 29.4, 29.5, 30.2, 31.7, 31.8, 32.1, 39.6, 39.7, 39.7, 56.0, 63.1, 63.3, 63.3, 66.3, 72.0, 117.0, 117.8, 117.8, 122.1, 123.3, 124.1,
7a Procedure used Yield Lit ¹ H NMR ¹³ C NMR	$F_{r_{s}} = \frac{1}{r_{s}} + $
7a Procedure used Yield Lit ¹ H NMR ¹³ C NMR	$F_{Ts} = \frac{1}{18} + $
7a Procedure used Yield Lit ¹ H NMR ¹³ C NMR	$F_{T_{s}} = \frac{14 \text{ g} (77\%) \text{ from } 19}{\text{Ref}^{11}}$ No spectroscopic characterization is given. (500 MHz, CDCl ₃) δ 1.41 - 1.53 (m, 2H), 1.55, 1.56, 1.58. 1.59, 1.64, 1.67, 1.72 (8 × s, 24H), 1.72 - 1.83 (m, 3H), 1.77 - 1.81 (m, 1H), 1.87 - 2.07 (m, 18H), 2.38 - 2.48 (m, 10H), 2.61 - 2.71 (m, 1H), 2.74 (d, <i>J</i> = 13.6 Hz, 1H), 3.75 - 3.89 (m, 3H), 3.93 - 4.03 (m, 2H), 4.46 - 4.51 (m, 2H), 4.87 - 5.10 (m, 7H), 5.17 (d, <i>J</i> = 8.8 Hz, 1H), 5.41 (t, <i>J</i> = 6.8 Hz, 1H), 7.24 - 7.38 (m, 11H), 7.65 - 7.76 (m, 5H) (126 MHz, CDCl ₃) δ 15.9, 15.9, 16.2, 16.2, 17.6, 21.6, 23.2, 23.2, 23.3, 23.4, 23.4, 23.5, 25.6, 25.6, 26.1, 26.1, 26.5, 26.6, 29.4, 29.5, 30.2, 31.7, 31.8, 32.1, 39.6, 39.7, 39.7, 56.0, 63.1, 63.3, 63.3, 66.3, 72.0, 117.0, 117.8, 117.8, 122.1, 123.3, 124.1, 124.1, 127.3, 127.4, 127.7, 128.0, 128.1, 128.3, 128.5, 129.1, 129.2, 129.3, 129.3, 129.3, 129.5, 130.4, 130.7, 130.8, 131.3, 134.7, 134.8, 135.5, 135.6, 138.4, 139.9, 144.3, 144.3, 144.4, 144.5, 145.0

7b	
Procedure used	Е
Yield	17 g (83%) from 21
¹ H NMR/ ¹³ C NMR	Full assignment is given in Table S4.
HRMS (ESI)	calcd for C ₅₆ H ₇₆ O ₅ S ₂ (M-H ⁻) 891.5050, found 891.5070
7c	
Procedure used	Ε
Yield	3.6 g (93%) from 24
¹ H NMR	(500 MHz, CDCl ₃) δ 1.43 - 1.54 (m, 2H), 1.60, 1.64, 1.65, 1.68, 1.73 (8 × s, 24H), 1.74 - 1.82 (m, 2H), 1.87 - 2.12 (m, 16H), 2.41 (s, 3H), 2.46 (dd, <i>J</i> = 13.0, 11.6 Hz, 1H), 2.72 (dd, <i>J</i> = 13.2, 1.8 Hz, 1H), 3.85 (td, <i>J</i> = 10.9, 2.6 Hz, 1H), 3.99 (d, <i>J</i> = 6.8 Hz, 2H), 4.49 (s, 2H), 4.90 (t, <i>J</i> = 6.0 Hz, 1H), 4.97 (d, <i>J</i> = 10.6 Hz, 1H), 5.07 - 5.27 (m, 4H), 5.42 (t, <i>J</i> = 6.4 Hz, 1H), 7.24 - 7.41 (m, 7H), 7.71 (d, <i>J</i> = 8.2 Hz, 2H)
¹³ C NMR	(126 MHz, CDCl ₃) & 15.9, 17.5, 21.4, 23.2, 23.2, 23.3, 23.5, 25.6, 26.4, 26.4, 26.5, 26.6, 30.0, 31.7, 32.0, 32.1, 39.6, 39.6, 63.1, 66.2, 72.0, 117.5, 122.0, 123.8, 123.9, 124.0, 124.2, 127.3, 127.6, 127.9, 128.2, 129.0, 129.2, 130.4, 134.8, 135.1, 135.6, 138.4, 139.8, 144.1, 144.8
HRMS (ESI)	calcd for C ₄₉ H ₇₀ NaO ₃ S (M+Na) 761.4938, found 761.4942
4	
Procedure used	F
Yield	2.0 g, 59% from 7a (>90% purity)
	2.8 g, 63% (as 1:3 mixture of 4 : 4B2) from 7b
	0.2 g (4, isolated from 4/4B2 mixture)
	1.6 g, 68% from 7c (>91% purity)
Lit	Compound 4 was isolated as colorless oil and was stored at 4 °C. Ref ⁸
	¹ H, ¹³ C, HRMS are given.
¹ H NMR/ ¹³ C NMR	Full assignment is given in Table S2.
HRMS (ESI)	calcd for $C_{35}H_{58}NaO (M+Na^+)$ 517.4380, found 517.4348
4B2	уон
Procedure used	F
Yield	2.8 g, 63% (as 1:3 mixture of 4 : 4B2) from 7b

	0.8 g (4B2, isolated from 4/4B2 mixture)
¹ H NMR/ ¹³ C NMR	Full assignment is given in Table S2.
HRMS (ESI)	calcd for $C_{35}H_{58}NaO (M+Na^{+}) 517.4380$, found 517.4340

Figure S1. ¹H NMR spectra of intermediates (**18-OH, 20-OH** and **7b**) (A). ¹H-¹³C-HSQC-TOCSY (crosspeaks in blue) and TOCSY (crosspeak in black) of **7b** (800.13 MHz).

Stereochemical verification within each route was by NMR. Notably, intermediates **18-OH**, **20-OH** and **7b** had well-resolved ¹H resonances (Figure S1A, Tables 1 and 2). Figure S1B further shows the ¹H- 13 C-HSQC-TOCSY spectrum of **7b** (crosspeaks in blue with respect to the y-axis on the left) and TOCSY spectrum (crosspeaks in black with respect to the y-axis on the right). The seven vinyl resonances (of H-2, -6, -10, -14, -18, -22, and -28) in **7b** were each resolved, and each resonance showed crosspeaks to the proximal CH/CH₂/CH₃ carbons. The ¹H and ¹³C resonance assignments for three compounds are given in Tables S1 and S2.

Table S2. ¹H and ¹³C NMR data^a for **4** and **4B2** in CDCl₃ at 298 K (800.13 MHz, obtained using a solution of 10 mg of **4** (or **4B2**) and 3 mg of Eu(hcf)₃ in 600 μ L of CDCl₃).

$\begin{array}{c} 28_{27} \frac{26}{25} \frac{24}{30} \frac{32}{31} \frac{33}{31} \frac{34}{11} \frac{35}{9} \frac{35}{8} \frac{35}{5} \frac{3}{4} \frac{2}{1} - OH \\ 29_{30} \frac{26}{30} \frac{26}{31} \frac{22}{30} \frac{22}{31} \frac{20}{31} \frac{19}{15} \frac{14}{13} \frac{11}{12} \frac{10}{9} \frac{37}{8} \frac{35}{5} \frac{3}{4} \frac{2}{1} - OH \\ 29_{30} \frac{28}{31} \frac{26}{31} \frac{22}{10} \frac{26}{10} \frac{22}{10} \frac{22}{10} \frac{22}{10} \frac{19}{10} \frac{18}{17} \frac{15}{16} \frac{14}{13} \frac{11}{12} \frac{10}{9} \frac{5}{8} \frac{3}{4} \frac{2}{1} - OH \\ 29_{30} \frac{31}{31} \frac{4}{4B2} \frac{11}{10} \frac{10}{10} \frac{10}{1$								
			4				4B2	
Carbon	Туре	$\delta_{\rm C}$	δ_{H}	$HMBC^{b}$	Туре	$\delta_{\rm C}$	δ_{H}	HMBC^{b}
1	CH ₂	63.38	6.08		CH ₂	65.60	6.95	
2	СН	125.24	6.62		СН	125.62	7.08	
3	С	140.68			С	141.76		
4	CH ₂	32.81	2.70	2, 3, 5, 35	CH ₂	32.69	2.79	2, 3, 5, 6, 35
5	CH_2	26.65	2.45	3, 4, 6, 7	CH_2	27.20	1.96	3, 4, 6, 7
6	СН	124.74	5.41	5, 8, 34	CH_2	40.00	2.29	4, 5, 7, 8, 34
7	С	136.20	0.11		С	135.03		
8	CH ₂	32.30	2.11 2.18	9, 10	СН	124.04	5.27	6, 7, 34
9	CH_2	26.43	2.12	10, 11	CH ₂	27.19	2.77	7, 8, 10
10	СН	124.96	5.23	8, 9, 33	СН	124.27	5.18	9, 12, 33
11	C	135.33	0.20	0, 7, 55	C	135.32	0.10	, 12, 00
12	CH ₂	32.29	2.11 2.18	11, 14, 33	CH ₂	32.53	2.10	10, 11, 33
13	CH ₂	26.61	2.12 2.18	12, 14, 15	CH ₂	26.62	2.10	12, 14, 15
14	СН	124.93	5.19	13.32	СН	125.21	5.17	13, 16, 32
15	С	135.40		- , -	С	135.69		-, -, -
16	CH ₂	32.00	2.08 2.10	15, 17, 18, 32	CH ₂	32.26	2.07	14, 17, 18
17	CH ₂	26.61	2.09 2.11	16, 18, 19	CH ₂	26.89	2.08	15, 16, 18, 19
18	СН	124.15	5.18	16, 17, 20, 31	СН	124.43	5.16	17, 20, 31
19	С	135.13			C	135.42		
20	CH_2	39.73	2.00	18, 19, 21	CH_2	40.01	2.00	19, 21, 31
21	CH ₂	26.65	2.02 2.08	20, 22, 23	CH ₂	26.90	2.07	20, 22, 23
22	СН	124.23	5.14	20, 21, 24, 30	СН	124.49	5.13	18, 21, 22, 24, 30
23	С	134.87			С	135.18		
24	CH ₂	39.83	2.012	22, 23, 25, 26, 30	CH ₂	39.97	1.99	22, 23, 25, 26, 30
25	CH ₂	26.73	2.008 2.07	24, 26, 27	CH ₂	27.03	2.07	23, 26, 27
26	СН	124.38	5.12	28, 29	СН	124.66	5.11	24, 25, 28, 29
27	С	131.20			С	131.49		
28	CH ₃	25.69	1.70	26, 27, 29	CH ₃	25.96	1.69	26, 27, 29
29	CH ₃	17.66	1.62	26, 27, 28	CH ₃	17.94	1.613	26, 27, 28
30	CH ₃	15.98	1.62	22, 23, 24		16.25	1.611	22, 23, 24
31 32		15.98	1.64	18, 19, 20		16.25	1.03	18, 19, 20
32		23.47	1.75	14, 15, 10 10, 11, 12		23.722	1./1/	14, 15, 16
33	CH.	23.47	1.73	678		16.33	1.720	678
35	CH ₃	23.85	2.04	2, 3, 4	CH ₃	24.28	2.14	2, 3, 4

^{*a*} Due to overlaps among signals, the values for the coupling constants or for ΣJ could not be always extracted. ^{*b*} HMBC correlations, optimized for 8 Hz, are from the stated ¹H resonance to the indicated carbon resonances.

Table S3. ¹H and ¹³C NMR data for 18-OH and 20-OH in DMSO at 298 K (800.13 MHz).

	18-OH								20-ОН	
Carbon	Туре	δ_{C}	$\delta_{\rm H}$	¹ H multiplicity ^a J(H _i ,H _i) [Hz]	HMBC^{b}		δ_{C}	$\delta_{\rm H}$	¹ H multiplicity ^a J(H _i ,H _i) [Hz]	HMBC ^b
1	CH ₂	59.78	3.83	S	2, 3, 27	5	9.86	3.91	bs	2, 3, 27
2	C	136.26				1	36.50			
3	СН	125.39	4.96	t, 6.7	1, 4, 5, 27	1	25.41	5.06	t, $\Sigma J = 14.6$	1, 4, 5, 27
4	CH ₂	25.51	1.69 1.78	mt mt	2, 3, 5, 6, 12	2	25.70	2.02	mt	2, 3, 5, 6
5	CH_2	32.29	1.52 1.77	mt mt	4, 6, 7, 26	3	2.29	1.90 1.95	mt mt	3, 4, 6, 7, 26
6	С	144.88				11	38.02			
7	СН	117.71	4.86	d, 10.4	5, 8, 9, 26	1	19.91	4.84	t, $\Sigma J = 13.5$	5, 9, 26
8	СН	62.58	3.97	ddd, 10.9, 10.9, 3.0	6, 7, 9, 10	2	23.42 CH ₂)	2.47 2.61	mt, $\Sigma J = 38.0$ mt, $\Sigma J = 26.0$	6, 7, 9, 10
9	CH ₂	30.31	2.34 2.49	dd, 13.0, 11.3 dd, 13.0, 2.0	7, 8, 10, 11, 25	6	5.61 CH)	4.02	dd, 11.4, 3.3	7, 8, 10, 11, 25
10	С	130.79				11	26.15			
11	СН	128.05	5.13	t, 6.4	9, 12, 13, 25	1	35.60	5.35	t, $\Sigma J = 13.4$	9, 10, 12, 13, 25
12	CH ₂	26.43	1.93	mt	10, 11, 13, 14	2	25.88	1.48 1.83	mt mt	10, 11, 13, 14
13	CH ₂	32.07	1.93 1.97	mt mt	12, 14, 15, 24	3	1.38	1.76 1.82	mt mt	11, 12, 14, 15, 24
14	С	139.23				1	38.85			
15	СН	122.81	5.33	t, 6.7	13, 14, 16, 24	1	22.99	5.30	dd, 6.2, 7.1	13, 14, 16, 24
16	CH ₂	66.24	3.93	d, 6.7	14, 15, 17	6	6.24	3.87 3.89	dd, 6.2, 12.0 dd, 7.1, 12.0	14, 15, 17
17	CH ₂	71.52	4.41	S	16, 18, 22, 23	7	1.52	4.39	S	16, 18, 22, 23
18, 22	СН	127.82	7.29	d, 7.1	17, 19, 20, 21	1	27.69	7.27	d, 7.3	17, 20
19, 21	СН	128.59	7.32	t, 7.1	18, 20, 22, 23	1	28.56	7.31	t, 7.3	23
20	СН	127.75	7.26	t, 7.1	18, 19, 21, 22	1	27.72	7.25	t, 7.3	18, 22
23	С	139.04				1.	39.04			
24	CH ₃	23.50	1.67	S	13, 14, 15	2	23.42	1.58	bs	13, 14, 15
25	CH ₃	23.82	1.56	S	9, 10, 11	1	9.24	1.70	bs	9, 10, 11
26	CH ₃	23.45	1.59	d	5, 6, 7	2	23.47	1.58	bs	5, 6, 7
27	CH ₃	21.59	1.64	S	1, 2, 3	2	1.66	1.69	bs	1, 2, 3
28	С	135.09				1.	35.61			
29, 33	СН	129.22	7.70	d, 8.2	30, 31, 32	11	28.85	7.70	d, 8.2	31
30, 32	СН	129.95	7.41	d, 8.2	28, 29, 33, 34	1	30.06	7.39	d, 8.2	28, 34
31	С	144.69				14	44.69			
34	CH ₃	21.51	2.38	S	30, 31, 32	2	21.44	2.37	S	30, 31, 32

^{*a*} Due to overlaps among signals, the values for the coupling constants or for ΣJ could not be always extracted. ^{*b*} HMBC correlations, optimized for 8 Hz, are from the stated ¹H resonance to the indicated carbon.

Table S4. ¹H and ¹³C NMR data for **7b** in DMSO at 298 K (800.13 MHz).

	28 27 26 24 29 29	3 23 21 20 19 18 17 30 31 02 5	2 33 1 15 14 11 10 16 13 12 9 1	34 35 35 36 35 36 35 36 35 36 35 36 36 30							
		l		∑ 7b							
7b											
Carbon	Туре	$\delta_{\rm C}$	δ_{H}	¹ H multiplicity ^a J(H _i ,H _i), [Hz]	HMBC ^b						
1	CH ₂	65.75	3.90 3.87	dd, 11.8, 6.8 dd, 11.8, 6.8	2, 3, 36						
2	СН	122.53	5.30	t, 6.8	1, 3, 4, 35						
3	С	138.48	1 76	mt							
4	CH ₂	30.94	1.82	mt	2, 3, 5, 6, 35						
5	CH_2	25.43	1.48	mt	3, 4, 6, 7						
6	СН	135.14	5.35	t, 6.3	4, 5, 8, 34						
7	С	125.69									
8	СН	65.04	4.02	mt	6, 7, 9, 10, 34						
9	CH ₂	22.97	2.45	mt	7, 8, 10, 11						
10	СН	119.66	4.83	t, 6.9	8, 11, 13, 33						
11	С	137.20									
12	CH ₂	31.49	1.85 1.93	mt mt	10, 11, 13, 14, 33						
13	CH_2	25.77	1.90	mt	11, 12, 14, 15						
14	СН	127 32	5.08	mt t 6.8	12 13 16 32						
15	C	130.49	5.00	ι, υ.υ	12, 13, 10, 52						
16	CH ₂	29.20	2.41 2.52	mt mt	15, 17, 18, 32						
17	CH	62.10	4.03	mt	16, 18, 19						
18	СН	116.73	4.80	ddd, 10.3, 5.1, 0.9	16, 17, 20, 31						
19	CH.	144.57	1 88	mt	18 10 21 22 31						
20		25.60	1.89	mt	19, 20, 22, 23						
22	CH	123.36	4.99	t, 5.5	20, 21, 24, 30						
23	С	134.68									
24	CH_2	39.17	1.91	mt	22, 23, 25, 26, 30						
25	CH ₂	26.19	2.01	mt	23, 24, 26, 27						
20	Сп	124.07	5.05	ι, /.0	24, 23, 28, 29						
28	CH ₃	25.46	1.62	t, 1.0	26, 27, 29						
29	CH ₃	17.47	1.54	bs	26, 27, 28						
30	CH ₃	15.69	1.52	S	22, 23, 24						
31		16.08	1.19	d, 0.9	18, 19, 20						
33		23.12	1.57	d 1 0	10, 11, 12						
34	CH ₃	18.79	1.68	d, 5.1	6, 7, 8						
35	CH ₃	22.90	1.59	dd, 3.9, 1.1	2, 3, 4						
36	CH ₂	71.07	4.39	S	1, 37, 38, 42						
51 38 12	Сн	138.59	7 78	bd 73	36 40						
39, 41	СН	127.33	7.32	t. 7.3	37						
40	СН	127.30	7.26	tt, 7.3, 1.3	38, 42						
43	С	135.10									
44	CH	128.40	7.696	d, 8.2							
45,47	С	129.03	1.398	uq, 8.2, 0.6							
48	СН	128.40	7.698	d. 8.2							
49	CH ₃	21.04	2.37	bs							
50	C	134.68		1.0.0							
51, 55	CH	128.77	7.71	d, 8.2							
52, 54	С	144 21	/.41	uy, 0.2, 0.0							
56	CH ₃	21.06	2.39	bs							

References

- (1) Bax, A.; Morris, G. A. J. Magn. Reson. **1981**, 42, 501-505.
- (2) Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093-2094.
- (3) Bodenhausen, G.; Freeman, R.; Niedermeyer, R.; Turner, D. L. J. Magn. Reson. **1977**, *26*, 133-164.
- (4) Griesinger, C.; Otting, G.; Wüthrich, K.; Ernst, R. R. J. Am. Chem. Soc. **1988**, *110*, 7870-7872.
- (5) Sattler, M.; Schwalbe, H.; Griesinger, C. J. Am. Chem. Soc. 1992, 114, 1126-1127.
- (6) Wijmenga, S. S.; Hallenga, K.; Hilbers, C. W. J. Magn. Reson. 1989, 84, 634-642.
- (7) Wishart, D. S.; Bigam, C. G.; Yao, J.; Abildgaard, F.; Dyson, H. J.; Oldfield, E.; Markley, J. L.; Sykes, B. D. *J. Biomol. NMR* **1995**, *6*, 135-140.
- (8) Chang, Y.-F.; Liu, C.-Y.; Guo, C.-W.; Wang, Y.-C.; Fang, J.-M.; Cheng, W.-C. *J. Org. Chem.* **2008**, *73*, 7197-7203.
- (9) Sato, K.; Inoue, S.; Onishi, A.; Uchida, N.; Minowa, N. *J. Chem. Soc., Perkin Trans. 1* **1981**, 761-769.
- (10) Williams, C. M.; Mander, L. N. *Tetrahedron* **2001**, *57*, 425-447.
- (11) Sato, K.; Miyamoto, O.; Inoue, S.; Matsuhashi, Y.; Koyama, S.; Kaneko, T. J. Chem. Soc., Chem. Commun. **1986**, 1761-1762.

-S23-

-S24-

UPN-18 Pulse Sequence: dept

-S27-

-S28-

-S30-

-S31-

-S32-

600N-18_5_OH Ffle: xp Pulse Sequence: COSY Solvent: cdcl3 Temp. 22.0 C / 295.1 K Operator: dhesek VMRS-600 "rmr600"

VNNRS-5600 "mmr600" Relax. delay 1.000 sec Acq. time 0.242 sec Vidth 4223.0 Hz So repetitions Mz Siz increments 055ERVE HI. 599.8728575 MHz DATA PROCESSING Sine bell 0.121 sec F1 DATA PROCESSING F1 SiZe 12 x 6192 Total time 1 hr, 30 mln, 14 sec

-S42-

-S43-

-S46-

UPN-22T Pulse Sequence: relayh Solvent: CDC13 Ambient temperature INGVA-500 "nmr2a.chem.

INCVA-500 "nmr2a.chem.nd.edu" Relax. delay 1.300 sec GOSY 50-50 135 sec Avidth m 3691.6 Hz 20 Vidth 3691.6 Hz 8 cpetitions 055EVF will.499.6511619 HHz DATA PROCESSING Sine bell 0.059 sec F1 DATA PROCESSING ec F1 Size 1024 x 1024 Total time 50 min, 50 sec

ż

-S50-

UPH-8 Pulse Sequence: relayh Solvent: CDC13 Ambient tengerature INOVA-S00 "mar2a.chem.nd.edu" Relax.delay 1.300 sec COSY 90-90 Aca, time 0.151 sec Vidth 3382.2 Hz 20 Vidth 3382.2 Hz

INUVA-300 "marZa.chem.nd.edu" Rolaw. dolhy 1.300 sec Colored States Vidth 3382.2 Hz 20 Width 3382.2 Hz 20 Width 3382.2 Hz 20 Width 3382.2 Hz 20 Width 3382.2 Hz 30 Width 382.2 Hz 30 Width 382.2

-S59-

-S61-

-S62-

UPH-11

Pulse Sequence: relayh Solvent: CDC13 Ambient temperature INOVA-500 "nmr2a.chem.nd.edu"

INOVA-500 ""nrr2a.chem.nd.edu" Relax. delay 1.300 sec COSY 10-90 150 sec Middh 3065.9 Hz 20 Width 3065.9 Hz 20 Width 3065.9 Hz 3 sepetitions 0 SERVE "H. 499.661751 MHz DATA PROCESSING Sine bell 0.075 sec F Sine bell 0.038 sec F Size bell 0.038 sec

-S64-

• •

-S66-

-S68-

-S70-

-S71-

-S73-

UPH-5_2 13C-HSQC-TOCSY

UPH-5_2 13C-HMBC

