SUPPORTING INFORMATION

Novel Aromatase Inhibitors By Structure-Guided Design

Debashis Ghosh, Jessica Lo, Daniel Morton, Damien Valette, Jingle Xi, Jennifer Griswold, Susan

Hubbell, Chinaza Egbuta, Wenhua Jiang, Jing An, Huw M. L. Davie

Contents

- 1. Detailed inhibition data and individual dose response curves for all the C6-substituted androgens and the controls: Table S1
- 2. Detailed antiproliferation data and individual dose response curves for the new inhibitors and the controls: Table S2
- 3. Summary of X-ray data collection and refinement results: Table S3
- 4. Unbiased difference (|Fobs|-|Fcal|) electron density maps for EXM, **4** and **5**. Also shown are unbiased electron densities for the deleted side chain atoms: Figure S1 a, b, c
- 5. Docking validation results: Figure S2
- 6. Docking of compound 5 to other potential targets: Figure S3
- 7. Summary of results from docking experiments: RMSD and free-energy of ligand-binding: Table S4

Table S1. Detailed inhibition data and individual dose response curves

Compound	Percent Inhibition				Dose-Response Curve	IC ₅₀ (nM)	95% Confidence Interval (nM)		
	10µM	9.1µM	1µM	500nM	100nM	10nM			
	Avg (SD)	Avg (SD)	Avg (SD)	Avg (SD)	Avg (SD)	Avg (SD)			
2	65.7 (2.4)		17.2 (0.2)				001 000 001 001 001 001 001 0000 0000	5200	4700 to 5500
3	41.6 (5.3)		20.9 (1.3)				00 40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	18100	13100 to 25200
4	95.0 (0.3)		63.0 (5.5)	76.0 (1.7)	49.9 (2.7)	21.6 (5.3)	00000000000000000000000000000000000000	112.3	78.2 to 161.3
5		99.1 (0.1)		91.9 (0.2)	83.1 (4.9)	46.4 (0.4)	100 100, 100, 11 80M 400 200 0, 01 100, 11 80M 400 200 0, 01 100, 100, 100, 100, 100, 100, 1	11.8	9.3 to 14.9
6		99.2 (0.1)		83.1 (4.9)	53.9 (3.6)		000 1Cm+63.6nM 000 1Cm+63.6nM 000 1Cm+64 00 000 1 100 1Cm+64 00 001 1 100 10000 001 1 100 10000	83	74.5 to 93.9
7		97.0 (0.1)		65.3 (2.3)	40.2 (3.1)		100 80- 100- 100- 100- 100- 100- 00- 100- 1	181.1	164.0 to 200.0
8		75.0 (1.6)	31.5 (3.7)	31.2 (0.8)	5.0 (7.4)		00000000000000000000000000000000000000	2180	1750 to 2710
9			96.0 (0.4)		84.5 (1.7)	32.8 (4.2)	5 100 100 100 100 100 100 100 100	20	18.1 to 22.0
Exemestane				83.2 (1.3)	61.8 (5.2)		00000000000000000000000000000000000000	50.1	40.9 to 61.4
Formestane				79.9 (1.5)	50.3 (2.9)		0 10 10 10 10 10 10 10 10 10 1	48.6	33.6 to 71.1
Letrozole				95.1 (0.02)	83.9 (0.6)	50.5 (1.3)	0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.9	9.3 to 10.5

Compound		Cell Pro	liferation (% of (Control)					Dose-Response Curve	EC₅₀ (nM)	95% Confidence Interval(nM)
	1000nM	100nM	10nM	1nM	0.1nM	0.01nM	0.005nM	0.001nM			
	Avg (SD)	Avg (SD)	Avg (SD)	Avg (SD)	Avg (SD)	Avg (SD)	Avg (SD)	Avg (SD)			
4		2.9 (2.6)	18.1 (1.7)	60.6 (11.3)	89.1 (6.5)	104.5 (2.7)			0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.7	1.2 to 2.2
5			0.0 (5.83)	8.7 (8.6)	35.8 (12.0)	60.1 (9.7)	87.0 (6.3)	99.4 (7.1)	120 EC.0=0 0.05+M 5 100 V \$ 0 000 V \$ 0 000 V 0 001 0.1 1 1 10 Concentration (nM)	0.03	0.02 to 0.06
6		4.3 (5.9)	23.3 (7.8)	79.6 (12.3)	93.9 (3.5)	99.7 (5.2)			00000000000000000000000000000000000000	3.4	2.4 to 4.7
7		12.5 (12.9)	30.6 (5.4)	84.1 (8.5)	95.7 (4.2)	100.4 (8.3)			0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.4	3.2 to 7.3
8	0.15 (7.2)	13.9 (4.7)	64.0 (8.4)	81.2 (8.1)	102.0 (5.5)	106.6 (2.4)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.7	10.1 to 22.9
9		0.0 (1.7)	2.0 (10.0)	25.2 (9.6)	76.0 (1.7)	83.1 (4.9)			End of the second secon	0.3	0.2 to 0.4
Exemestane		9.4 (6.0)	29.5 (15.9)	78.5 (4.0)	103.8 (1.0)	108.3 (1.6)			Ball Long Concentration (M)	5.6	2.7 to 6.5
Letrozole			0.0 (3.2)	0.0 (2.2)	14.2 (11.5)	33.8 (14.1)	55.8 (3.4)	63.8 (9.8)	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	0.004	0.003 to 0.007

Table S2. Detailed anti-proliferation data and individual dose response curves

Table S3. Summary of X-ray data collection and refinement results							
Protein	Androstenedione	Exemestane	Compound 4	Compound 5			
	(ASD) complex	(EXM) complex	complex	complex			
PDB ID code	3879	3S7S	4GL5	4GL7			
Data collection							
Space group	P3 ₂ 21	P3 ₂ 21	P3 ₂ 21	P3 ₂ 21			
Cell dimensions	140.22, 140.22,	140.63, 140.63,	140.33, 140.33,	141.45, 141.45,			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	119.27	119.02	118.73	118.85			
α, β, γ (°)	90.0, 90.0, 120.0	90.0, 90.0, 120.0	90.0, 90.0, 120.0	90.0, 90.0, 120.0			
Resolution range (Å)	50.0 - 2.747	50.0 - 3.208	50.0 - 3.481	50.0 - 3.900			
$R_{\rm sym}$ or $R_{\rm merge}$	$0.077 (0.790)^*$	0.110 (0.850)	0.154 (0.816)	0.114 (0.793)			
Ι/σΙ	25.42 (1.73)	23.93 (2.07)	14.10 (2.34)	16.72 (1.25)			
Completeness (%)	99.5 (100.0)	100.0 (100.0)	91.5 (95.0)	99.5 (100.0)			
Redundancy	6.0 (6.1)	11.1 (10.9)	3.8 (3.9)	4.6 (4.6)			
Number of crystals used	1	1	1	1			
Refinement							
Resolution (Å)	2.747	3.208	3.481	3.900			
Unique reflections	33618	21353	17289	12126			
$R_{\rm work} / R_{\rm free}$	0.219/0.237	0.221/0.256	0.210/0.260	0.214/0.254			
No. atoms							
Protein	3668	3668	3658	3658			
Heme/Steroid	43/21	43/22	43/26	43/27			
Water/ion	37/15	0	0	0			
<i>B</i> -factors (Å ²)							
Wilson (overall)	83.2	106.4	-	-			
Protein	69.1	96.4	91.2	147.5			
Heme/Steroid	46/54	62/74	60/75	97/116			
Water/ion	76.9	-	-	-			
R.m.s. deviations							
Bond lengths (Å)	0.008	0.009	0.009	0.012			
Bond angles (°)	1.261	1.227	1.311	1.474			
Overall coordinate error							
From R _{free} (Å)	0.22	0.35	0.47	0.56			
max likelihood (Å)	0.18	0.27	0.33	0.41			
Structure validation							
Φ/Ψ plot ¹							
Favored region	430 (95.6%)	419 (93.1%)	390 (86.7%)	391 (86.9%)			
Allowed region	20 (4.4%)	27 (6.0%)	53 (11.8%)	52 (11.6%)			
Outlier region	0 (0.0%)	4 (0.9%)	7 (1.6%)	7 (1.6%)			

*Numbers in parenthesis are for the highest resolution shells

Figure S1. Unbiased difference electron density (Fobs-Fcal) maps, calculated before inclusion of the inhibitors in the models. Shown are the refined atomic models of the aromatase complexes with (a) EXM: 3.21Å resolution contoured at 4.5σ . Also shown in blue is the difference electron density in the absence of C6 methylidene carbon, contoured at 2.0σ , representing the missing atom. (b) 2-butynyloxy derivative 4: 3.48Å at 4.0σ . Shown in magenta is the difference electron density in the absence of the side chain atoms, contoured at 3.5σ , representing the missing atoms. (c) 2-pentynyloxy derivative 5: 3.90Å at 2.7σ . Shown in magenta is the difference electron density in the absence of the side chain atoms, contoured at 3.5σ , representing the missing atoms. (c) 2-pentynyloxy derivative 5: 3.90Å at 2.7σ . Shown in magenta is the difference electron density in the absence of the side chain atoms, contoured at 2.5σ , representing the missing atoms.

docked onto their respective crystal structures. Each panel shows the superposition of the docked ligand (light blue) to the ligand (white) from the crystal structure.

Figure S3. Docking of compound 5 into the binding sites of potential targets. The docking of compound 5 (light blue) to each target was compared to the crystal structure of actual ligand (white)-receptor complexes. The panel on the bottom left shows the docking of EXM (light blue) to ER α .

Table S4. Summary of results from docking experiments: root mean square deviation (RMSD) of each ligand from the crystal structure and free-energy of ligand-binding

Receptor	Ligand	RMSD of docked native ligand Å	Scoring function (Free energy of ligand binding, kcal/mole)	Docking to receptor with pharmacophore (receptor features specific for ligand recognition) query	
A	ASD	0.5	-21.1		
CVP10A1	EXM	0.6	-16.0	Best poses replicate the crystal	
CITIXI	5	0.5	-16.1	structures.	
	E2	0.4	-25.2		
ERα	EXM	0.7	7.2		
	5	N/A	58.0		
	Bromocryptine	1.0	-34.0		
CYP3A4	5	N/A	-19.3	no conformations passed	
CVD2A(Pilocarpine	1.0	10.9	pharmacophore mers.	
CYP2A0	5	N/A	186.4	No poses generated.	
CVD2C0	S-Warfarin	1.1	-11.6	1 0	
CYP2C9	5	N/A	64.9		
CYP2D6	Prinomastat	1.0	-10.8		
	5	N/A	-0.1		
CP17A1	Abilaterone	0.7	-11.5		
	5	N/A	7.1		

Reference:

1. Lovell, S. C.; Davis, I. W.; Arendall, W. B., 3rd; de Bakker, P. I.; Word, J. M.; Prisant, M. G.; Richardson, J. S.; Richardson, D. C., Structure validation by Calpha geometry: phi,psi and Cbeta deviation. *Proteins* **2003**, *50*, 437-450.