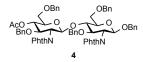
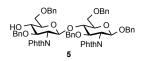
Solving the Convergence Problem in the Synthesis of Triantennary N-Glycan Relevant to Prostate-Specific Membrane Antigen (PSMA)

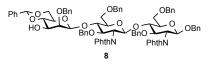

Maciej A. Walczak,¹ Samuel J. Danishefsky*,^{1,2}

¹Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10065, United States

²Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States


Experimental Section

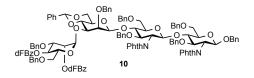
General Procedures: All reactions were carried out under dry Ar in an oven-dried glassware. CH_2Cl_2 was freshly distilled over CaH_2 and THF was filtered through a column of activated alumina prior to use. Anhydrous methanol was purchased from Aldrich. NIS was recrystallized from 1,4-dioxane/CCl₄ and was kept in dark. Ammonia was condensed (-78 °C) into a flask, dried with Na and then distilled into the reaction flask. All other reagents were used as received. ¹H and ¹³C NMR spectra were recorded on Bruker Avance 500/600 MHz instruments and are reported as follows: chemical shift (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. The residual solvent reference peaks were used from published literature.¹ IR measurements were performed on Jasco ATR FT/IR-6100 instrument and optical rotations were measured on JASCO P-2000 and are reported as average of five data points. TLC analyses were performed on Merck TLC plates and visualizations were performed with UV light and/or Hanessian stain and/or sulfuric acid stain (5% H₂SO₄ in MeOH). Preparative purifications were performed using Silcacycle silica using HPLC grade solvents.



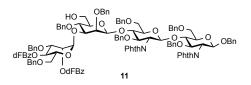
4-acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl-(1→4)-3,6-di-O-Benzyl benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (4). A mixture of 2 (12.1 g, 21.0 mmol) and 3 (14.7 g, 25.2 mmol) was azeotropically dried with PhMe (3x) and then on high vacuum for 1 h. This mixture was dissolved in anh. CH₂Cl₂ (210 mL), freshly activated 4Å MS (20 g) were added and the mixture was stirred at rt for 1 h, cooled to -50 °C, NIS (4.96 g, 22.0 mmol) was added followed by AgOTf (2.70 g, 10.5 mmol). The reaction mixture was allowed to warm up to -20 °C, stirred at this temp, for 14 h, quenched with Et₃N, filtered through pad of Celite, washed with sat. Na₂S₂O₃, water, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 2:1) afforded 4 (23.0 g, >99%) as a clear oil: $[\alpha]_D^{24}$ +17.4 (c 1.0, CHCl₃); IR (ATR) 3032, 2880, 1775, 1709, 1387 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) & 7.89 (br s, 1 H), 7.80-7.67 (br m, 6 H), 7.53-7.51 (br m, 1 H), 7.39-7.33 (m, 8 H), 7.31-7.27 (m, 1 H), 7.21-7.17 (m, 1 H), 7.08-7.06 (m, 1 H), 7.03-6.92 (m, 11 H), 6.86-6.84 (m, 3 H), 5.37 (d, J = 8.3 Hz, 1 H), 5.18 (t, J = 9.2 Hz, 1 H), 4.98 (d, J = 7.9 Hz, 1 H), 4.85 (d, J = 12.5 Hz, 1 H), 4.71(d, J = 12.4 Hz, 1 H), 4.63 (d, J = 12.0 Hz, 1 H), 4.57 (d, J = 11.7 Hz, 1 H), 4.54 (d, J = 10.9 Hz, 1 H4.52-4.57 (m, 4 H), 4.39 (d, J = 12.4 Hz, 1 H), 4.35 (d, J = 12.1 Hz, 1 H), 4.31 (dd, J = 10.7, 8.4 Hz, 1 H), 4.28-4.15 (m, 3 H), 3.61-3.55 (m, 3 H), 3.49 (dd, J = 10.9, 5.9 Hz, 1 H), 3.45 (dd, J = 10.3, 3.9 Hz, 1 H),

3.34 (dd, J = 9.3, 2.6 Hz, 1 H), 1.95 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 167.6, 138.6, 138.4, 138.2, 137.8, 137.2, 134.3, 134.1, 133.5, 131.7, 128.4 (4), 128.3, 128.1, (2), 127.9, 127.8, 127.7, 127.6, 127.5, 127.4 (2), 127.3, 126.9, 123.2, 87.1, 76.9, 76.6, 76.2, 74.5, 74.4, 73.9, 73.6, 73.4, 72.7 (2), 70.5, 69.4, 68.1, 56.3, 55.7, 20.9; HRMS (ESI) calc for C₆₅H₆₀N₂O₁₄Na (M+Na) 1115.3942, found 1115.3954.

3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl-(1→4)-3,6-di-O-benzyl-2-Benzyl deoxy-2-phthalimido- β -D-glucopyranoside (5). A solution of 4 (23.0 g, 21.0 mmol) in anh. THF (100 mL) and MeOH (100 mL) was treated with a solution of NaOMe (42.0 mL, 42 mmol, 0.5 M in MeOH) and stirred at rt for 1 h. This mixture was quenched with DOWEX-50WX8, filtered, and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 2:1 to 1:1) afforded 5 (20.1 g, 91%) as a clear oil: $\left[\alpha\right]_{D}^{24}$ -8.52 (c 1.0, CHCl₃), IR (ATR) 3474. 2874, 1775, 1710, 1387, 1070 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 6.8 Hz, 1 H), 7.77 (app. t, J = 5.0 Hz, 2 H), 7.73 (br s, 2 H), 7.67 (br s, 2 H), 7.41-7.33 (m, 10 H), 7.08-7.06 (m, 4 H), 7.02-6.99 (m, 6 H), 6.98-6.96 (m, 3 H), 6.86-6.83 (m, 3 H), 5.34 (d, J = 8.34 Hz, 1 H), 4.98 (d, J = 8.4 Hz, 1 H), 4.81 (t, J = 11.8 Hz, 2 H), 4.72 (d, J = 12.4 Hz, 1 H), 4.57-4.54 (m, 2 H), 4.53 (br s, 3 H), 4.51-4.47 (m, 1 H), 4.39 (d, J = 12.4 Hz, 1 H), 4.28 (dd, J = 10.8, 8.4 Hz, 1 H), 4.22-4.13 (m, 4 H), 3.84 (t, J = 8.4 Hz, 1 H), 3.73 (dd, J = 9.9, 4.3 Hz, 1 H), 3.59-3.56 (m, 2 H), 3.47 (dd, J = 10.9, 3.8 Hz, 1 H), 3.43-3.39 (m, 1 H), 3.33 (dd, J = 9.7, 2.5 Hz, 1 H), 3.11 (d, J = 1.6 Hz, 1 H); 13 C NMR (150) MHz, CDCl₃) & 168.4, 167.6, 138.6, 138.4, 138.3, 137.5, 137.2, 134.0, 133.8, 133.5, 131.7, 131.5, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9 (2), 127.7 (2), 127.5, 127.4, 127.3, 126.6, 123.6, 123.1, 97.1, 96.9, 78.3, 76.5, 75.5, 74.5, 74.3, 74.1, 73.7, 72.7 (2), 71.0, 70.5, 68.2, 65.1, 55.7; HRMS (ESI) calc for C₆₃H₅₈N₂O₁₃Na (M+Na) 1073.3837, found 1073.3833.

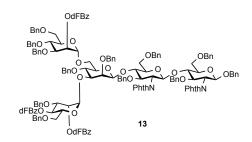

Benzyl 2-*O*-benzyl-4,6-*O*-(*R*)-benzylidene- β -D-mannopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-phthalimido- β -Dglucopyranoside (8). A solution of mannose sulfoxide 6 (5.28 g, 8.94 mmol) and DTBMP (7.46 g, 29.9 mmol) was azeotropically dried with PhMe (3 x 10 mL) and then on high vacuum for 2 h. Freshly activated 4Å MS (10 g) were added and the mixture was dissolved in anh. CH₂Cl₂ (59.0 mL). After 1 h at rt, this mixture was cooled to -78 °C, Tf₂O (1.51 mL, 8.99 mmol) was added, the mixture was allowed to warm up to -60 °C over 25 min, cooled to -78 °C and a cold (-78 °C) solution of acceptor **5** (6.30 g, 5.99 mmol) in CH₂Cl₂ (59.0 mL) was introduced *via* cannula. The mixture was stirred at -78 °C for 12 h, quenched with Et₃N, filtered through a pad of Celite, washed with EtOAc, and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 4:1 to 2:1 and PhMe:EtOAc, 4:1) afforded trisaccharide (8.0 g, 89%) as a white foam: MS (ESI) *m/z* calc for C₉₁H₈₆N₂O₁₉Na (M+Na) 1533.57, found 1534.57.

A mixture of trisaccharide (13.0 g) was dissolved in CH₂Cl₂ (194 mL), cooled to 0 °C, pH 7 phosphate buffer (10 mL) was added, and the mixture treated with DDQ (2.37 g, 10.4 mmol). After 4 h, additional portion of DDQ (1.58 g, 6.96 mmol) was added, the mixture was stirred for 1 h, quenched with sat. NaHCO₃, extracted with EtOAc and the combined organic layers were washed with water, brine, dried (MgSO4), and concentrated. Purification by chrom. on SiO₂ (PhMe:EtOAc, 3:1) afforded 8 (5.57 g, 56%) as a clear oil: $[\alpha]_D^{24}$ -3.70 (c 1.0, CHCl₃); IR (ATR) 3398, 2871, 1713, 1453, 1387 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 6.4 Hz, 1 H), 7.66-7.56 (m, 7 H), 7.37-7.36 (m, 2 H), 7.32-7.16 (m, 18 H), 6.98-6.95 (m, 1 H), 6.92-6.85 (m, 8 H), 6.81-6.80 (m, 3 H), 6.69-6.68 (m, 3 H), 5.34 (s, 1 H), 5.21 (d, J = 7.8 Hz, 1 H), 4.93 (d, J = 11.6 Hz, 1 H), 4.88 (d, J = 8.3 Hz, 1 H), 4.82 (d, J = 12.2 Hz, 1 H), 4.76 (d, J = 12.2 Hz, 1 H J = 12.8 Hz, 1 H), 4.63-4.58 (m, 3 H), 4.52 (d, J = 12.1 Hz, 1 H), 4.47-4.42 (m, 3 H), 4.38 (d, J = 12.1Hz, 1 H), 4.31 (d, J = 11.9 Hz, 2 H), 4.19-4.12 (m, 4 H), 4.07-4.01 (m, 3 H), 3.64-3.56 (m, 3 H), 3.51-3.47 (m, 2 H), 3.42-3.56 (m, 3 H), 3.25-3.23 (m, 1 H), 3.12 (d, J = 9.9 Hz, 1 H), 3.04 (dt, J = 9.6, 4.8 Hz, 1 H), 2.24 (d, J = 8.6 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 168.5, 167.6, 138.8, 1386, 138.5, 138.2, 137.7, 137.2 (2), 134.0, 133.8, 133.4, 131.7, 131.4, 129.0, 128.6, 128.5, 128.2 (2), 128.0 (3), 127.9 (3), 127.8 (2), 127.5 (2), 127.4, 127.3, 126.9, 126.8, 126.3, 123.6, 123.1, 101.9, 97.1, 97.0, 79.4, 79.1, 79.0, 77.1, 76.5, 75.8, 75.7, 74.6 (2), 74.5, 74.3, 73.4, 72.6, 70.9, 70.5, 68.4, 68.2, 67.8, 66.8, 56.5, 55.7; HRMS (ESI) calc for $C_{83}H_{78}N_2O_{18}Na$ (M+Na) 1413.5147, found 1413.5082.

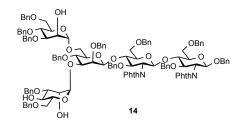


Thiophenyl 3,6-di-*O*-benzyl-2,4-di-*O*-(2,5-difluorobenzoyl)- α -D-mannopyranoside (9). A solution of thiophenyl 3,6-di-*O*-benzyl- α -D-mannopyranoside² (3.20 g, 7.08 mmol) in anh. pyridine (25.0 mL) was treated with 2,5-diflurorobenzoyl chloride (2.64 mL, 21.2 mmol) and stirred at rt for 12 h. The reaction mixture was quenched with sat. NaHCO₃, extracted with EtOAc and the combined organic layers were washed with water, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 4:1) afforded **9** (4.21 g, 81%) as a clear oil: $[\alpha]_D^{20}$ +28.1 (c 1.0, CHCl₃), IR (ATR) 3076, 2872, 1739, 1723, 1428, 1185 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.58 (ddd, *J* = 8.4, 5.3, 3.3 Hz, 1 H), 7.47-7.44 (m, 2 H), 7.36 (ddd, *J* = 13.0, 5.8, 3.4 Hz, 1 H), 7.20-7.06 (m, 15 H), 7.01 (td, *J* = 9.3, 4.2

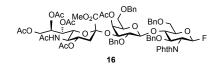
Hz, 2 H), 5.79 (dd, J = 2.0, 2.6 Hz, 1 H), 5.68 (t, J = 9.9 Hz, 1 H), 5.58 (d, J = 1.5 Hz, 1 H), 4.62 (d, J = 12.3 Hz, 1 H), 4.52 (ddd, J = 8.9, 5.1, 3.5 Hz, 1 H), 4.47 (d, J = 11.7 Hz, 1 H), 4.42 (d, J = 12.3 Hz, 1 H), 4.39 (d, J = 11.8 Hz, 1 H), 3.96 (dd, J = 9.6, 3.0 Hz, 1 H), 3.64 (qd, J = 10.9, 5.4 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 162.3, 162.0, 159.3 (2), 158.9 (3), 158.8, 157.3, 156.9 (2), 137.8, 137.0, 132.9, 132.0 (2), 131.9, 131.3, 129.7, 129.4, 129.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.4, 121.9, 121.8, 121.6, 121.5, 121.4, 121.3, 121.2, 119.3 (3), 119.2, 119.0, 118.9 (2), 118.8, 118.7, 118.6, 118.5, 118.4 (2), 118.3, 118.2 (3), 118.1, 86.0, 74.8, 73.5, 71.5, 71.0, 70.9, 69.3, 69.1; HRMS (ESI) calc for C₄₀H₃₂O₇SF₄Na (M+Na) 755.1703, found 755.1720.


glucopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (10). A mixture of 8 (1.59 g, 1.09 mmol) and 9 (1.59 g, 2.17 mmol) was azeotropically dried with PhMe (3 x 10 mL) and under high vacuum for 2 h. This mixture was dissolved in anh. CH₂Cl₂ (21.7 mL), freshly activated 3Å MS (1.0 g) were added and after 1 h at rt, this mixture was cooled to -50 °C, NIS (0.488 g, 2.17 mmol) was added followed by AgOTf (0.139 g, 0.54 mmol). The mixture was allowed to warm up to -20 °C, stirred at this temp. for 12 h, quenched with Et₃N, filtered through a pad of Celite and the organic layer was washed with sat. Na₂S₂O₃, sat. NaHCO₃, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (PhMe:EtOAc, 3:1) afforded **10** (1.97 g, 90%) as a clear oil: $[\alpha]_D^{24}$ -69.9 (c 1.0, CHCl₃); IR (ATR) 3033, 2873, 1773, 1718, 1496, 1386, 1082 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) & 7.73-7.70 (m, 5 H), 7.65 (br s, 1 H), 7.21-7.49 (m, 2 H), 7.44 (d, J = 7.3 Hz, 3 H), 7.39-7.38 (m, 10 H), 7.24-7.16 (m, 7 H), 7.14-7.05 (m, 7 H), 7.00 (dd, J = 7.6, 2.5 Hz, 2 H), 6.94-6.86 (m, 8 H), 6.85-6.83 (m, 3 H), 6.80-6.78 (m, 1 H), 6.75-6.68 (m, 3 H), 6.49-6.45 (m, 1 H), 6.40-6.36 (m, 2 H), 6.32 (dt, J = 9.3, 4.3 Hz, 1 H), 6.24 $(t, J = 2.2 \text{ Hz}, 1 \text{ H}), 6.16 (t, J = 10.0 \text{ Hz}, 1 \text{ H}), 5.73 (d, J = 8.0 \text{ Hz}, 1 \text{ H}), 5.71 (d, J = 1.5 \text{ Hz}, 1 \text{ H}), 5.33 (d, J = 0.0 \text$ J = 12.2 Hz, 1 H), 5.30 (s, 1 H), 5.23 (d, J = 8.5 Hz, 1 H), 5.16 (d, J = 11.5 Hz, 1 H), 5.11 (d, J = 11.8 Hz, 1 H), 4.84 (d, J = 12.9 Hz, 1 H), 4.81-4.73 (m, 5 H), 4.67-4.64 (m, 2 H), 4.63-4.52 (m, 5 H), 4.53-4.546 (m, 4 H), 4.44-4.36 (m, 5 H), 4.34-4.26 (m, 3 H), 4.14 (d, J = 3.2 Hz, 1 H), 4.03 (dd, J = 10.3, 4.7 Hz, 1 H)H), 3.93 (dd, J = 10.1, 2.8 Hz, 1 H), 3.83 (d, J = 4.4 Hz, 2 H), 3.64-3.58 (m, 2 H), 3.45 (d, J = 11.3, 2.7 Hz, 1 H), 3.38 (d, J = 9.8 Hz, 1 H), 3.27 (d, J = 10.2 Hz, 1 H), 3.11 (dt, J = 9.5, 4.8 Hz, 1 H), 2.93 (dd, J = 10.2 Hz, 1 H), 3.11 (dt, J = 9.5, 4.8 Hz, 1 H), 2.93 (dd, J = 10.2 Hz, 1 H), 3.11 (dt, J = 9.5, 4.8 Hz, 1 H), 2.93 (dd, J = 10.2 Hz, 1 H), 3.11 (dt, J = 9.5, 4.8 Hz, 1 H), 2.93 (dd, J = 10.2 Hz, 1 H), 3.11 (dt, J = 9.5, 4.8 Hz, 1 H), 2.93 (dd, J = 10.2 Hz, 1 H), 3.11 (dt, J = 9.5, 4.8 Hz, 1 H), 2.93 (dd, J = 10.2 Hz, 1 H), 3.11 (dt, J = 9.5, 4.8 Hz, 1 H), 2.93 (dd, J = 10.2 Hz, 1 H), 3.11 (dt, J = 9.5, 4.8 Hz, 1 H), 2.93 (dd, J = 10.2 Hz, 1 H), 3.11 (dt, J = 9.5, 4.8 Hz, 1 H), 2.93 (dd, J = 10.2 Hz, 1 H), 3.11 (dt, J = 9.5, 4.8 Hz, 1 H), 2.93 (dd, J = 10.2 Hz, 10.9.8, 8.3 Hz, 1 H); ¹³C NMR (150 MHz, C₆D₆) δ 162.5, 159.0, 157.4, 157.3, 139.8, 139.5, 139.3 139.2, 138.5, 138.4, 138.2, 138.1 (2), 133.2, 132.3, 129.0, 128.9 (2), 128.8, 128.7 (2), 128.6 (2), 128.5, 128.4 (2), 128.3 (2), 128.1, 128.0, 127.8 (2), 127.7 (2), 127.6 (2), 127.5, 127.2, 127.1, 126.6, 123.1, 118.6 (2), 118.5, 118.4 (2), 118.3 (2), 101.8, 101.4, 99.6, 97.9, 97.8, 79.4, 79.1, 78.5, 77.9, 77.7, 77.1, 76.5, 76.2, 75.7, 75.3, 75.9, 74.8, 73.7, 73.4 73.2, 71.6, 70.6, 70.5, 70.4, 69.8, 68.6, 68.5, 67.7, 67.5, 57.3, 56.6; HRMS (ESI) calc for C₁₁₇H₁₀₄N₂O₂₅F₄Na (M+Na) 2035.6762, found 2035.6793.

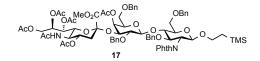
 $[3,6-di-O-benzy]-2,4-di-O-(2,5-difluorobenzoy])-\alpha-D-mannopyranosyl-(1 \rightarrow 3)]-2,4-di-O-$ Benzyl benzyl-β-D-mannopyranosyl-(1→4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (11). Benzylidene acetal 10 (1.30 g, 0.645 mmol) was azeotropically dried with PhMe (3 x 5 mL) and then on high vacuum for 1 h. This compound was cooled to 0 °C, a solution of BH3 THF (6.54 mL, 6.54 mmol, 1.0 M in THF) was added followed by a solution of n-Bu₂BOTf (1.94 mL, 1.94 mmol, 1.0 M in CH₂Cl₂). The reaction mixture was stirred at 0 °C for 4 h, guenched with Et₃N, MeOH was introduced and the volatiles were removed in vacuo. The crude mixture was concentrated from MeOH two more times and purified by chromatography on SiO₂ (PhMe:EtOAc, 3:1) to afford **11** (1.14 g, 88%) as a clear film: $\left[\alpha\right]_{D}^{20}$ -25.4 (c 1.0, CHCl₃); IR (ATR) 2926, 2870, 1713, 1496, 1389, 1268, 1074 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 7.1 Hz, 1 H), 7.65-7.63 (m, 2 H), 7.60 (br s, 2 H), 7.56-7.53 (m, 3 H), 7.34 (d, J = 7.4 Hz, 2 H), 7.26-7.18 (m, 13 H), 7.16-7.10 (m, 13 H), 7.06-7.00 (m, 6 H), 6.98-6.94 (m, 3 H), 6.91-6.81 (m, 11 H), 6.65-6.63 (m, 3 H), 5.60 (s, 1 H), 5.54 (t, J = 9.9 Hz, 1 H), 5.22 (s, 1 H), 5.21 (d, J = 8.2 Hz, 1 H), 4.95 (d, J = 12.2 Hz, 1 H), 4.88 (s, 1 H), 4.86 (d, J = 5.0 Hz, 1 H), 4.76 (d, J = 13.0 Hz, 1 H), 4.72 (d, J = 12.1 Hz, 1 H), 4.66 (d, J = 11.1 Hz, 1 H), 4.61 (d, J = 12.4 Hz, 1 H), 4.52 (d, J = 12.1 Hz, 2 H), 4.47 (d, J = 12.4 Hz, 1 H), 4.66 (d, J = 12.4 Hz, 1 H), 4.67 (d, J = 12.4 Hz, 1 H), 4.66 (d, J = 12.4 Hz, 1 H), 4.67 (d, J = 12.4 Hz, 1 H), 4.66 (d, J = 12.4 Hz, 1 H), 4.67 (d, J = 12.4 Hz, 1 H), 4.66 (d, J = 12.4 Hz, 1 H), 4.67 (d, J = 12.4 Hz, 1 H), 4.66 (d, J = 12.4 Hz, 1 H), 4.67 (d, J = 12.4 Hz, 1 H), 4.66 (d, J = 12.4 Hz, 1 H), 4.67 (d, J = 12.4 Hz, 1 H), 4.67 (d, J = 12.4 Hz, 1 H), 4.68 (d, J = 12.4 Hz, 1 Hz, 1 H), 4.68 (d, J = 12.4 Hz, 1 = 11.5 Hz, 2 H), 4.44-4.38 (m, 5 H), 4.31 (d, J = 11.8 Hz, 2 H), 4.28 (dd, J = 5.9, 4.4 Hz, 2 H), 4.23-4.09 (m, 4 H), 4.06-4.03 (m, 2 H), 3.99 (dd, J = 9.4, 3.1 Hz, 1 H), 3.97 (dd, J = 14.6, 8.8 Hz, 1 H), 3.83 (d, J = 14.6, 8.8 Hz, 1 Hz), 3.84 (d, J = 14.6, 8.8 Hz), 3.84 (d, J = 14.6, 8.8 Hz), 3.84 (d, J = 14.6, 8.8 Hz), 3.84 (d, J = 12.8 Hz, 1 H), 3.77 (t, J = 9.5 Hz, 1 H), 3.58-3.55 (m, 1 H), 3.54-3.50 (m, 3 H), 3.47 (d, J = 10.5 Hz, 2 H), 3.36 (dd, J = 11.0, 3.8 Hz, 1 H), 3.33 - 3.31 (m, 2 H), 3.23 (dd, J = 9.7, 2.5 Hz, 1 H), 3.13 (d, J = 9.9 Hz, 1 H)H), 2.99 (ddd, J = 9.1, 4.6, 2.3 Hz, 1 H), 1.55 (t, J = 7.0 Hz, 1 H); ¹³C NMR (150 MHz, CDCl₃) δ 167.6, 162.2, 162.0, 158.8, 157.1, 138.9, 138.7 (2), 138.5, 137.8, 137.7, 137.6, 137.3, 137.2, 134.1, 133.9, 133.5, 131.7, 128.0, 128.5, 128.3 (2), 128.2, 128.1 (3), 128.0, 127.9 (2), 127.8, 127.7 (3), 127.6, 127.5 (2), 127.4, 127.3, 127.1 (2), 126.9, 126.8, 123.8, 123.1, 118.7, 118.5 (2), 118.4 (2), 118.3, 118.2 (2), 118.1, 100.9, 99.7, 97.2, 97.1, 82.0, 78.5, 78.4, 77.0, 76.7, 76.0, 75.5, 75.2, 74.8, 74.6, 74.5, 74.3 (2), 73.6, 73.2,


72.8, 71.5, 70.8, 70.5, 69.5, 69.4, 69.2, 68.2, 67.5, 62.0, 56.5, 55.8; HRMS (ESI) calc for $C_{117}H_{106}N_2O_{25}F_4Na$ (M+Na) 2037.6919, found 2037.7015.

Thioethyl 3,4,6-tri-*O***-benzyl-2***-O***-(2,5-difluorobenzoyl)**-*α***-D-mannopyranoside (12).** A solution of thioethyl 3,4,6-tri-*O*-benzyl-*α*-D-mannopyranoside² (1.54 g, 3.11 mmol) in anh. pyridine (10.0 mL) was treated with 2,5-difluorobenzoyl chloride (0.77 mL, 6.22 mmol) and stirred at rt for 2 h. This mixture was quenched with sat. NaHCO₃, diluted with EtOAc and the organic layer was washed with water, sat. CuSO₄, sat. NaHCO₃, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 4:1) afforded **12** (1.59 g, 81%) as a clear oil: $[\alpha]_D^{20}$ +35.0 (c 1.0, CHCl₃); IR (ATR) 3031, 2871, 1736, 1718, 1496, 1270, 1098 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.60 (m, 1 H), 7.32-7.13 (m, 14 H), 7.11-7.08 (m, 2 H), 7.03 (dt, *J* = 9.3, 4.2 Hz, 1 H), 5.59 (s, 1 H), 5.36 (s, 1 H), 4.77 (d, *J* = 10.8 Hz, 1 H), 4.67 (d, *J* = 11.4 Hz, 1 H) 4.63 (d, *J* = 12.2 Hz, 1 H), 4.50 (d, *J* = 11.4 Hz, 1 H), 4.41 (app. t, *J* = 12.4 Hz, 2 H), 4.12 (dd, *J* = 9.6, 2.0 Hz, 1 H), 4.00 (t, *J* = 9.5 Hz, 1 H), 3.92 (dd, *J* = 9.3, 2.9 Hz, 1 H), 3.78 (dd, *J* = 10.8, 4.0 Hz, 1 H), 3.06 (d, *J* = 10.7 Hz, 1 H), 2.64-2.50 (m, 2 H), 1.21 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 162.3 (3), 162.2, 159.3 (2), 158.9 (2), 157.3 (2), 157.0 (2), 138.2 (2), 137.6, 129.0, 128.4, 128.3, 128.2 (2), 128.1, 127.9, 127.7, 127.6, 127.5, 125.3, 121.6 (2), 121.5, 121.4, 119.4 (3), 119.3, 118.6, 118.5, 118.4, 118.3, 82.8, 78.5, 75.2, 74.5, 73.3, 71.9, 71.8, 71.7, 68.7, 25.6, 14.9; HRMS (ESI) calc for C₃₆H₃₆O₆SF₂Na (M+Na) 657.2098, found 657.2109.

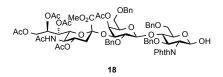

Benzyl [3,6-di-*O*-benzyl-2,4-di-*O*-(2,5-difluorobenzoyl)- α -D-mannopyranosyl-(1 \rightarrow 3)]-[3,4,6-tri-*O*-benzyl-2-*O*-(2,5-difluorobenzoyl)- α -D-mannopyranosyl-(1 \rightarrow 6)]-2,4-di-*O*-benzyl- β -D-mannopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (13). A mixture of 12 (0.410 g, 0.644 mmol) and 11 (0.650 g, 0.322 mmol) was azeotropically dried with PhMe (3x) and then on high vacuum for 1 h. This mixture was dissolved in anh. CH₂Cl₂ (8.1 mL), freshly activated 4Å MS (0.50 g) were added and after 1 h at rt, this mixture was cooled to -20 °C, NIS (0.152 g, 0.676 mmol) was added, followed by

AgOTf (41.0 mg, 0.160 mmol). The reaction mixture was stirred at -20 °C for 12 h, quenched with Et₃N, filtered through a pad of Celite, washed with sat. Na₂S₂O₃, water, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (PhMe:EtOAc, 3:1) afforded **13** (0.748 g, 90%) as a white foam: $\left[\alpha\right]_{D}^{24}$ -16.8 (c 1.0, CHCl₃), IR (ATR) 2923, 2870, 1716, 1495, 1269 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.67 d, J = 7.14 Hz, 2 H), 7.58 (t, J = 7.14 Hz, 1 H), 7.43 (d, J = 7.14 Hz, 1 H), 7.39 (d, J = 7.5 Hz, 2 H), 7.33-7.31 (m, 1 H), 7.27-7.22 (m, 2 H), 7.21-7.06 (m, 38 H), 7.04-6.97 (m, 8 H), 6.96-6.92 (m, 3 H), 6.89-6.85 (m, 4 H), 6.82-6.79 (m, 3 H), 6.76-6.75 (m, 2 H), 6.64-6.59 (m, 3 H), 6.51-6.46 (m, 3 H), 5.56 (br s, 1 H), 5.59 (t, J = 9.81 Hz, 1 H), 5.48 (br s, 1 H), 5.21 (s, 1 H), 5.12 (d, J = 8.04 Hz, 1 H), 5.04 (d, J = 12.1 Hz, 1 H), 4.94 (d, J = 1.3 Hz, 1 H) 4.84 (d, J = 8.5 Hz, 1 H), 4.80 (d, J = 13.1 Hz, 1 H), 4.78 (d, J = 12.1 Hz, 1 H), 4.71 (t, J = 14.0 Hz, 1 H), 4.62 (d, J = 11.3 Hz, 1 H), 4.59-4.53 (m, 3 H), 4.48 (d, J = 12.1 Hz, 2 H), 4.45 (d, J = 8.3 Hz, 1 H), 4.44-4.39 (m, 6 H), 4.38-3.35 (m, 4 H), 4.32 (dd, J = 5.6, 3.3 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 H), 4.30 (d, J = 5.6, 3.1 Hz, 2 Hz, 2 Hz), 4.30 (d, J = 5.6, 3.1 Hz, 2 Hz), 4.30 (d, J = 5.6, 3.1 Hz)J = 3.1 Hz, 1 H), 4.25 (d, J = 12.4 Hz, 1 H), 4.21 (d, J = 11.4 Hz, 1 H), 4.13-4.10 (m, 2 H), 4.09-4.04 (m, 2 H), 4.09-4 H), 4.01-3.97 (m, 2 H), 3.93 (d, J = 9.6 Hz, 1 H), 3.89-3.87 (m, 2 H), 3.84 (d, J = 9.4 Hz, 1 H), 3.82-3.79 (m, 1 H), 3.69 (d, J = 10.7 Hz, 1 H), 3.63-6.58 (m, 2 H), 3.56-3.53 (m, 2 H), 3.51-3.48 (m, 3 H), 3.40 (d, J = 10.2 Hz, 1 H), 3.33-3.31 (m, 1 H), 3.28 (dd, J = 10.8, 3.8 Hz, 1 H), 3.17 (dd, J = 9.5, 2.5 Hz, 1 H),3.10 (d, J = 9.4 Hz, 1 H), 3.04 (d, J = 9.8 Hz, 1 H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 167.5, 167.3, 162.0, 161.6, 159.1, 158.8, 158.7, 158.6, 158.5, 157.4, 157.3, 157.1 (2), 157.0 (3), 156.9 (2), 138.9, 138.6, 138.5, 138.4 (3), 137.8 (2), 137.7, 137.5, 137.3, 137.1, 133.6, 133.4, 133.3, 131.6, 131.4, 128.5, 128.4, 128.3 (3), 128.2, 128.1 (3), 128.0 (3), 127.8, 127.7, 127.6, 127.4 (2), 127.3, 127.2 (3), 123.4, 123.0, 121.7, 121.6, 121.5 (2), 121.3, 121.2, 121.1 (2), 121.0, 120.9, 120.8, 119.4 (3), 119.3 (2), 119.2 (2), 119.1 (2), 119.0, 118.9, 118.6, 118.5, 118.4 (2), 118.3 (2), 118.2 (2), 101.9, 99.7, 98.0, 97.0 (2), 82.2, 80.0, 78.2, 77.4, 76.5, 75.8, 75.1, 75.0, 74.8, 74.6, 74.5, 74.4 (2), 74.3, 74.1 (2), 73.6, 73.2, 73.0, 72.6, 72.0, 71.5, 70.8, 70.4, 69.4, 69.3, 69.2, 68.7, 68.0, 67.5, 66.4, 56.5, 55.7; HRMS (ESI) calc for C₁₅₁H₁₃₆N₂O₃₁F₆Na (M+Na) 2609.8929, found 2609.8945.

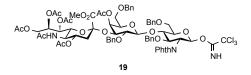


Benzyl [3,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$]-[3,4,6-tri-*O*-Benzyl- α -D-mannopyranosyl- $(1\rightarrow 6)$]-2,4-di-*O*-benzyl- β -D-mannopyranosyl- $(1\rightarrow 4)$ -3,6-di-*O*-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl- $(1\rightarrow 4)$ -3,6-di-*O*-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (14). A solution of 13 (0.748 g, 0.289 mmol) in anh. CH₂Cl₂ (4.0 mL) and MeOH (6.0 mL) was treated with NaOMe

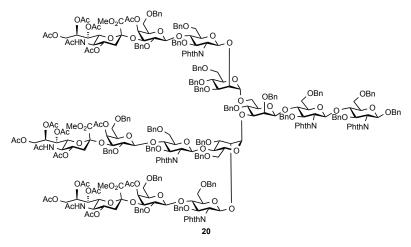
(0.867 mL, 0.433 mmol, 0.5 M in MeOH) and stirred at rt for 1 h 30 min. The mixture was guenched with DOWEX-50WX8, filtered, and concentrated. Purification by chrom. on SiO₂ (PhMe:EtOAc, 3:1) afforded **14** (0.520 g, 83%) as a clear oil: $[\alpha]_D^{24}$ +11.6 (c 1.0, CHCl₃); IR (ATR) 3475, 3031, 2917, 2873, 1777, 1718, 1496, 1452, 1386, 1075 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.82-7.80 (m, 1 H), 7.74-7.71 (m, 2 H), 7.678-7.59 (m, 3 H), 7.48 (d, J = 7.5 Hz, 1 H), 7.35-7.18 (m, 40 H), 7.14-7.13 (m, 2 H), 7.08-7.7.06 (m, 1 H), 7.03-6.97 (m, 6 H), 6.89-6.87 (d, J = 6.9 Hz, 1 H), 6.76-6.72 (m, 6 H), 5.29-5.27 (m, 1 H), 5.17 (s, 1 H), 5.07 (d, J = 11.9 Hz, 1 H), 5.02-4.96 (m, 3 H), 4.85 (t, J = 13.4 Hz, 1 H), 4.77 (d, J = 13.4 Hz, 1 H), 4.78 (d, J = 13.4 Hz, 1 Hz, 1 H), 4.78 (d, J = 13.4 Hz, 1 Hz 10.9 Hz, 1 H), 4.72 (d, J = 12.4 Hz, 1 H), 4.67-4.63 (m, 4 H), 4.61-4.58 (m, 1 H), 4.56-4.49 (m, 8 H), 4.46 (d, J = 6.7 Hz, 1 H), 4.43-4.33 (m, 5 H), 4.22-4.19 (m, 4 H), 4.16-4.14 (m, 1 H), 4.12-4.09 (m, 1 H), 3.97-3.89 (m, 6 H), 3.85 (dd, J = 11.8, 3.3 Hz, 1 H), 3.82-3.71 (m, 7 H), 3.65-3.52 (m, 5 H), 3.47-3.43 (m, 2 H), 3.33-3.32 (m, 1 H), 3.22-3.20 (m, 2 H), 2.41 (s, 1 H), 2.29 (s, 1 H), 2.09 (s, 1 H); ¹³C NMR (150 MHz, CDCl₃) & 167.6, 139.1, 138.9, 138.6, 138.4, 138.3, 138.0 (2), 137.9, 137.8, 137.7, 137.2, 128.6 (3), 128.5, 128.4, 128.3, 128.2 (4), 128.1, 128.0, 127.9 (2), 127.8 (5), 127.7, 127.6 (2), 127.5 (2), 127.4 (3), 127.3 (2), 127.2, 126.8 (2), 101.6 (2), 99.8, 97.0, 81.7, 79.6, 79.3, 79.2, 78.5, 76.6, 75.9, 75.0, 74.8 (2), 74.7, 74.5, 74.4, 74.3, 74.1, 73.7, 73.3, 73.1, 72.7, 72.1, 71.5, 71.4, 71.2, 70.5, 70.4, 68.8, 68.1, 68.0, 67.7, 56.5, 55.7; HRMS (ESI) calc for C₁₃₀H₁₃₀N₂O₂₈Na (M+Na) 2189.8708, found 2189.8740.



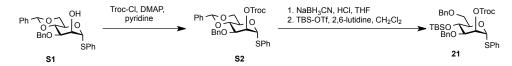
Methyl 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-D-glycero-β-D-galacto-non-2ulopyranosylate-(2→3)-2,6-di-*O*-benzyl-β-D-galactopyranosyl-(1→4)-3,6-di-*O*-benzyl-2-deoxy-2phthalimido-β-D-glucopyranosyl fluoride (16). A solution of 15 (0.659 g, 0.474 mmol) in anh. CH₂Cl₂ (2.90 mL) was cooled to 0 °C, treated with NBS (0.127g, 0.565 mmol) and HF/pyridine (0.173 mL, 70% HF/pyridine). After 20 min this mixture was poured into water, extracted (3x) with EtOAc and the combined organic layers were washed with water, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (PhMe:Acetone, 1:1) afforded 16 (0.582 g, 91%, 5:1 mixture of anomers) as a white foam: $[\alpha]_D^{24}$ +16.1 (c 1.0, CHCl₃); IR (ATR) 2873, 1745, 1718, 1387, 1370, 1225, 1121, 1075 cm⁻¹; ¹H NMR (600 MHz, CD₃CN) δ (major anomer) 7.84-7.80 (m, 5 H), 7.53 (d, *J* = 7.4 Hz, 2 H), 7.46-7.42 (m, 2 H), 7.42-7.27 (m, 9 H), 7.02-6.97 (m, 3 H), 6.93 (q, *J* = 7.3 Hz, 3 H), 6.13 (d, *J* = 9.8 Hz, 1 H), 5.89 (dd, *J* = 54.1, 7.9 Hz, 1 H), 5.57 (ddd, *J* = 8.3, 5.4, 2.9 Hz, 1 H), 5.32 (dd, *J* = 8.3, 2.3 Hz, 1 H), 5.17 (d, *J* = 3.2 Hz, 1 H), 4.97 (d, *J* = 12.1 Hz, 1 H), 4.95-4.89 (m, 1 H), 4.77 (d, *J* = 11.9 Hz, 1 H), 4.73 (d, *J* = 7.6 Hz, 1 H), 4.71-4.56 (m, 3 H), 4.55-4.48 (m, 2 H), 4.43 (d, *J* = 11.6 Hz, 1 H), 4.38 (d, *J* = 11.8 Hz, 1 H), 4.33 (dd, *J* = 12.5, 2.9 Hz, 1 H), 4.27 (dd, *J* = 10.8, 8.8 Hz, 1 H), 4.17-4.04 (m, 4 H), 3.88-3.86 (m, 2 H), 3.83 (s, 3 H), 3.80-3.76 (m, 2 H), 3.70-3.66 (m, 1 H), 3.64-3.57 (m, 1 H), 3.53-3.48 (m, 1 H), 3.43 (d, J = 6.3 Hz, 1 H), 2.58 (dd, J = 12.5, 4.7 Hz, 1 H), 2.07 (s, 3 H), 1.97 (s, 3 H), 1.96 (s, 3 H), 1.95 (s, 3 H), 1.91 (s, 3 H), 1.84 (dd, J = 11.1, 8.8 Hz, 1 H), 1.79 (s, 3 H); ¹³C NMR (150 MHz, CD₃CN) δ (major anomer) 178.0 170.0, 169.6, 169.5, 169.4, 167.8, 167.5, 139.1, 138.2, 138.1, 134.2, 131.0, 129.2, 128.1, 128.0, 127.9 (2), 127.7 (3), 127.6 (2), 127.4, 127.3 (2), 127.2 (2), 127.1 (2), 127.0 (2), 123.0, 105.4, 104.0, 101.6, 97.3, 78.7, 75.8, 73.8, 73.0, 72.5, 72.3, 71.6, 69.2, 68.8, 68.2, 67.8, 67.4, 67.1, 61.7, 52.3, 48.1, 36.7, 21.9, 20.2, 19.8 (2), 19.7, 19.5; HRMS (ESI) calc for C₇₀H₇₇N₂O₂₄FNa (M+Na) 1371.4748, found 1371.4799.



Methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-β-D-galacto-non-2ulopyranosylate- $(2\rightarrow 3)$ -2,6-di-O-benzyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -((2-trimethylsilyl)ethyl)-3,6di-O-benzyl-2-deoxy-2-phthalimido-B-D-glucopyranoside (17). A mixture of 15 (0.260 g, 0.186 mmol) and 2-(trimethylsilyl)ethanol (0.054 mL, 0.374 mmol) was dissolved in anhydrous CH₂Cl₂ (3.72 mL) and 4Å MS (0.10 g) were added. After 1 h at rt, this mixture was cooled to -50 °C, NIS (0.0631 g, 0.280 mmol) was added, followed by AgOTf (0.0238 g, 0.0925 mmol). The reaction mixture was allowed to warm up to -25 °C, stirred at this temp. for 2 h, quenched with Et₃N, warmed up to rt, filtered through a pad of Celite, washed with sat. Na₂S₂O₃, water, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (PhMe:EtOAc, 1:2.5) afforded **17** (0.253 g, 94%) as an off-white foam: $[\alpha]_D^{24}$ +8.7 (c 1.0, CHCl₃); IR (ATR) 2951, 2860, 1743, 1716, 1385, 1365, 1226 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.95 (br s, 1 H), 7.84 (br s, 3 H), 7.64 (d, J = 7.4 Hz, 2 H), 7.58-7.52 (m, 3 H), 7.51-7.38 (m, 10 H), 7.16 (dd, J = 7.1, 1.5 Hz, 2 H), 7.09-7.01 (m, 3 H), 5.76 (ddd, J = 10.9, 5.2, 2.6 Hz, 1 H), 5.57-5.48 (m, 1 H), 5.29 (d, J = 10.2, Hz, 1 H), 5.26 (d, J = 11.3 Hz, 1 H), 5.21 (d, J = 3.4 Hz, 1 H), 5.14 (d, J = 12.4 Hz, 1 H), 5.09 (ddd, J = 11.9, 10.6, 4.7 Hz, 1 H), 5.02 (d, J = 12.1 Hz, 1 H), 491 (br s, 1 H), 4.89 (d, J = 3.4 Hz, 1 H),4.78-4.73 (m, 1 H), 4.69 (dd, J = 9.5, 3.4 Hz, 2 H), 4.59 (d, J = 11.8 Hz, 1 H), 4.49 (dd, J = 12.7, 2.6 Hz, 1 H), 4.46-4.42 (m, 2 H), 4.36-4.33 (m, 1 H), 4.29 (d, *J* = 10.9 Hz, 1 H), 4.24-4.19 (m, 2 H), 4.07-4.03 (m, 1 H), 3.99 (s, 3 H), 3.98-3.96 (m, 1 H), 3.94-3.88 (m, 3 H), 3.69-3.66 (m, 2 H), 3.65-3.62 (m, 1 H), 3.62-3.58 (m, 1 H), 3.52 (dd, J = 10.0, 5.8 Hz, 1 H), 3.42 (dd, J = 10.0, 7.0 Hz, 1 H), 2.76 (dd, J = 12.5, 4.6 Hz, 1 H), 2.25 (s, 3 H), 2.19 (t, J = 2.0 Hz, 1 H), 2.18 (s, 3 H), 2.14 (s, 3 H), 2.12 (s, 3 H), 2.03 (s, 3 H), 2.00 (s, 3 H), 0.97-0.92 (m, 1 H), 0.90-0.85 (m, 1 H), 0.00 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 170.5, 170.3, 169.9, 169.8, 167.9, 139.2, 138.9, 138.6, 138.2, 128.3 (3), 128.2, 128.1 (2), 127.8, 127.7, 127.6 (3), 127.4 (2), 127.3 (2), 127.2 (2), 126.9, 102.2, 97.6, 97.3, 79.3, 77.6, 75.1, 75.0, 73.9,

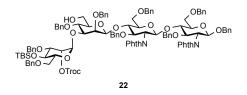

73.6, 73.2, 72.8, 72.3, 71.6, 69.5, 68.8, 68.5, 68.3, 68.0, 67.1, 66.5, 62.0, 55.7, 53.0, 49.2, 37.5, 23.2, 21.2, 20.8, 20.7, 20.6, 20.5, 17.7, -1.6; IR (ATR); HRMS (ESI) calc for C₇₅H₉₀N₂O₂₅SiNa (M+Na) 1469.5500, found 1469.5471.

Methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-β-D-galacto-non-2ulopyranosylate- $(2\rightarrow 3)$ -2,6-di-O-benzyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2**phthalimido-β-D-glucopyranoside (18).** A solution of 17 (0.200 g, 0.138 mmol) in CH₂Cl₂ (1.50 mL) was cooled to 0 °C, treated with TFA (0.420 mL) and stirred at this temp. for 5 h. The reaction mixture was concentrated and purification by chrom. on SiO₂ (PhMe:EtOAc, 1:2.5) afforded 18 (0.125 g, 67%, 7.7:1 mixture of anomers) as a white foam: $[\alpha]_{D}^{24}$ +15.0 (c 1.0, CHCl₃), IR (ATR) 3388, 2873, 1743.3, 1713, 1369, 1222 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, J = 7.4 Hz, 2 H), 7.50 (d, J = 7.4 Hz, 2 H), 7.40-7.36 (m, 5 H), 7.30-7.20 (m, 7 H), 7.1407.09 (m, 2 H), 6.87-6.74 (m, 6 H), 5.98-5.94 (m, 1 H), 5.6405.58 (m, 1 H), 5.50 (dd, J = 8.4, 2.6 Hz, 1 H), 5.46 (d, J = 3.3 Hz, 1 H), 5.24 (d, J = 11.9 Hz, 1 H), 5.12 (d, J = 7.6 Hz, 1 H), 5.03 (d, J = 12.4 Hz, 1 H), 5.00-4.94 (m, 2 H), 4.88-4.86 (m, 1 H), 4.78-4.72 (m, 3 H), 4.65-4.54 (m, 3 H), 4.47-4.42 (m, 2 H), 4.41-4.36 (m, 1 H), 4.35-4.31 (m, 1 H), 4.23 (d, J = 12.0 H)Hz, 1 H), 4.21 (d, J = 10.4 Hz, 1 H), 4.11 (t, J = 6.6 Hz, 1 H), 4.00 (dd, J = 10.8, 4.4 Hz, 1 H), 3.91 (d, J = 10.4 Hz, 1 H), 4.01 (d, J = 10.4 Hz, 1 H), 4.11 (t, J = 6.6 Hz, 1 H), 4.00 (dd, J = 10.8, 4.4 Hz, 1 H), 3.91 (d, J = 10.4 Hz, 1 H), 4.11 (t, J = 6.6 Hz, 1 H), 4.01 (d, J = 10.8, 4.4 Hz, 1 H), 4.11 (t, J = 6.6 Hz, 1 H), 4.10 (t, J = 10.8, 4.4 Hz, 1 H), 3.91 (t, J = 10.8, 4.4 Hz, 1 H), 4.11 (t, J = 6.6 Hz, 1 H) 9.6 Hz, 1 H), 3.85-3.81 (m, 1 H), 3.79 (s, 3 H), 3.70-3.63 (m, 2 H), 3.42-3.27 (m, 2 H), 2.84 (dd, J = 12.4, 4.6 Hz, 1 H), 2.09 (s, 3 H), 1.92 (t, J = 5.0 Hz, 1 H), 1.90 (s, 3 H), 1.78 (s, 3 H), 1.78 (s, 3 H), 1.68 (s H), 1.65 (s, 3 H), 1.64 (s, 3 H); ¹³C NMR (150 MHz, C₆D₆) δ 170.3 (2), 170.0, 169.9, 169.8, 168.9, 139.8 (2), 139.3, 139.0, 138.9, 133.4, 132.2, 130.1, 129.2, 128.8, 128.5 (2), 127.7, 127.2, 127.1, 123.2, 103.0, 97.8, 93.6, 80.3, 78.2, 77.8, 75.9, 75.8, 74.4, 74.1, 73.4, 72.8, 72.2, 69.7, 69.3, 69.2, 68.9, 68.2, 67.2, 62.6, 58.2, 53.1, 49.0, 38.4, 23.1, 21.3, 20.8, 20.5, 20.4 (2); HRMS (ESI) calc for C₇₀H₇₈N₂O₂₅Na (M+Na) 1369.4791, found 1369.4839.


Methyl 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-D-glycero-β-D-galacto-non-2ulopyranosylate- $(2\rightarrow 3)$ -2,6-di-*O*-benzyl-β-D-galactopyranosyl- $(1\rightarrow 4)$ -3,6-di-*O*-benzyl-2-deoxy-2phthalimido-β-D-glucopyranosyl trichloroacetimidate (19). A solution of 18 (0.125 g, 0.0927 mmol) in anh. CH₂Cl₂ (1.0 mL) was cooled to 0 °C and treated with CCl₃CN (0.046 mL, 0.464 mmol) and DBU (0.0139 mL, 0.0927 mmol). After 2 h at 0 °C, the volatiles were removed *in vacuo* and the residual material was purified by chrom. on SiO₂ (PhMe:Acetone, 1:1) to afford crude **19** (0.120 g, 87%) as a light-yellow oil. This material was taken immediately to the next step. ¹H NMR (600 MHz, CDCl₃) δ (representative signals) 5.86-5.84 (m, 1 H), 3.68 (s, 3 H), 3.56 (dd, *J* = 10.7, 2.6 Hz, 1 H), 2.73 (dd, *J* = 12.5, 4.7 Hz, 1 H); ¹³C NMR (150 MHz, CDCl₃) δ (representative signals) 170.2, 170.0 (2), 169.9 (2), 169.2, 168.6, 161.0, 102.7, 97.5, 94.6; HRMS (ESI) calc for C₇₂H₇₈N₃O₂₅Cl₃Na (M+Na) 1512.3888, found 1512.3929.

Benzyl [2,4-bis[methyl [5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-β-D-galacto-non-2-ulopyranosylate]- $(2\rightarrow 3)$ -2,6-di-O-benzyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2phthalimido- β -D-glucopyranosyl]]-3,6-di-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$]-[2-[methyl] [5acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-D-glycero- β -D-galacto-non-2-ulopyranosylate]-(2 \rightarrow 3)-2,6-di-O-benzyl-β-D-galactopyranosyl-(1→4)]-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-Dglucopyranosyl]-3,4,6-tri-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 6)]-2,4-di-O-benzyl- β -Dmannopyranosyl- $(1 \rightarrow 4)$ -3,6-di-*O*-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (20). Table 1, entry 4. A mixture of 14 (0.0278 g, 0.0128 mmol) and 15 (0.214 g, 0.154 mmol) was dried overnight over P₂O₅ and dissolved in anh. CH₂Cl₂ (0.32 mL), freshly activated 3Å MS (50 mg) were added. After 1 h at rt, this mixture was cooled to -20 °C, NIS (0.0432 g, 0.0192 mmol) was added, followed by AgOTf (9.6 mg, 0.0375 mmol). The reaction mixture was stirred at -20 °C for 24 h, quenched at this temp. with Et₃N, filtered through a pad of Celite, washed with sat. $Na_2S_2O_3$, water brine, dried (MgSO₄), and concentrated. Repeated purification by gravity filtration on LH-20 (CH₂Cl₂:MeOH, 1:1), chromatography on SiO₂ (PhMe:MeCN, 1:2) and BioGel S-X1 (PhMe:Acetone 1:1) and afforded **20** (16.9 mg, 21%) as a white powder.

Synthesis from 27. A mixture of acceptor 27 (0.0287 g, 0.00821 mmol) and donor 15 (0.114 g, 0.0821 mmol) was azeotropically dried with PhMe (3 x 2 mL) and then on high vacuum for 3 h. This mixture was dissolved in anh CH₂Cl₂ (0.21 mL), freshly activated 3Å MS (0.10 g) were added and after 1 h at rt, this mixture was cooled to -20 °C, NIS (0.0369 g, 0.164 mmol) was added, followed by AgOTf (2.1 mg). After 22 h, additional portion of AgOTf (5.0 mg) was added and the mixture was stirred at -20 °C for total 36 h. The reaction mixture was quenched with Et₃N, filtered though a pad of Celite, washed with sat. Na₂S₂O₃, sat. NaHCO₃, water, brine, dried (MgSO₄), and concentrated. Purification by chrom on SiO₂ (PhMe:MeCN, 1:2) and LH-20 (MeOH:CH₂Cl₂, 1:1) afforded **20** (0.0251 g, 50%) as a clear oil: $[\alpha]_{D}^{24}$ -0.10 (c 1.0, CHCl₃); IR (ATR) 2925, 1743, 1713, 1453, 1388, 1369, 1208 cm⁻¹; ¹H NMR (600 MHz. C_6D_6) δ 7.64 (ddq, J = 8.0, 5.8, 2.6 Hz, 4 H), 7.61-7.52 (m, 7 H), 7.52-7.27 (m, 37 H), 7.23 (q, J = 7.4 Hz, 10 H), 7.20-7.13 (m, 48 H), 7.10 (dd, J = 12.4, 5.7 Hz, 9 H), 7.03 (d, J = 7.2 Hz, 2 H), 7.02-6.96 (m, 4 H), 6.93 (dt, J = 5.7, 2.8 Hz, 2 H), 6.91-6.83 (m, 8 H), 6.83-6.69 (m, 11 H), 6.68-6.66 (m, 1 H), 5.95 (d, J = 5.7, 2.8 Hz, 2 H), 6.91-6.83 (m, 8 H), 6.83-6.69 (m, 11 H), 5.68-6.66 (m, 1 H), 5.95 (d, J = 5.7, 2.8 Hz, 2 H), 6.91-6.83 (m, 8 H), 6.83-6.69 (m, 11 H), 5.95 (d, J = 5.7, 2.8 Hz, 2 H), 6.91-6.83 (m, 8 H), 6.83-6.69 (m, 11 H), 5.95 (d, J = 5.7, 2.8 Hz, 2 H), 6.91-6.83 (m, 8 H), 6.83-6.69 (m, 11 H), 5.95 (m, 5.6 Hz, 3 H), 5.88-5.79 (m, 1 H), 5.76-5.74 (m, 2 H), 5.58-5.55 (m, 3 H), 5.54-5.41 (m, 6 H), 5.30-5.11 (m, 8 H), 5.08 (dd, J = 9.2, 5.9 Hz, 3 H), 5.05-4.98 (m, 3 H), 4.90-4.97 (m, 10 H), 4.84-4.56 (m, 25 H), 4.56-4.50 (m, 5 H), 4.46 (dd, J = 11.9, 7.4 Hz, 5 H), 4.39-4.33 (m, 8 H), 4.33-4.24 (m, 10 H), 4.14-4.00 (m, 10 H), 3.97-3.89 (m, 4 H), 3.89-3.82 (m, 6 H), 3.79 (s, 6 H), 3.77 (s, 3 H), 3.73-3.63 (m, 5 H), 3.58-3.41 (m, 10 H), 3.41-3.22 (m, 12 H), 3.22-3.04 (m, 5 H), 2.99-2.88 (m, 4 H), 2.87-2.70 (m, 3 H), 2.11 (s, 6 H), 2.08 (s, 6 H), 1.98-1.93 (m, 6 H), 1.93-1.87 (m, 6 H), 1.83-1.80 (m, 3 H), 1.80 (s, 3 H), 1.78 (s, 3 H), 1.75-1.70 (m, 1 H), 1.69 (s, 3 H), 1.68 (s, 3 H), 1.65 (s, 3 H), 1.63 (s, 6 H), 1.62 (s, 6 H); ¹³C NMR (150 MHz, C₆D₆) & 170.71, 170.69, 170.58, 170.56, 170.44, 170.41, 170.39, 170.37, 170.36, 170.31, 170.28, 170.25, 170.23, 170.20, 170.18, 170.16, 170.14, 170.12, 170.08, 170.06, 170.04, 170.01, 169.97, 169.95, 169.93, 169.91, 169.89, 169.83, 169.82, 169.78, 169.74, 169.69, 169.54, 169.50, 169.48, 169.45, 169.43, 169.40, 169.12, 169.09, 169.06, 168.99, 168.98, 168.96, 168.93, 168.90, 168.88, 168.86, 168.83, 168.81, 168.77, 168.76, 168.66, 168.64, 168.31, 168.29, 168.27, 168.25, 167.85, 167.84, 167.82, 167.80, 167.77, 167.74, 167.72, 167.69, 167.64, 167.62, 167.60, 167.58, 167.55, 167.52, 167.49, 167.48, 166.78, 139.89, 139.84, 139.79, 139.76, 139.74, 139.70, 139.68, 139.67, 139.63, 139.58, 139.57, 139.54, 139.53, 139.51, 139.50, 139.49, 139.47, 139.43, 139.39, 139.37, 139.35, 139.32, 139.30, 139.25, 139.22, 139.19, 139.16, 139.14, 139.10, 139.07, 139.05, 139.02, 138.99, 138.98, 138.97, 138.91, 138.85, 138.82, 138.80, 138.78, 138.70, 138.68, 138.05, 138.03, 138.02, 133.51, 133.49, 133.45, 133.43, 133.39, 133.36, 133.34, 133.33, 133.31, 133.28, 133.26, 133.25, 133.24, 133.22, 133.21, 133.18, 133.13, 133.10, 133.08, 132.35, 132.30, 132.27, 132.22, 132.21, 132.19, 132.18, 132.15, 130.77, 130.75, 130.74, 130.72, 130.21, 130.14, 130.13, 130.11, 130.09, 129.31, 129.29, 129.27, 129.26, 129.20, 129.18, 129.16, 129.14, 129.05, 129.01, 128.84, 128.77, 128.71, 128.68, 128.65, 128.62, 128.60, 128.57, 128.53, 128.52, 128.50, 128.49, 128.45, 128.43, 128.40, 128.28, 128.26, 128.10, 128.07, 128.06, 127.94, 127.90, 127.87, 127.74, 127.70, 127.67,

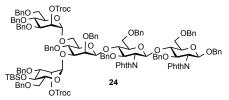

127.65, 127.62, 127.61, 127.59, 127.57, 127.54, 127.50, 127.49, 127.47, 127.44, 127.41, 127.39, 127.38, 127.34, 127.32, 127.28, 127.26, 127.20, 127.18, 127.15, 127.09, 127.07, 127.06, 127.03, 127.00, 126.96, 126.93, 126.91, 126.86, 126.84, 126.83, 126.81, 126.79, 126.78, 126.76, 126.73, 126.69, 126.69, 126.63, 126.61, 126.59, 126.56, 126.53, 126.50, 126.48, 126.46, 126.44, 126.43, 126.41, 126.40, 126.36, 126.34, 126.31, 126.30, 126.28, 126.26, 103.30, 102.81, 102.78, 101.75, 101.70, 100.27, 99.95, 99.87, 99.54, 99.25, 98.37, 97.88, 97.77, 97.66, 80.09, 79.78, 77.87, 77.45, 77.44, 77.42, 77.40, 77.37, 77.35, 77.33, 77.31, 77.29, 77.27, 77.24, 77.21, 77.18, 77.17, 77.15, 77.13, 77.11, 76.50, 76.01, 75.44, 75.39, 75.35, 75.31, 75.26, 75.18, 75.14, 75.13, 75.12, 74.92, 74.90, 74.87, 74.85, 74.83, 74.77, 74.73, 74.70, 74.66, 74.61, 74.60, 74.30, 74.28, 74.13, 74.10, 74.06, 74.02, 73.92, 73.87, 73.84, 73.83, 73.82, 73.80, 73.76, 73.75, 73.63, 73.62, 73.60, 73.59, 73.50, 73.45, 73.40, 73.34, 73.31, 73.29, 73.25, 73.23, 73.18, 73.14, 73.13, 73.08, 73.06, 73.03, 72.97, 72.94, 72.92, 72.90, 72.82, 72.80, 72.79, 72.74, 72.72, 72.70, 72.68, 72.62, 72.60, 72.58, 72.51, 72.48, 72.01, 71.99, 71.97, 71.92, 70.29, 70.27, 69.66, 69.64, 69.62, 69.59, 69.57, 69.55, 69.53, 69.51, 69.49, 69.21, 69.12, 69.09, 69.07, 69.04, 68.72, 68.39, 68.06, 67.98, 67.96, 67.28, 67.27, 67.25, 67.14, 67.12, 67.11, 67.07, 66.10, 66.09, 65.78, 65.73, 62.59, 62.57, 62.54, 62.52, 62.51, 57.25, 57.23, 56.50, 56.48, 56.35, 53.03, 53.02, 52.99, 52.97, 52.95, 48.94, 48.94, 48.88, 48.85, 48.84, 48.81, 48.79, 39.11, 38.65, 38.39, 38.37, 38.33, 38.30, 38.27, 38.24, 38.20, 36.88, 36.78, 36.37, 35.57, 34.62, 33.36, 32.76, 32.29, 32.27, 32.25, 32.23, 32.20, 31.71, 31.31, 30.74, 30.28, 30.19, 30.15, 30.13, 30.09, 30.04, 30.03, 30.01, 29.99, 29.95, 29.93, 29.92, 29.89, 29.88, 29.85, 29.84, 29.78, 29.76, 29.75, 29.74, 29.72, 29.70, 29.68, 29.66, 29.62, 29.59, 29.58, 29.56, 29.54, 29.52, 29.49, 29.46, 29.44, 29.43, 29.40, 29.39, 29.37, 29.35, 29.32, 29.31, 29.29, 29.23, 29.21, 28.96, 28.83, 28.82, 27.67, 27.64, 27.63, 27.61, 27.59, 27.57, 27.55, 27.10, 27.09, 27.06, 26.61, 26.48, 25.90, 25.89, 25.63, 24.07, 23.35, 23.30, 23.08, 23.05, 23.02, 22.97, 22.95, 22.92, 22.90, 22.83, 22.82, 22.66, 22.63, 21.32, 21.29, 21.26, 21.23, 21.21, 20.84, 20.82, 20.81, 20.77, 20.74, 20.72, 20.57, 20.54, 20.52, 20.50, 20.47, 20.42, 20.41, 20.39, 20.34, 20.33, 20.31, 20.27, 20.25, 20.23, 20.20, 19.62, 19.31; MS-ESI m/z calc for $C_{340}H_{358}N_8O_{100}Na_2 \ 3099.15 \ (M+2Na)^{2+}, \ C_{340}H_{358}N_8O_{100}Na_3 \ 2073.77 \ (M+3Na)^{3+}, \ found \ 3101.44, \ 2075.35.$

Thiophenyl3-O-benzyl-4,6-O-(R)-benzylidene-2-O-((2,2,2-trichloroethoxy)carbonyl)- α -D-mannopyranoside(S2).A solution of thiophenyl3-O-benzyl-4,6-O-(R)-benzylidene- α -D-mannopyranoside²(S1, 0.727 g, 1.61 mmol) in anh. pyridine (20.0 mL) was treated with Troc-Cl (0.653 mL, 4.83 mmol) and DMAP (0.0780 g, 0.644 mmol) and stirred at rt for 24 h. This mixture was quenchedwith sat. NH4Cl, diluted with EtOAc and the organic layer was washed with water, 10% CuSO4, brine,

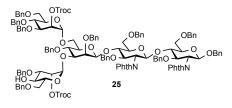
dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 4:1) afforded **S2** (0.806 g, 80%) as a clear oil: $[\alpha]_D^{24}$ +60.4 (c 0.5, CHCl₃), IR (ATR) 2868, 1762, 1379, 1246, 1102 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.44 (m, 2 H), 7.39-7.38 (m, 2 H), 7.34-7.24 (m, 11 H), 5.60 (s, 1 H), 5.50 (s, 1 H), 5.42 (d, *J* = 3.1 Hz, 1 H), 4.74-4.65 (m, 4 H), 4.30 (app. quintet, *J* = 5.0 Hz, 1 H), 4.17 (dd, *J* = 8.6, 4.8 Hz, 1 H), 4.12 (d, *J* = 9.6 Hz, 1 H), 3.98 (dd, *J* = 9.8, 3.2 Hz, 1 H), 3.83 (t, *J* = 10.3 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 155.0, 139.1, 138.7, 133.6, 130.7, 130.5, 129.8, 129.7, 129.3, 129.1, 127.5, 103.1, 88.1, 79.8, 78.0, 75.5, 74.1, 69.7, 66.7; HRMS (ESI) calc for C₂₉H₂₇O₇SCl₃Na (M+Na) 647.0441, found 647.0436.

Thiophenyl 3,6-di-*O*-benzyl-4-*O*-(*t*-butyldimethylsilyl)-2-*O*-((2,2,2-trichloroethoxy)carbonyl)-α-Dmannopyranoside (21). A solution of S2 (0.526 g, 0.840 mmol) in anh. THF (10.0 mL) was cooled to 0 °C, NaBH₃CN (0.265 g, 4.20 mmol) was added, followed by a solution of HCl in Et₂O (4.20 mL, 8.40 mmol, 2.0 M). After 4 h, the mixture was guenched with sat. NaHCO₃, diluted with EtOAc and the organic layer was washed with water, brine, dried (MgSO₄), and concentrated. The crude material was dissolved in anh. CH₂Cl₂ (10.0 mL), 2,6-lutidine (0.0970 mL, 8.40 mmol) was added and the reaction mixture was cooled to 0 °C. TBSOTf (0.578 mL, 2.52 mmol) was introduced via syringe and the mixture was stirred at 0 °C for 3 h, carefully quenched with sat. NaHCO₃, diluted with EtOAc and the organic layer was washed with water (3x), brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 6:1) afforded **21** (0.370 g, 60%) as a clear oil: $[\alpha]_D^{24}$ +66.7 (c 1.0, CHCl₃); IR (ATR) 2856, 1741, 1722, 1362, 1105 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (dd, J = 7.5, 1.4 Hz, 2 H), 7.35-7.30 (m, 8 H), 7.29-7.22 (m, 5 H), 5.58 (d, J = 1.4 Hz, 1 H), 5.40 (dd, J = 2.8, 1.8 Hz, 1 H), 4.74-4.68 (m, 3 H), 4.58 (s, 2 H), 4.56 (d, J = 11.6 Hz, 1 H), 4.35 (ddd, J = 8.7, 6.3, 1.6 Hz, 1 H), 4.00 (t, J = 1.6 Hz, 1 Hz, 1 H), 4.00 (t, J = 1.6 Hz, 1 Hz, 1 H), 4.00 (t, J = 1.6 H 9.3 Hz, 1 H), 3.83 (dd, J = 10.8, 1.9 Hz, 1 H), 3.77 (dd, J = 10.8, 6.4 Hz, 1 H), 3.73 (dd, J = 8.9, 3.0 Hz, 1 H), 0.84 (s, 9 H), 0.02 (s, 3 H), 0.00 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 153.5, 138.3, 137.4, 133.3, 132.3, 129.1, 128.2, 127.9, 127.7 (2), 127.5, 127.4, 94.3, 85.7, 78.5, 76.9, 74.9, 74.1, 73.2, 71.5, 69.4, 68.0, 25.9, 18.1, -3.9, -5.0; HRMS (ESI) calc for C₃₅H₄₃O₇SCl₃SiNa (M+Na) 763.1462, found 763.1458.

 $Benzyl \qquad [3,6-di-O-benzyl-4-O-(t-butyldimethylsilyl)-2-O-((2,2,2-trichloroethoxy)carbonyl)-\alpha-D-mannopyranosyl-(1\rightarrow 3)]-2,4-di-O-benzyl-\beta-D-mannopyranosyl-(1\rightarrow 4)-3,6-di-O-benzyl-2-deoxy-2-$

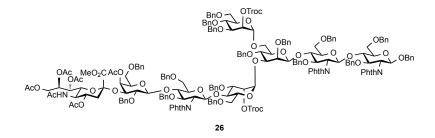

phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-

glucopyranoside (22). A mixture of 21 (0.150 g, 0.203 mmol) and acceptor 8 (0.188 g, 0.135 mmol) was azeotropically dried with PhMe and then on high vacuum for 1 h. This mixture was dissolved in anh. CH₂Cl₂ (2.5 mL), freshly activated 3Å MS (0.30 g) were added and after 1 h, the mixture was cooled to -20 °C, NIS (0.0607 g, 0.270 mmol) was added, followed by a solution of TfOH (0.20 mL, 10% w/v in CH₂Cl₂). The reaction mixture was stirred at -20 °C for 2 h, quenched with Et₃N, filtered, washed with sat. NaHCO₃, sat. Na₂S₂O₃, water, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 2:1) afforded crude tetrasaccharide (0.185 g, 68%). This material was cooled to 0 $^{\circ}$ C, a solution of BH₃ THF (0.91 mL, 0.91 mmol 1.0 M in THF) was added, followed by a solution of *n*-Bu₂BOTf (0.30 mL, 0.30 mmol, 1.0 M in CH₂Cl₂). After 4 h at this temperature, the mixture was quenched with Et₃N, and methanol was added. The volatiles were removed *in vacuo* and the mixture was concentrated from methanol two more times. The crude oil was purified by chrom. on SiO₂ (Hexanes:EtOAc, 3:1 to 2:1 to 1:1) to afford **22** (0.146 g, 53%) as a clear oil: $[\alpha]_D^{24}$ -5.5 (c 1.0, CHCl₃); IR (ATR) 2863, 1775, 1716, 1388 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 7.0 Hz, 1 H), 7.78-7.77 (m, 2 H), 7.74 (br s, 2 H), 7.68 (br s, 2 H), 7.49 (d, J = 7.4, 3 H), 7.42-7.23 (m, 28 H), 7.25-7.23 (m, 2 1 H), 7.10-7.08 (m, 1 H), 7.05-7.00 (m, 5 H), 6.98-6.95 (m, 6 H), 6.79-6.76 (m, 3 H), 5.34 (d, J = 8.2 Hz, 1 H), 5.39-5.25 (m, 2 H), 5.10 (m, J = 12.0 Hz, 1 H), 5.03 (d, J = 12.2 Hz, 1 H), 5.00 (d, J = 8.3 Hz, 1 H), 4.89 (d, J = 12.0, 8.3 Hz, 2 H), 4.73 (dd, J = 12.4, 7.3 Hz, 2 H), 4.71 (d, J = 2.4 Hz, 2 H), 4.69-4.62 (m, 3 H), 4.59-4.51 (m, 5 H), 4.49-4.40 (m, 3 H), 4.49-4.45 (m, 3 H), 4.39-4.32 (m, 1 H), 4.30-4.22 (m, 3 H), 4.20-4.17 (m, 1 H), 4.09 (t, J = 8.8 Hz, 1 H), 4.00 (t, J = 8.2 Hz, 1 H), 3.90 (t, J = 9.0 Hz, 1 H), 3.84 (t, J = 9.6 Hz, 1 H), 3.80-3.77 (m, 2 H), 3.70-3.64 (m, 4 H), 3.61 (d, J = 10.2 Hz, 1 H), 3.51-3.42 (m, 3 H), 3.37 (dd, J = 9.7, 3.1 Hz, 1 H), 3.27 (d, J = 9.8 Hz, 1 H), 3.11 (ddd, J = 7.5, 4.8, 2.5 Hz, 1 H), 0.82 (s, 9 H), 0.00 (s, 6 H); ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 167.6, 153.5, 138.9, 138.6, 138.4, 138.0, 137.8, 137.6, 137.1, 133.4, 131.6, 128.5, 128.4 (2), 128.3 (2), 128.2, 128.1 (2), 128.0 (2), 127.9, 127.8, 127.7 (2), 127.6 (3), 127.5 (2), 127.4 (2), 127.3 (2), 127.0 (2), 126.8, 123.7, 123.1, 100.8, 99.3, 97.1 (2), 94.2, 81.2, 78.4, 78.2, 77.8, 76.9 (2), 76.6, 75.4, 75.0, 74.8 (2), 74.7 (2), 74.5, 74.4, 74.3, 73.9, 73.4 (2), 73.1, 72.7, 71.5, 70.4, 69.7, 68.1, 67.8, 67.4, 61.9, 56.5, 55.7, 25.9, 18.0, -4.0, -5.1; HRMS (ESI) calc for C₁₁₂H₁₁₇N₂O₂₅SiCl₃Na (M+Na) 2045.6678, found 2045.6676.

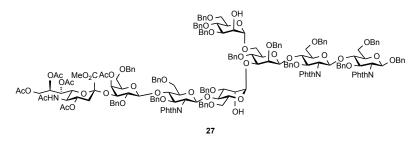


Thioethyl 3,4,6-tri-*O*-benzyl-2-*O*-((2,2,2-trichloroethoxy)carbonyl)- α -D-mannopyranoside (23). A solution of thioethyl 3,4,6-tri-*O*-benzyl- α -D-mannopyranoside² (0.440 g, 0.890 mmol) in anh. CH₂Cl₂

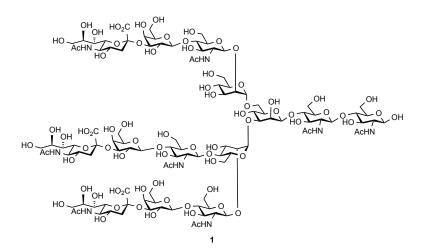
(5.0 mL) was treated with anh. pyridine (0.36 mL) and Troc-Cl (0.37 mL). After 2 h at rt, the mixture was quenched with sat. NH₄Cl, extracted (3 x 20 mL) with EtOAc and the combined organic layers were washed with water, sat. CuSO₄, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 6:1 to 4:1) afforded **23** (0.510 g, 86%) as a clear oil: $[\alpha]_D^{22}$ +56.5 (c 1.0, CHCl₃); IR (ATR) 2953, 2929, 1761, 1247, 1100 cm⁻¹; ¹H NMR (600 MHz, CD₃CN) & 7.34-7.25 (m, 13 H), 7.22-7.20 (m, 2 H), 5.43 (d, *J* = 1.1 Hz, 1 H), 5.23 (dd, *J* = 3.2, 1.6 Hz, 1 H), 4.67 (d, *J* = 11.5 Hz, 1 H), 4.55 (t, *J* = 11.5 Hz, 2 H), 4.52 (d, *J* = 11.0 Hz, 1 H), 4.46 (d, *J* = 11.9 Hz, 1 H), 4.04 (ddd, *J* = 9.8, 4.4, 1.6 Hz, 1 H), 3.85 (dd, *J* = 9.4, 3.3 Hz, 1 H), 3.77 (d, *J* = 9.7 Hz, 1 H), 3.75 (d, *J* = 4.6 Hz, 1 H), 3.73 (d, *J* = 4.5 Hz, 1 H), 3.63 (dd, *J* = 11.0, 1.7 Hz, 1 H), 2.65 (dq, *J* = 13.1, 7.4 Hz, 1 H), 2.58 (dq, *J* = 13.1, 7.4 Hz, 1 H), 1.24 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (150 MHz, CD₃CN) & 154.3, 139.6, 139.4, 138.9, 129.3, 129.2, 129.1, 129.0, 128.8 (2), 128.6, 128.5, 95.4, 82.3, 79.1, 77.6, 76.6, 75.8, 75.3, 73.9, 72.7, 72.5, 69.7, 26.0, 15.2; HRMS (ESI) calc for C₃₂H₃₅O₇SCl₃Na (M+Na) 691.1067, found 691.1055.



Benzvl [3,6-di-O-benzyl-4-O-(t-butyldimethylsilyl)-2-O-((2,2,2-trichloroethoxy)carbonyl)- α -Dmannopyranosyl- $(1 \rightarrow 3)$]-[3,4,6-tri-O-benzyl-2-O-((2,2,2-trichloroethoxy)carbonyl)- α -Dmannopyranosyl- $(1 \rightarrow 6)$]-2,4-di-*O*-benzyl- β -D-mannopyranosyl- $(1 \rightarrow 4)$ -3,6-di-*O*-benzyl-2-deoxy-2phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -Dglucopyranoside (24). A mixture of 23 (0.0965 g, 0.144 mmol) and 21 (0.146 g, 0.0721 mmol) was azeotropically dried with PhMe (3 x 5 mL) and then on high vacuum for 1 h. This mixture was dissolved in anh. CH₂Cl₂ (1.80 mL), freshly activated 3Å MS (0.10 g) were added and after 1 h at rt, the reaction mixture was cooled to -20 °C, NIS (0.0486 g, 0.216 mmol) was added, followed by AgOTf (9.30 mg, 0.0361 mmol). After 3 h at -20 °C, the reaction was quenched with Et₃N, filtered through a pad of Celite, washed with sat. Na₂S₂O₃, sat. NaHCO₃, water, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 3:1 to 2:1) afforded 24 (0.147 g, 78%) as a clear oil: $[\alpha]_D^{22}$ +7.2 (c 1.0, CHCl₃); IR (ATR) 3063, 2864, 1763, 1716, 1389, 1250, 1076 cm⁻¹; ¹H NMR (600 MHz, CD₃CN) & 7.84-7.76 (m, 4 H), 7.69-7.65 (m, 2 H), 7.55-7.53 (m, 2 H), 7.45-7.24 (m, 40 H), 7.21-7.17 (m, 3 H), 7.15-7.11 (m, 1 H), 7.06-7.03 (m, 3 H), 7.01-7.00 (m, 3 H), 6.96-6.92 (m, 4 H), 6.89-6.86 (m, 1 H), 6.84-6.77 (m, 4 H), 6.75-6.73 (m, 1 H), 5.49 (br s, 1 H), 5.35-5.30 (m, 1 H), 5.25-5.17 (m, 2 H), 5.14 (dd, J = 3.1, 1.9 Hz, 1 H), 5.00 (dd, J = 10.3, 8.7 Hz, 1 H), 4.90-4.82 (m, 5 H), 4.80-4.76 (m, 1 H), 4.74-4.69 (m, 2 H), 4.684.63 (m, 3 H), 4.62-4.57 (m, 6 H), 4.54-4.47 (m, 5 H), 4.46-4.39 (m, 5 H), 4.31 (d, J = 11.3 Hz, 1 H), 4.26 (dd, J = 10.6, 8.5 Hz, 1 H), 4.19 (dd, J = 7.4, 1.0 Hz, 1 H), 4.16-4.09 (m, 4 H), 4.07-4.02 (m, 2 H), 3.96-3.91 (m, 2 H), 3.88-3.83 (m, 3 H), 3.80-3.75 (m, 3 H), 3.74-3.70 (m, 4 H), 3.64-3.61 (m, 3 H), 3.56-3.53 (m, 2 H), 3.42 (dd, J = 10.9, 3.8 Hz, 1 H), 3.36-3.34 (m, 1 H), 3.30-3.27 (m, 1 H), 0.84 (s, 9 H), 0.04 (s, 3 H), 0.00 (s, 3 H); ¹³C NMR (150 MHz, CD₃CN) δ 167.3, 152.9, 152.8, 138.3, 138.1, 137.6, 137.0, 133.8, 131.0, 128.1 (2), 128.0 (4), 127.9 (2), 127.8 (2), 127.6 (3), 127.5 (2), 127.4, 127.3 (2), 127.2, 127.1, 127.0, 126.9, 126.8, 122.7, 98.3, 96.9, 94.0 (2), 78.2, 77.7, 76.6, 76.4, 76.3, 76.1, 76.0, 74.4, 74.1, 74.0, 73.9, 73.8, 73.6, 73.3, 73.2, 72.9, 72.7, 72.6, 72.5, 72.4, 72.0, 70.8, 70.7, 70.2, 67.2, 64.6, 55.4, 25.0, 17.4, -4.2; HRMS (ESI) calc for C₁₄₂H₁₄₆N₂O₃₂Cl₆SiNa (M+Na) 2651.7657, found 2651.7622.

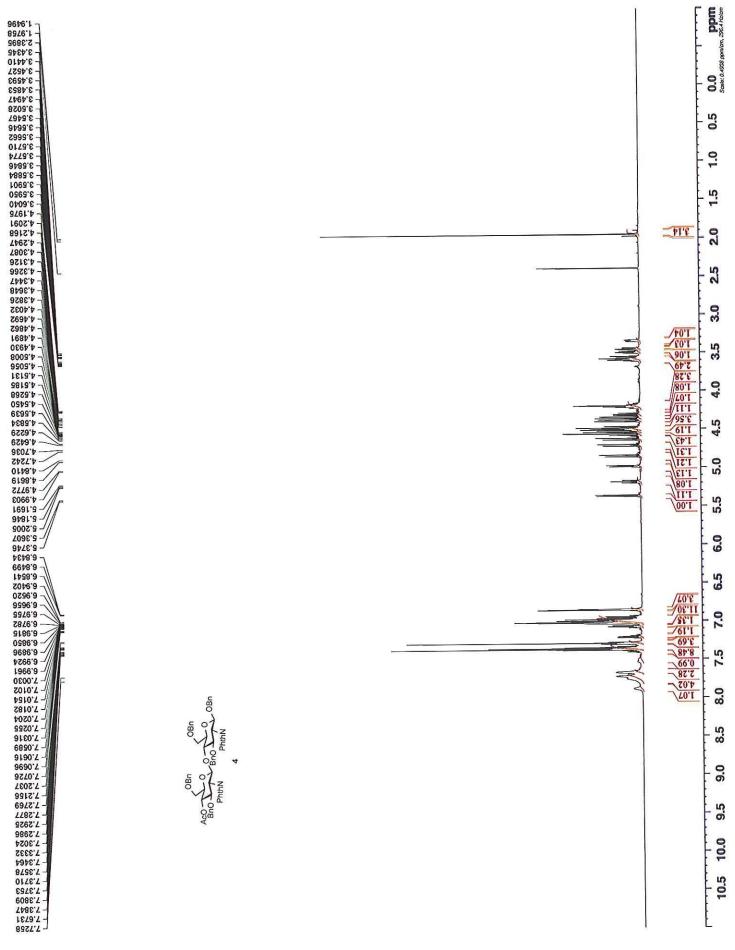


Benzyl [3,6-di-O-benzyl-2-O-((2,2,2-trichloroethoxy)carbonyl)-α-D-mannopyranosyl-(1→3)]-[3,4,6tri-O-benzyl-2-O-((2,2,2-trichloroethoxy)carbonyl)- α -D-mannopyranosyl-(1 \rightarrow 6)]-2,4-di-O-benzyl- β -D-mannopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-**3,6-di-***O*-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (25). A solution of 24 (0.140 g, 0.0531 mmol) in anh. THF (1.0 mL) and pyridine (0.50 mL) was treated with HF/pyridine (0.50 mL, 70% in pyridine) and stirred at rt for 44 h. The reaction mixture was quenched with sat. NaHCO₃, extracted with EtOAc and the combined organic layers were washed with water, sat. CuSO₄, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (Hexanes:EtOAc, 2:1 to 1:1) afforded **25** (0.0776 g, 58%) as a clear oil: [\alpha]_D²² +5.9 (c 1.0, CHCl₃); IR (ATR) 3476, 3030, 2925, 2871, 1763, 1714, 1388, 1250, 1075 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.05 (d, J = 7.1 Hz, 1 H), 7.62 (t, J = 7.0 Hz, 1 H), 7.56-7.51 (m, 4 H), 7.45 (d, J = 6.9 Hz, 1 H), 7.39-7.34 (m, 3 H), 7.25-7.11 (m, 41 H), 7.09-7.05 (m, 2 H), 7.00-6.99 (1 H), 6.97-6.94 (m, 1 H), 6.91-6.83 (m, 5 H), 6.80-6.78 (m, 2 H), 6.73-6.69 (m, 1 H), 6.66-6.56 (m, 4 H), 6.51 (t, J = 7.5 Hz, 1 H), 519 (br s, 1 H), 5.15-5.13 (m, 2 H), 5.07-5.06 (d, J = 1.9 Hz, 1 H), 4.99-4.95 (m, 1 H), 4.88-4.81 (m, 2 H), 4.76-4.67 (m, 4 H), 4.64-4.57 (m, 4 H), 4.54-4.48 (m, 3 H), 4.45-4.30 (m, 12 H), 4.28-4.24 (m, 3 H), 4.21-4.19 (m, 1 H), 4.12-3.96 (m, 6 H), 3.87-3.71 (m, 9 H), 3.61-3.48 (m, 5 H), 3.44-3.40 (m, 2 H), 3.37-3.27 (m, 2 H), 3.19-3.17 (m, 1 H), 3.05 (d, J = 9.5 Hz, 1 H); ¹³C NMR (150 MHz, CD₃CN) & 167.3, 153.0, 139.1, 138.4, 138.3 (2), 138.2, 137.8, 137.0, 133.8, 131.0, 128.2, 128.1, 128.0 (3), 127.9 (3), 127.8, 127.7 (2), 127.6 (4), 127.5 (3), 127.4 (2), 127.3 (2), 127.1 (2), 127.0, 126.9 (2), 126.8 (2), 126.7, 122.7, 99.1, 96.9 (2), 96.3, 93.9, 76.9, 76.3, 76.1 (2), 75.9, 75.6, 75.5, 75.1, 74.4,

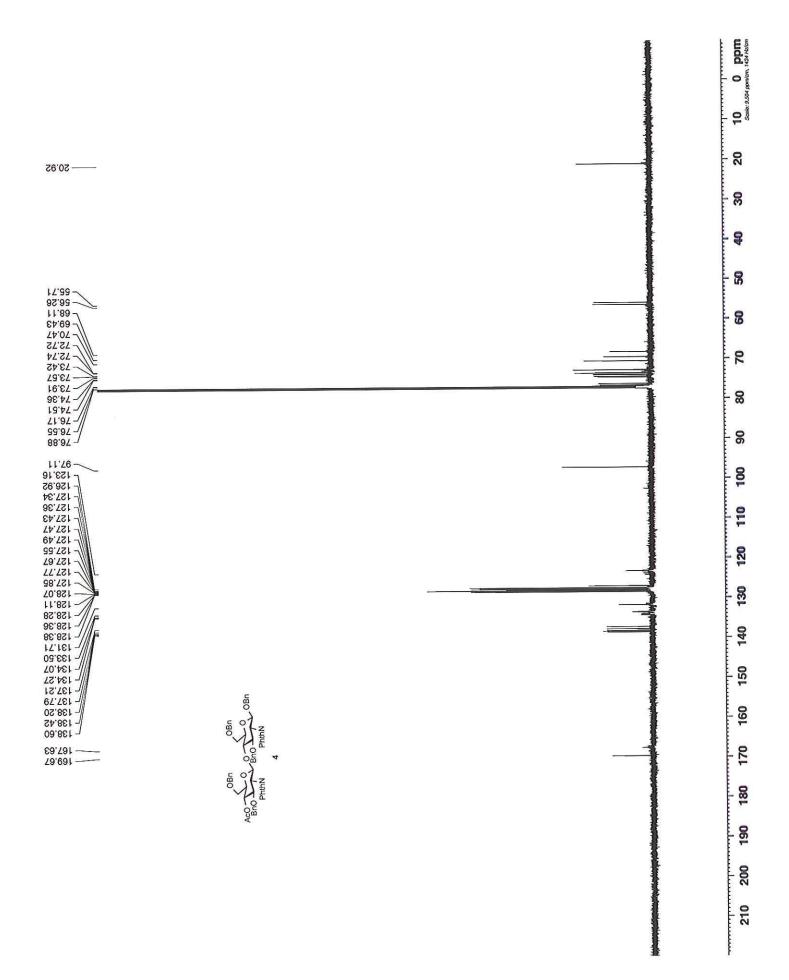

74.3, 74.2, 74.0, 73.9, 73.8, 73.6, 73.3, 73.0, 72.9, 72.8 (2), 72.7, 72.6, 72.5, 72.4, 72.0, 71.6, 71.5, 71.2, 70.8, 70.2, 68.8, 68.3, 67.8, 66.1, 56.1, 55.4; HRMS (ESI) calc for $C_{138}H_{132}N_2O_{32}Cl_6Na$ (M+Na) 2537.6792, found 2537.6879.

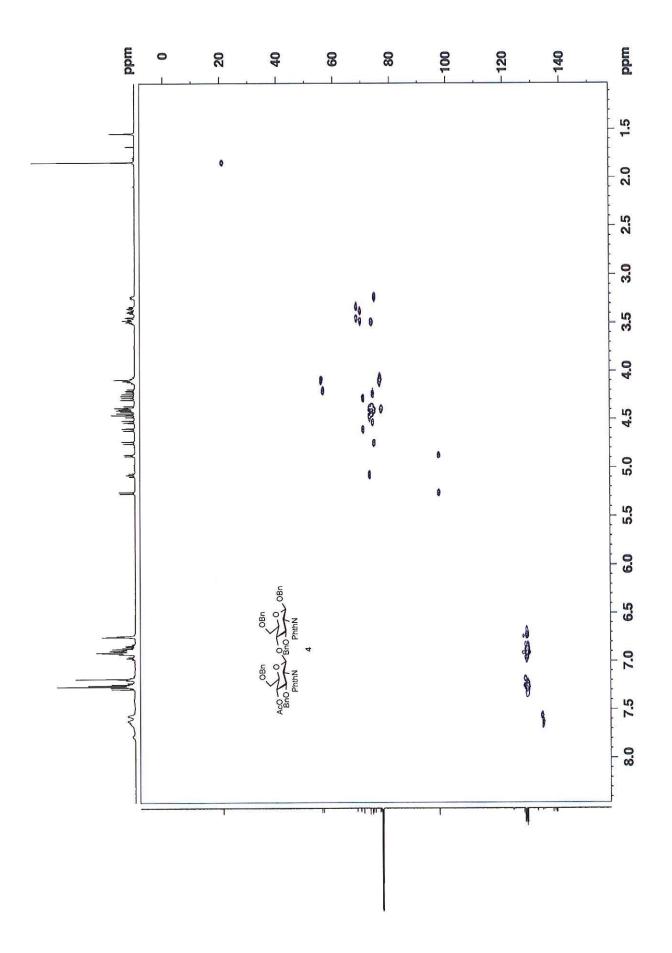
Benzyl [3,6-di-O-benzyl-4-(methyl [5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-β-Dgalacto-non-2-ulopyranosylate]-(2→3)-2,6-di-O-benzyl-β-D-galactopyranosyl-(1→4)-3,6-di-Obenzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-2-O-((2,2,2-trichloroethoxy)carbonyl)-α-Dmannopyranosyl- $(1 \rightarrow 3)$]-[3,4,6-tri-O-benzyl-2-O-((2,2,2-trichloroethoxy)carbonyl)- α -Dmannopyranosyl- $(1 \rightarrow 6)$]-2,4-di-O-benzyl- β -D-mannopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2phthalimido- β -D-glucopyranosyl-(1 \rightarrow 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -Dglucopyranoside (26). A mixture of acceptor 25 (0.0440 g, 0.0175 mmol) and donor 15 (0.122 g, 0.0875 mmol) was azeotropically dried with PhMe (3 x 5 mL) and then on high vacuum for 12 h. This mixture was dissolved in distilled CH₂Cl₂ (0.35 mL), freshly activated 3Å MS (0.10 g) were added and after 1 h at rt, this mixture was cooled to -20 °C, NIS (0.0295 g, 0.131 mmol) was added, followed by AgOTf (0.0225 g, 0.0175 mmol). After 36 h at this temperature, the reaction mixture was quenched with Et₃N, filtered through a pad of Celite, and the combined organic layers were washed with sat. $Na_2S_2O_3$, sat. NaHCO₃, water, brine, dried (MgSO₄), and concentrated. Purification by chrom. on SiO₂ (EtOAc then PhMe:MeCN, 2:1 to 1:1) afforded **26** (0.0402 g, 60%) as a clear oil: $[\alpha]_D^{24} + 10.7$ (c 1.0, CHCl₃); IR (ATR) 2874, 1745, 1715, 1388, 1224, 1040 cm⁻¹; ¹H NMR (600 MHz, CD₃CN) δ 7.85-7.75 (m, 5 H), 7.72 (s, 4 H), 7.64 (s, 3 H), 7.45 (dd, J = 7.5, 5.5 Hz, 2 H), 7.42-7.37 (m, 3 H), 7.37-7.31 (m, 14 H), 7.31-7.24 (m, 23 H), 7.24-7.20 (m, 9 H), 7.20-7.16 (m, 6 H), 7.16-7.08 (m, 6 H), 7.02 (dd, J = 8.3, 7.1 Hz, 2 H), 7.00 - 6.96 (m, 3 H), 6.94-6.87 (m, 5 H), 6.87-6.83 (m, 1 H), 6.83-6.79 (m, 2 H), 6.79-6.77 (m, 1 H), 6.77-6.72 (m, 2 H), 6.70 (dd, J = 8.5, 6.6 Hz, 1 H), 6.08 (d, J = 9.9 Hz, 1 H), 5.51 (ddd, J = 8.2, 5.4, 2.8Hz, 1 H), 5.46 (t, J = 8.7 Hz, 1 H), 5.29 (dd, J = 8.1, 2.1 Hz, 1 H), 5.26 (d, J = 8.4 Hz, 1 H), 5.12 (dd, J = 8.4 Hz, 1 H), 5 8.3, 2.8 Hz, 1 H), 5.10-5.03 (m, 1 H), 4.95-4.91 (m, 2 H), 4.91-4.85 (m, 2 H), 4.85-4.80 (m, 1 H), 4.80-4.77 (m, 1 H), 4.75 (d, J = 9.0 Hz, 1 H), 4.74-4.71 (m, 2 H), 4.69 (ddd, J = 11.3, 5.1, 3.4 Hz, 1 H), 4.64(ddd, J = 11.9, 5.0, 3.7 Hz, 3 H), 4.60 (d, J = 4.2 Hz, 1 H), 4.59-4.53 (m, 3 H), 4.50 (ddd, J = 11.3, 7.0, 3.1 Hz, 4 H), 4.47-4.40 (m, 6 H), 4.40-4.33 (m, 4 H), 4.33-4.27 (m, 2 H), 4.25 (d, J = 12.8 Hz, 1 H), 4.234.19 (m, 1 H), 4.19-4.16 (m, 1 H), 4.16-4.11 (m, 2 H), 4.11-4.08 (m, 1 H), 4.07 (t, J = 5.4 Hz, 2 H), 4.06-3.98 (m, 3 H), 3.97-3.89 (m, 3 H), 3.83 (ddd, J = 12.0, 8.6, 2.9 Hz, 2 H), 3.80 (s, 3 H), 3.78-3.70 (m, 2 H), 3.67 (d, J = 3.4 Hz, 1 H), 3.66-3.58 (m, 4 H), 3.58-3.47 (m, 4 H), 3.47-3.34 (m, 4 H), 3.32 (d, J = 7.8 Hz, 1 H), 3.22-3.15 (m, 1 H), 2.50 (dd, J = 12.5, 4.4 Hz, 1 H), 2.04 (s, 3 H), 1.99 (d, J = 7.4 Hz, 1 H), 1.95 (s, 3 H), 1.93 (s, 3 H), 1.92 (s, 3 H), 1.89 (s, 3 H), 1.78 (s, 3 H); ¹³C NMR (150 MHz, CD₃CN) δ 178.0 (2), 169.6, 169.5, 169.4 (2), 169.2, 167.8, 167.3 (2), 152.8, 139.0, 138.8, 138.4, 138.3 (2), 138.1, 138.0 (2), 137.9, 137.4, 137.0, 133.8, 131.0, 128.6, 128.1 (2), 128.0 (5), 127.9, 127.9 (4), 127.8, 127.8 (3), 127.7, 127.6 (4), 127.5 (3), 127.4 (2), 127.3 (3), 127.2 (3), 127.1 (2), 127.0 (4), 126.9 (2), 126.7, 126.5, 126.4, 124.9, 122.9, 122.7, 101.5, 101.1, 98.3, 98.1, 97.4, 96.9, 96.6, 94.1, 94.0, 93.9, 78.3, 77.9, 76.6, 76.2, 76.1, 75.9, 74.8, 74.3, 74.3, 74.2, 74.0, 74.0, 73.9, 73.8, 73.7, 73.5, 72.9, 72.5 (3), 72.3, 72.0, 71.7, 71.1, 70.7, 70.2, 69.2, 69.0, 68.4, 67.9, 67.1, 66.1, 61.6, 55.4, 52.2, 48.1, 36.5, 29.0, 21.8, 20.2, 20.1, 19.8, 19.8, 19.7, 19.5; MS-ESI m/z calc for $C_{206}H_{208}Cl_6N_4O_{56}Na$ (M+Na)⁺ 3866.16, found 3868.85; $C_{206}H_{208}Cl_6N_4O_{56}Na_2$ (M+2Na)²⁺ calc 1944.58, found 1947.06.

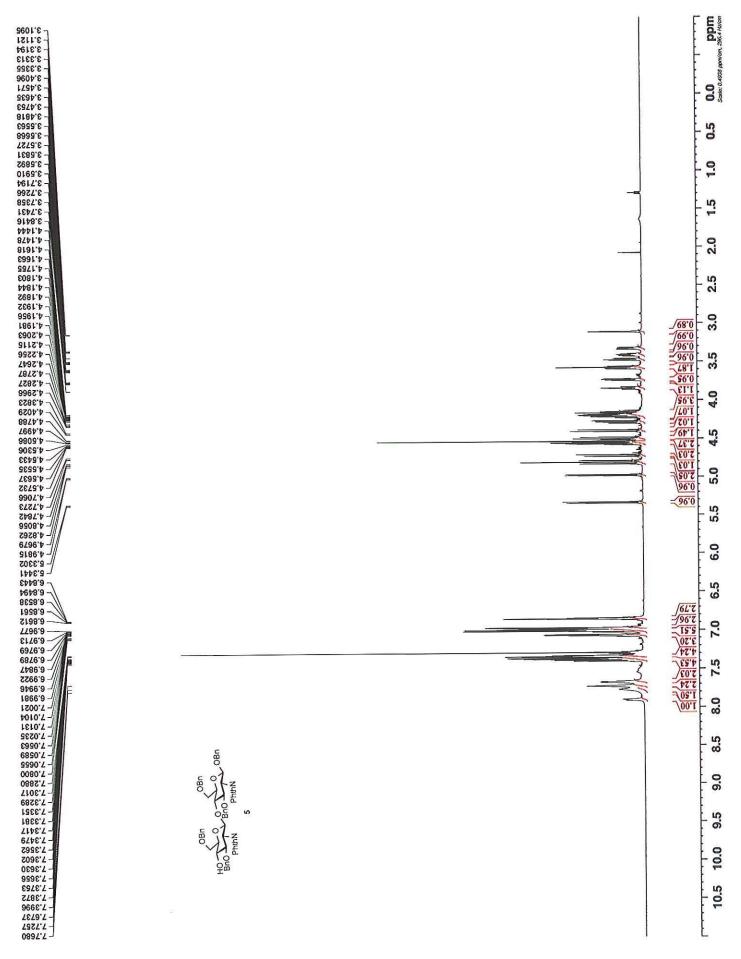
Benzyl [3,6-di-*O*-benzyl-4-(methyl [5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-D-glycero-β-Dgalacto-non-2-ulopyranosylate]-(2 \rightarrow 3)-2,6-di-*O*-benzyl-β-D-galactopyranosyl-(1 \rightarrow 4)-3,6-di-*O*benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl-(α -D-mannopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl-(1 \rightarrow 4)-3,6-di-*O*-benzyl-2-deoxy-2-phthalimido-β-Dglucopyranoside (27). A solution of 26 (0.0370 g, 0.00960 mmol) in anh. THF (1.0 mL) was treated with AcOH (0.50 mL) and nano-Zn (12.5 mg, 1.91 mmol). After 20 min of stirring at rt, the mixture was filtered through a pad of Celite, concentrated and purified by chrom. on SiO₂ (PhMe:MeCN, 1:1) to provide 27 (28.7 mg, 85%) as a clear oil: ¹H NMR (600 MHz, CD₃CN) δ 7.66 (dd, *J* = 5.5, 2.8 Hz, 2 H), 7.59 (s, 3 H), 7.56-7.48 (m, 4 H), 7.38-7.33 (m, 2 H), 7.29 (t, *J* = 7.6 Hz, 3 H), 7.26-7.20 (m, 12 H), 7.20-7.04 (m, 41 H), 7.04-6.94 (m, 7 H), 6.94-6.84 (m, 6 H), 6.84-6.75 (m, 6 H), 6.75-6.64 (m, 4 H), 6.61 (dd, *J* = 9.2, 6.4 Hz, 1 H), 5.98 (d, *J* = 9.9 Hz, 1 H), 5.41 (ddd, *J* = 8.5, 5.6, 2.9 Hz, 1 H), 5.18 (dd, *J* = 8.0, 2.3 Hz, 1 H), 5.15 (d, *J* = 8.9 Hz, 1 H), 4.88-4.66 (m, 9 H), 4.66-4.50 (m, 6 H), 4.50-4.41 (m, 7 H), 4.41-4.22 (m, 20 H), 4.22-4.13 (m, 4 H), 4.13-4.00 (m, 4 H), 4.00-3.85 (m, 8 H), 3.76-3.71 (m, 2 H), 3.68 (s, 3 H), 3.68-3.65 (m, 1 H), 3.64-3.58 (m, 3 H), 3.58-3.46 (m, 6 H), 3.46-3.33 (m, 7 H), 3.33-3.16 (m, 8 H), 3.12-2.96 (m, 3 H), 2.42-2.35 (m, 1 H), 1.93 (s, 3 H), 1.89 (s, 1 H), 1.84 (s, 3 H), 1.82-1.80 (m, 6 H), 1.78 (d, J = 2.3 Hz, 3 H), 1.66 (s, 3 H); MS-ESI *m/z* calc for C₂₀₀H₂₀₆N₄O₅₂Na₂ (M+2Na)²⁺ 1771.88, found 1772.34.

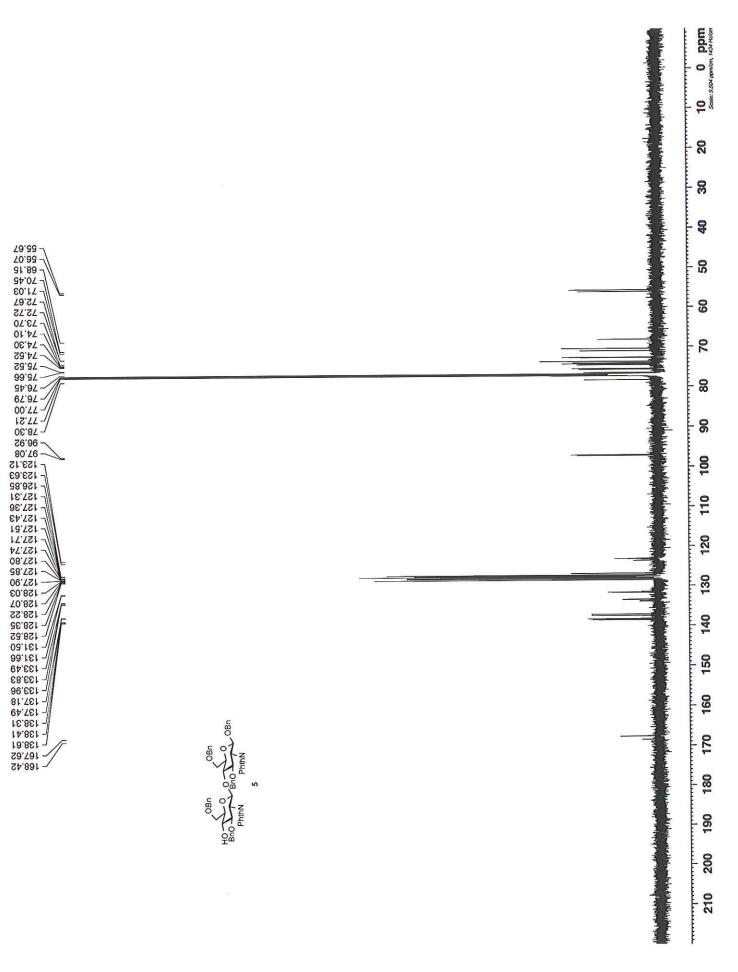

[2,4-Bis[5-acetamido-3,5-dideoxy-D-glycero- β -D-galacto-non-2-ulopyranosylate]-(2 \rightarrow 3- β -D-galactopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy- β -D-glucopyranosyl]- α -D-mannopyranosyl-(1 \rightarrow 3)]-[2-[5-acetamido-3,5-dideoxy-D-glycero- β -D-galacto-non-2-ulopyranosylate]-(2 \rightarrow 3)- β -D-galactopyranosyl-(1 \rightarrow 4)]-2-acetamido-2-deoxy- β -D-glucopyranosyl]- α -D-mannopyranosyl-(1 \rightarrow 6)]- β -D-mannopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy- β -D-glucopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy-

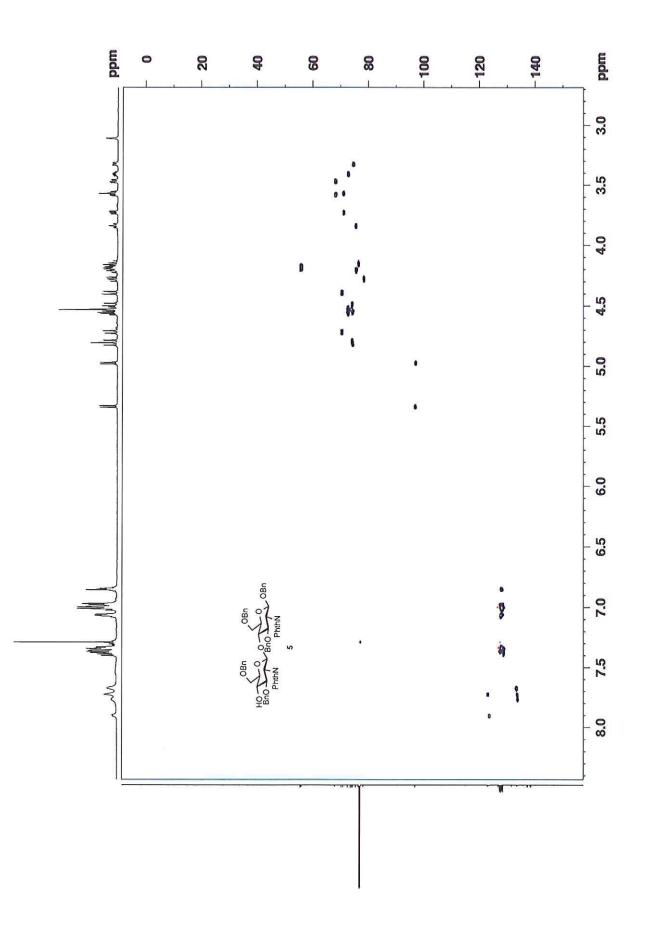
The crude mixture was dissolved in PhMe (0.50 mL), *n*-BuOH (4.3 mL), and 1,2ethylenediamine (2.3 mL) and heated at 90 °C for 12 h. The volatiles were remove *in vacuo* and the crude material was dissolved in PhMe (1.0 mL), heated at 90 °C for 24 and concentrated to provide triamine: ESI m/z calc for (M-H+Cl)²⁻ 2432.1, (M-3H)³⁻ 1609.0, found 2427.2, 1610.1.

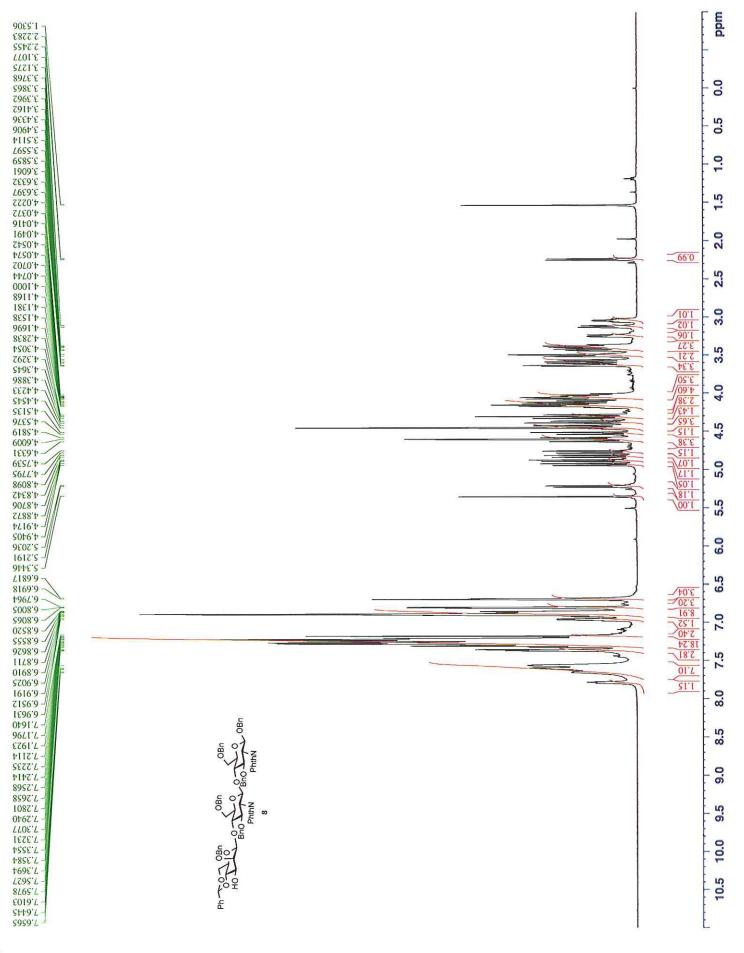

The crude mixture from above was dissolved in MeOH (1.40 mL), Et₃N (0.140 mL) was added and Ac₂O (89.6 μ L) was introduced *via* syringe. After 2 h at rt, this mixture was loaded directly onto column packed with Sephadex LH-20, eluted with MeOH/CH₂Cl₂ (1:1), and concentrated to afford **28** as a clear, colorless oil: ESI *m/z* calc for (M-2H)²⁻ 2519.1, (M-3H)³⁻ 1679.0, found 2520.5, 1679.9. A three-neck flask equipped with a Dewar condenser was cooled to -78 °C, charged with predried (Na) liquid ammonia (10.0 mL), anhydrous THF (0.50 mL), and sodium was added (0.108 g). The mixture was stirred for ca. 1 h and a suspension of crude oligosaccharide in THF (0.50 + 0.50 mL) was added to the blue solution. After 6 h at -78 °C, this mixture was quenched with NH₄Cl (0.250 g), allowed to warp up to rt and the volatiles were removed overnight by a stream of nitrogen. This mixture was dissolved in water and purified by gravity filtration on BioGel P2 to provide **1** (1.5 mg, 11%) as a white solid: ¹H NMR (500 MHz, CD₃OD) δ representative signals 2.77-2.73 (m, 3 H), 1.92-1.91 (m, 6 H), 1.73-1.68 (m, 9 H), 1.64-1.62 (m, 6 H); ESI *m/z* calc for C₁₀₉H₁₇₆N₈O₈₀Cl (M+Cl-2H)³⁻ 970.67, found 970.04.

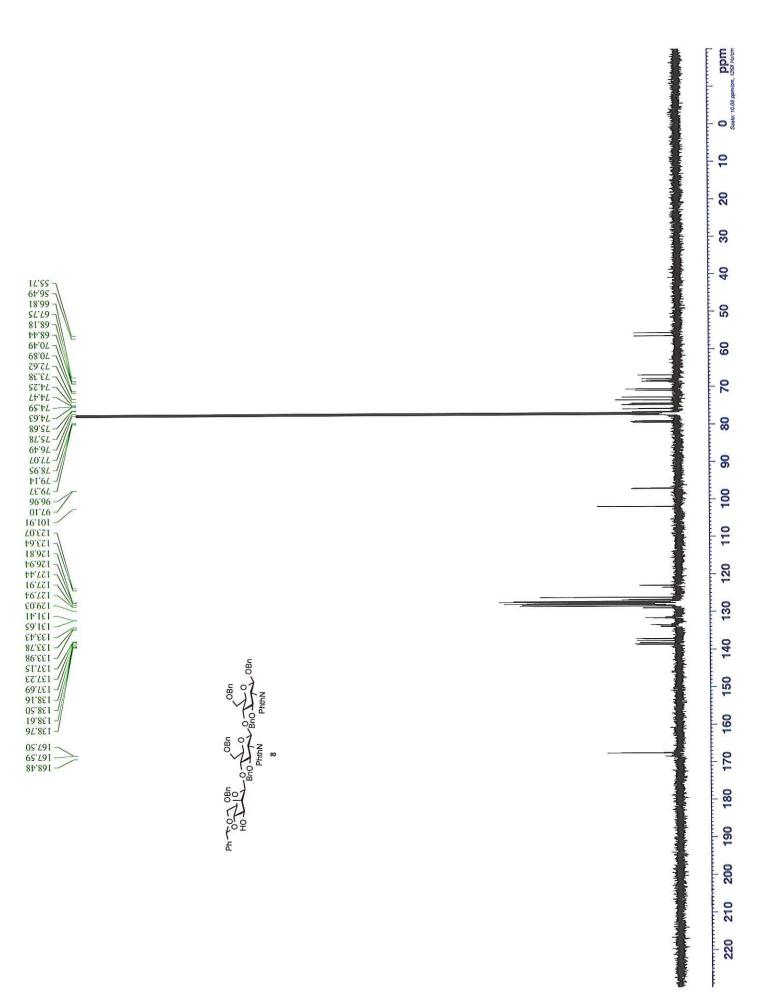

References:

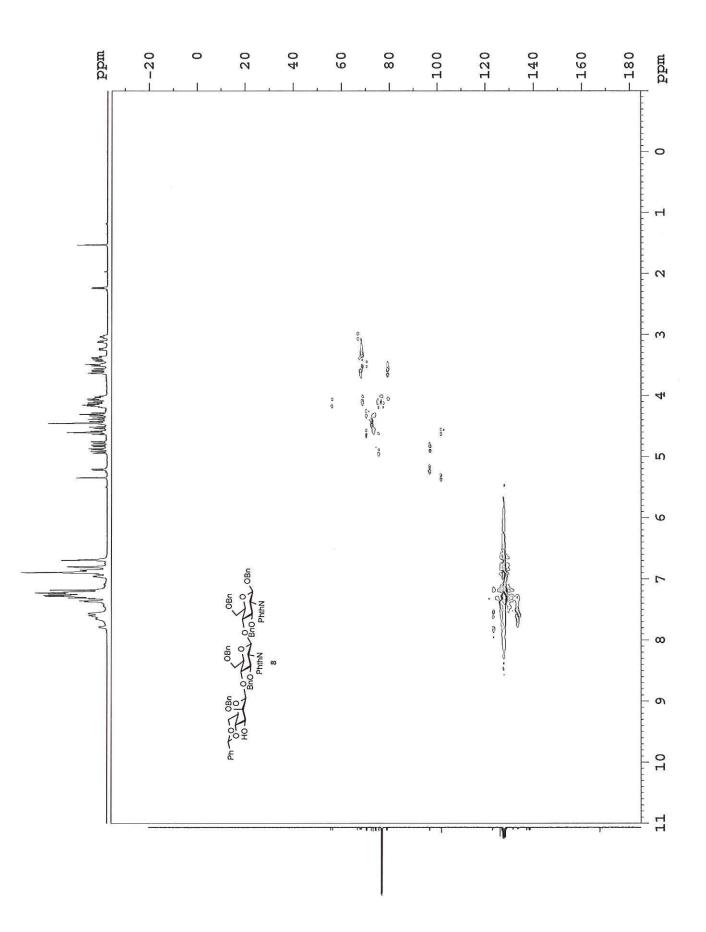

- 1. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., *Organometallics* **2010**, *29*, 2176.
- 2. Dudkin, V. Y.; Miller, J. S.; Dudkina, A. S.; Antczak, C.; Scheinberg, D. A.; Danishefsky, S. J., *J. Am. Chem. Soc.* **2008**, *130*, 13598.

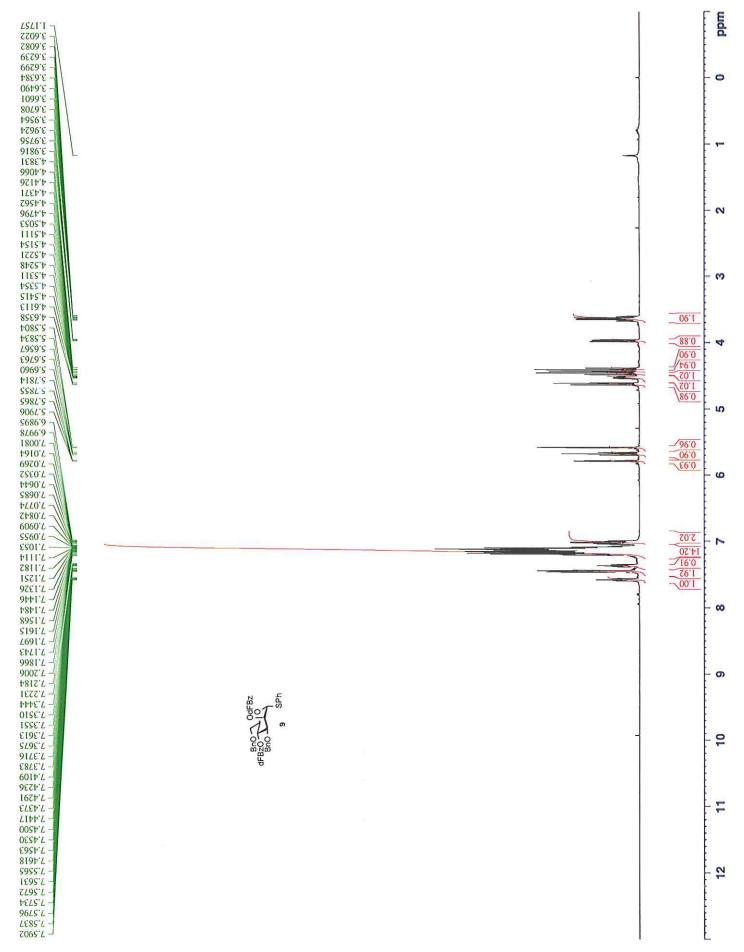


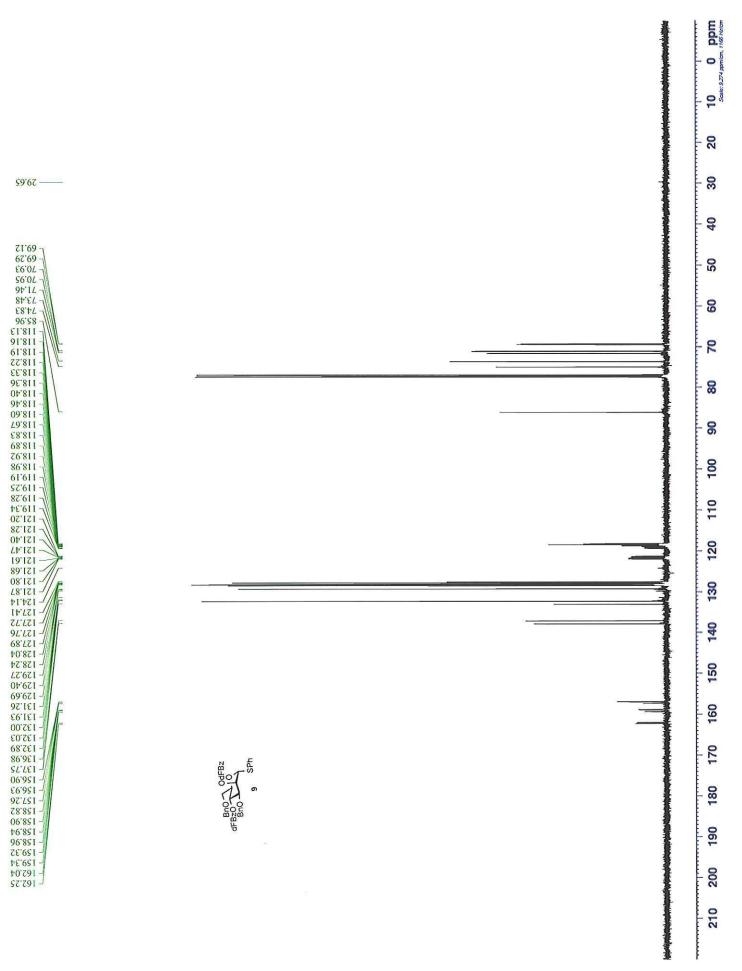

S23

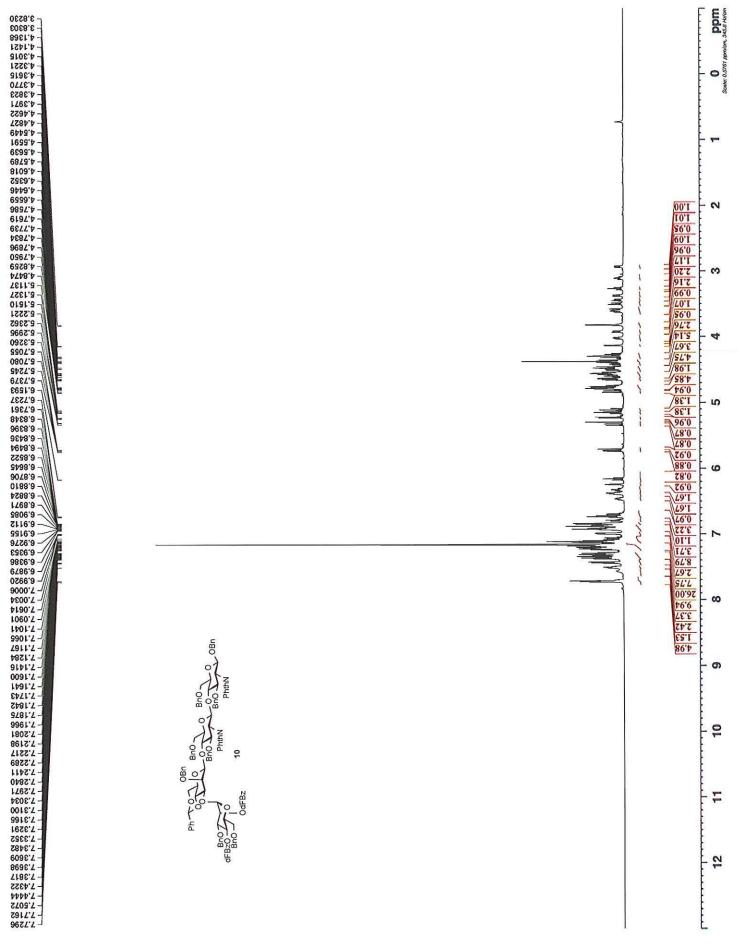


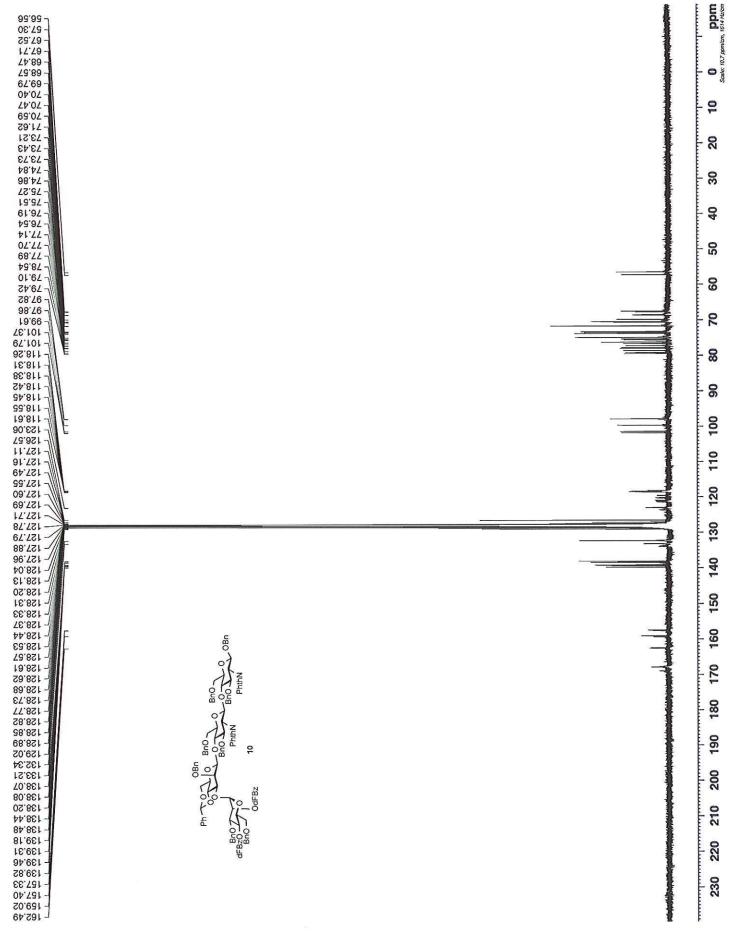


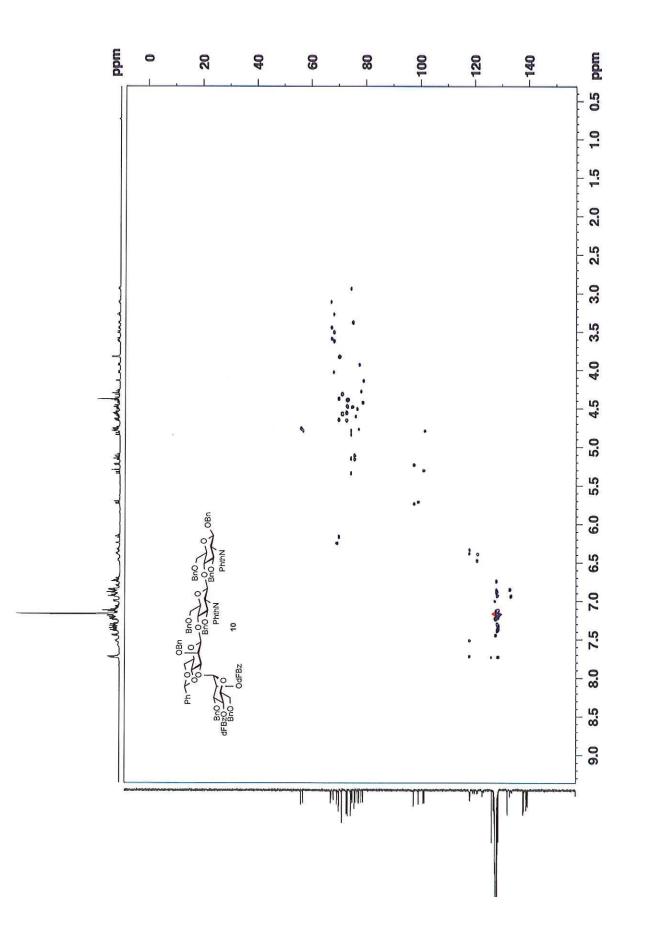


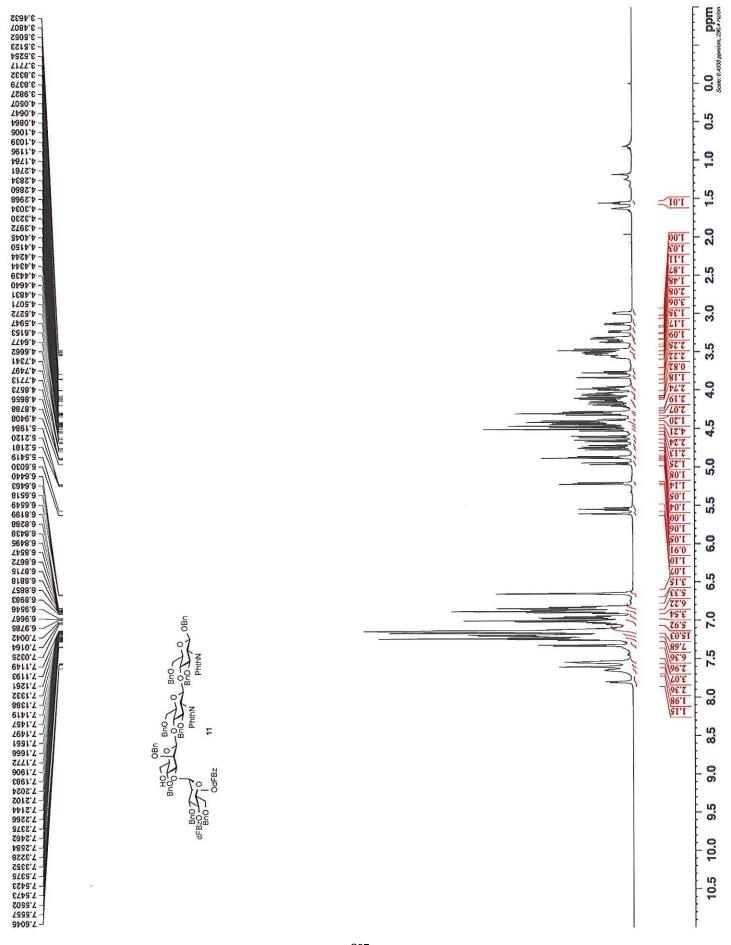


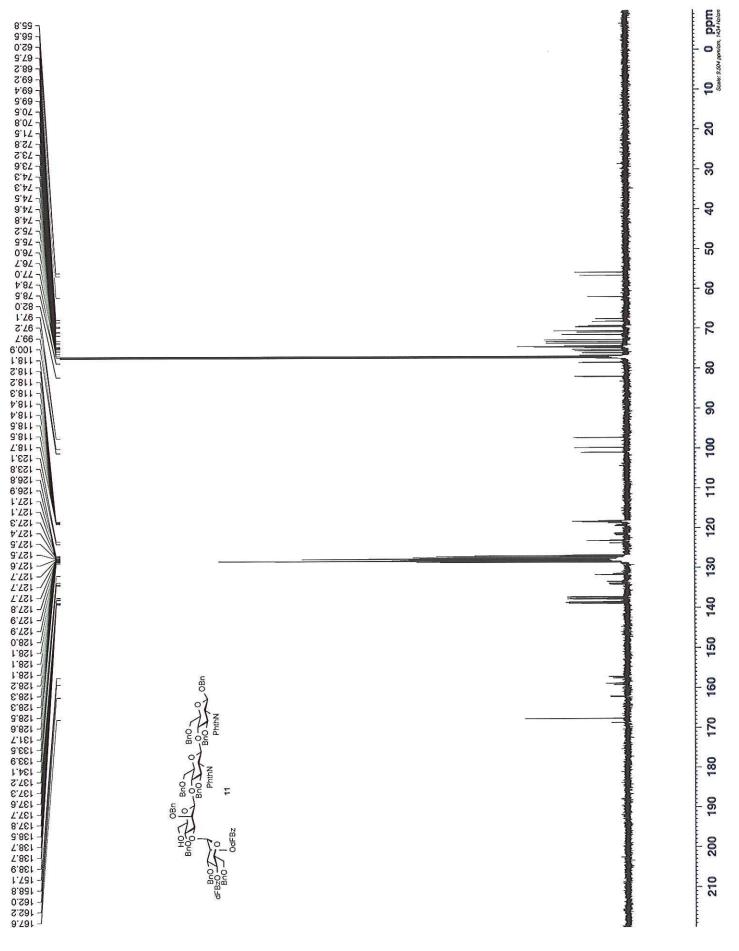


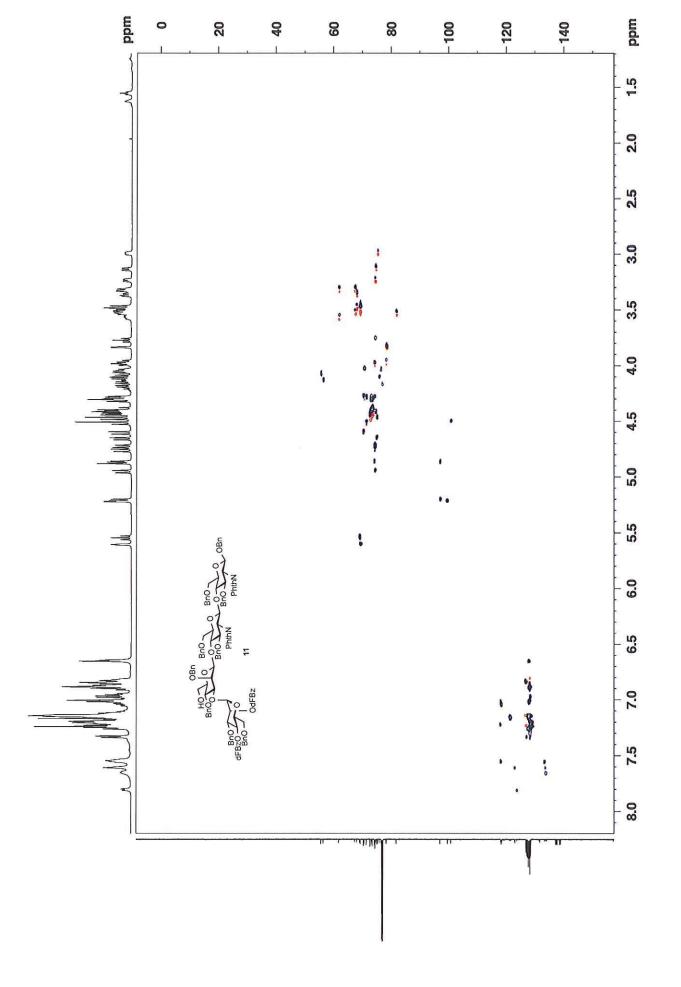


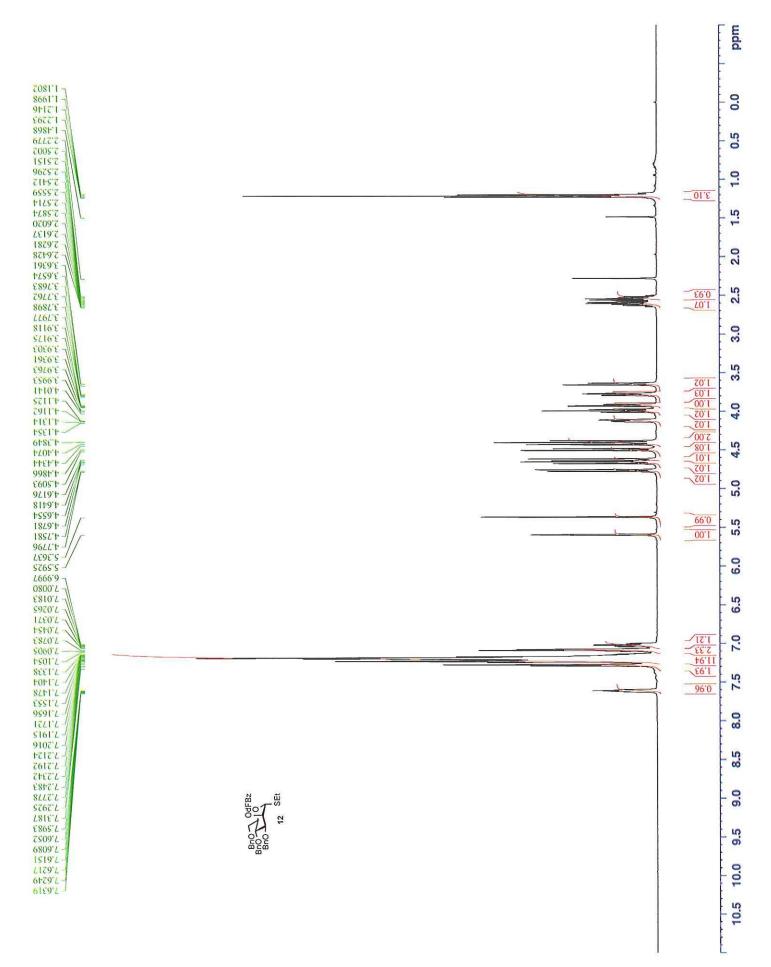


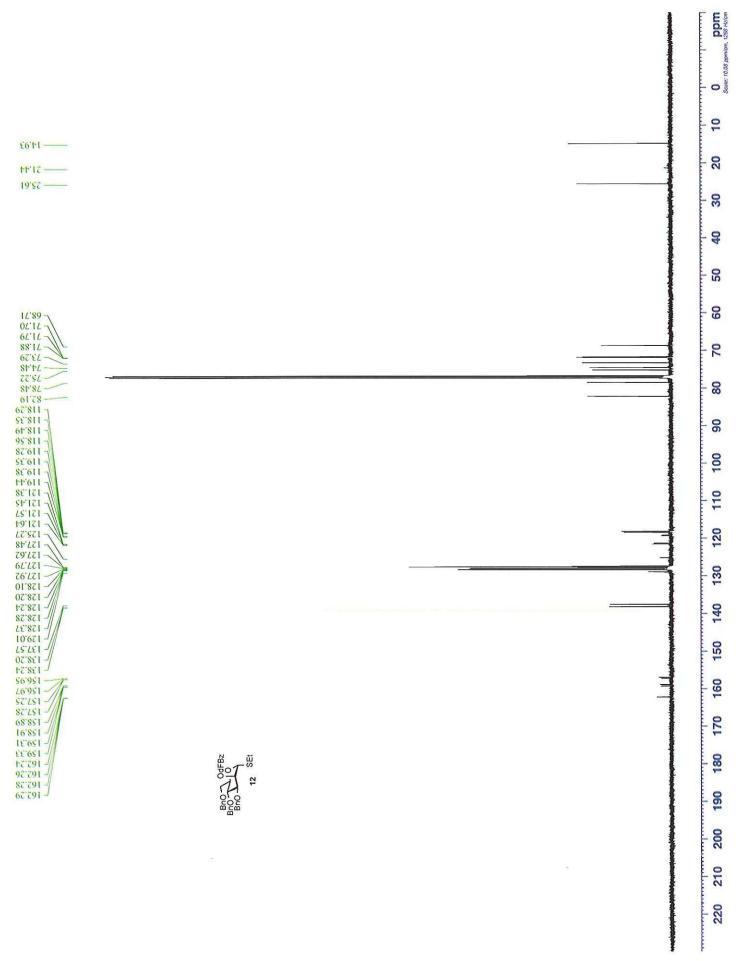


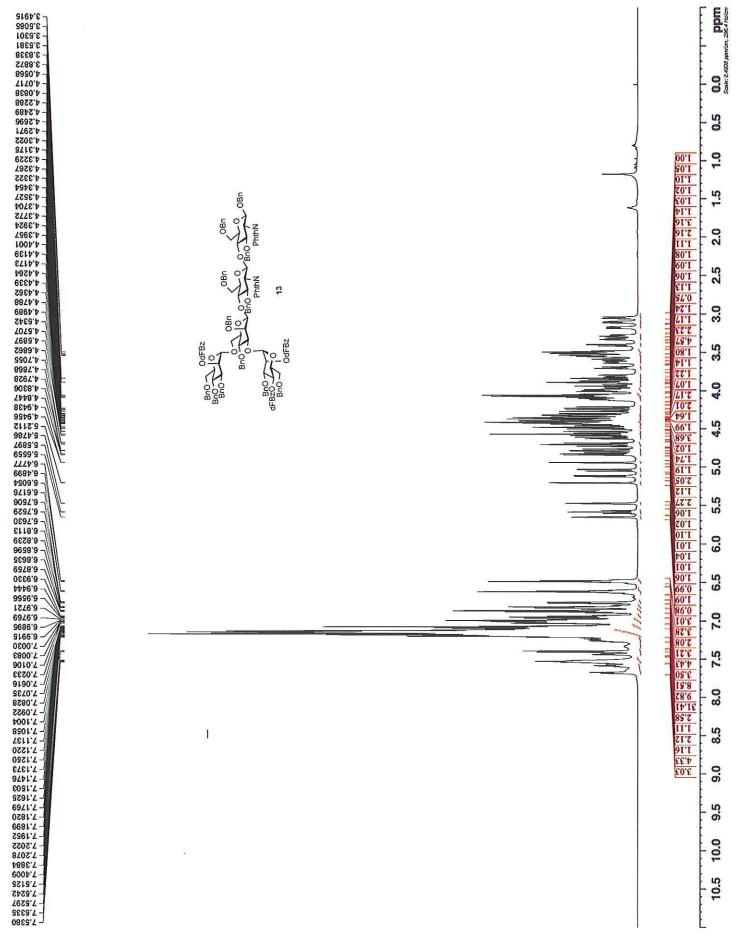


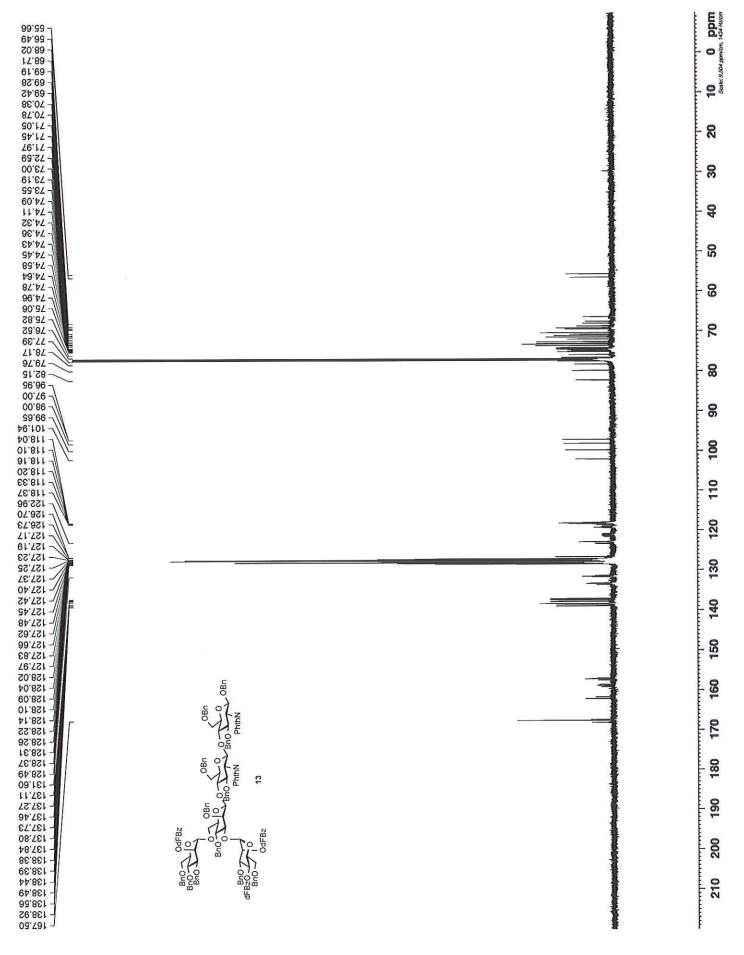


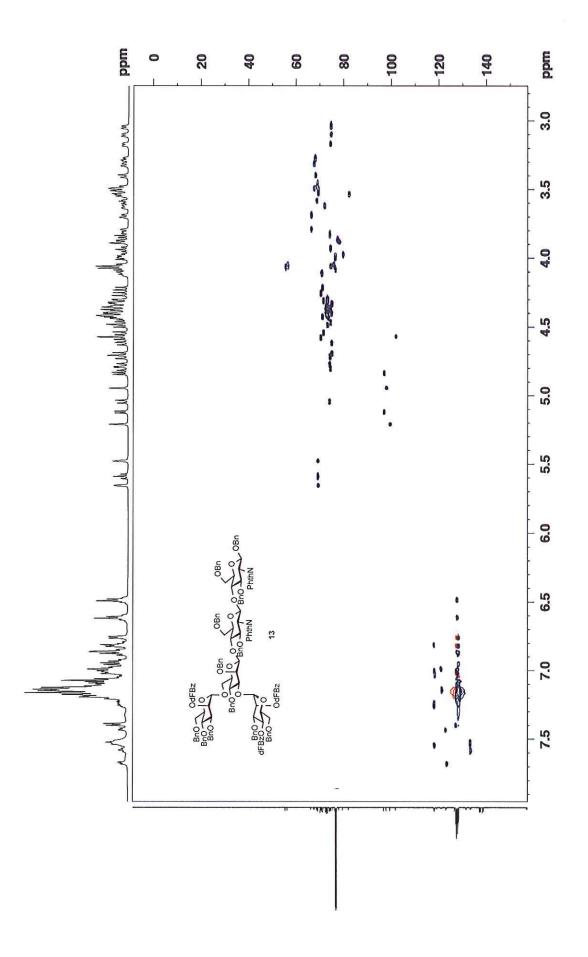

S34

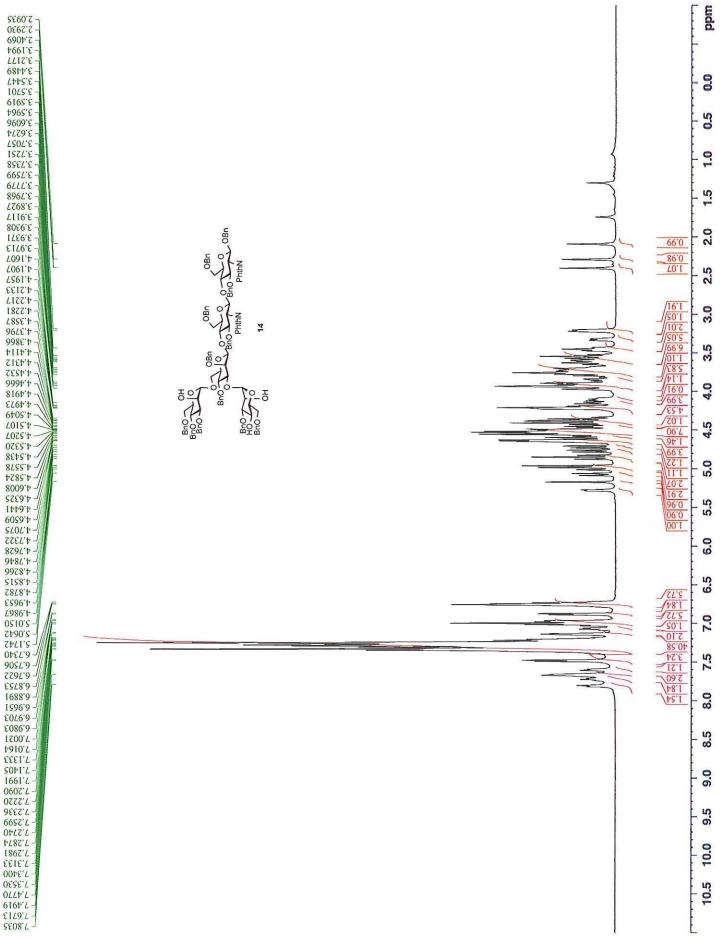


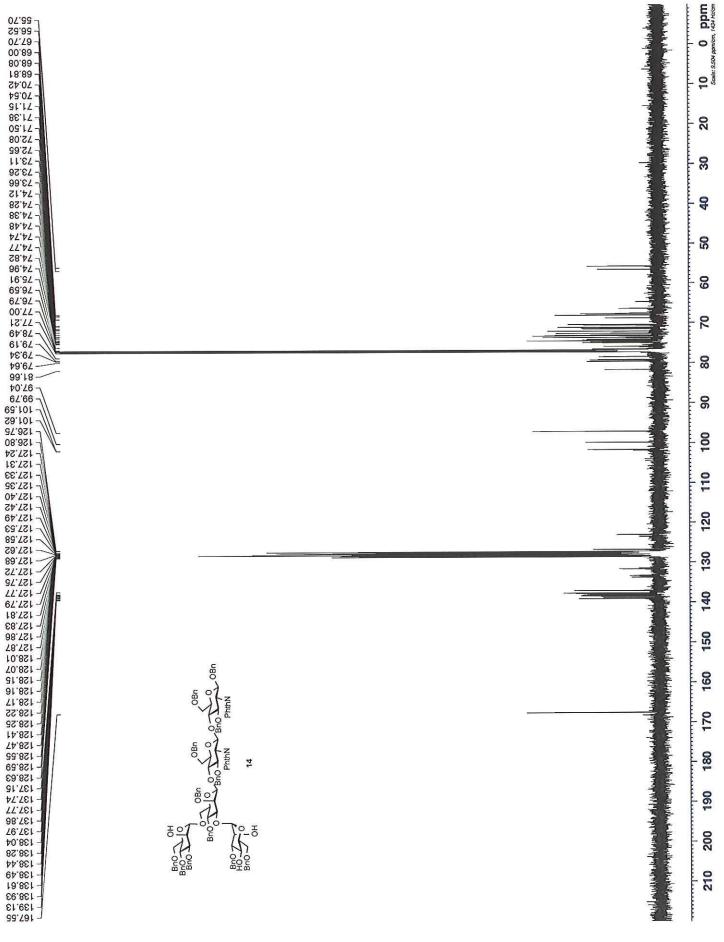


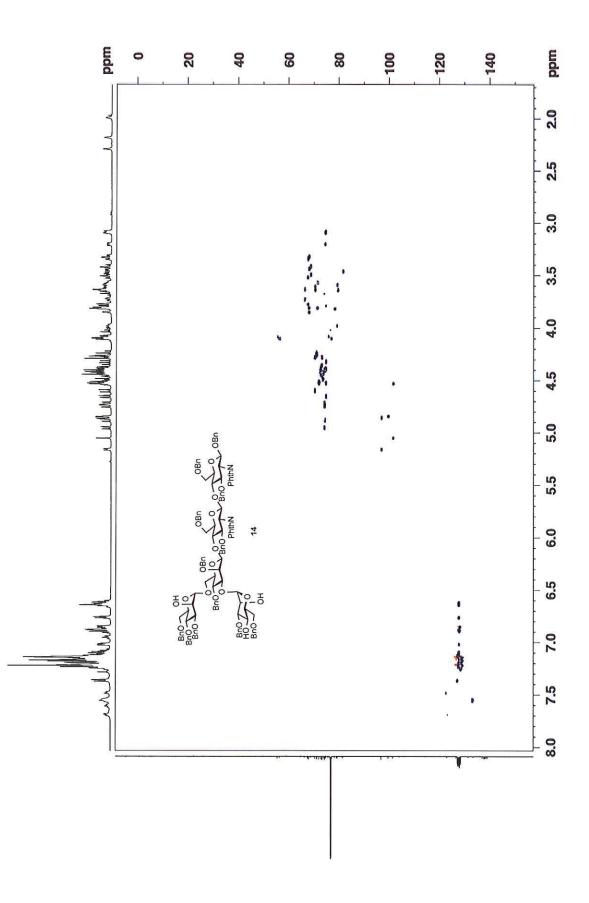


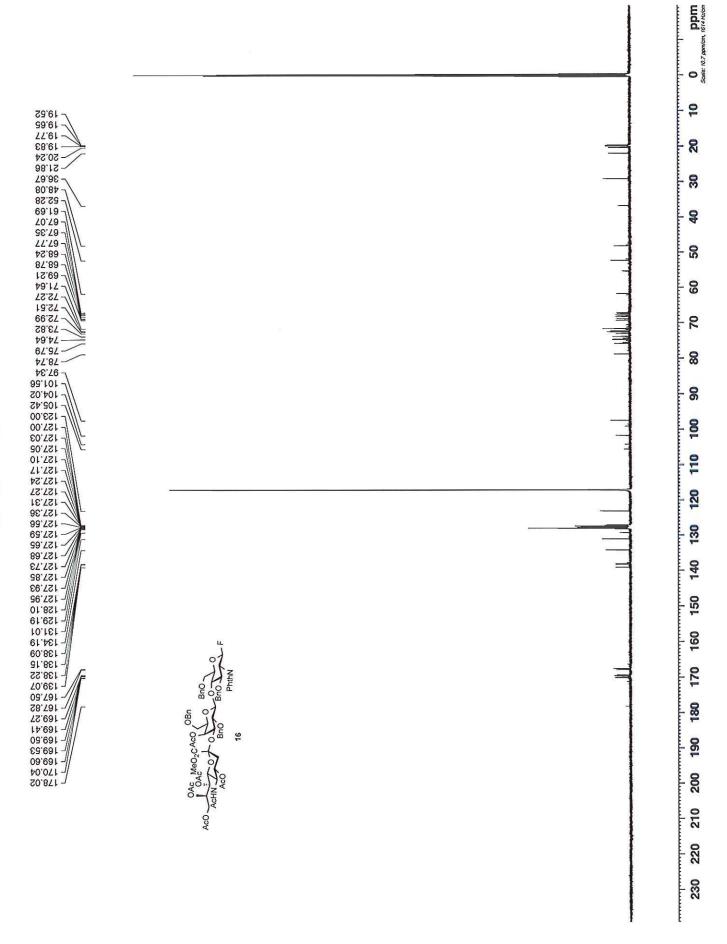


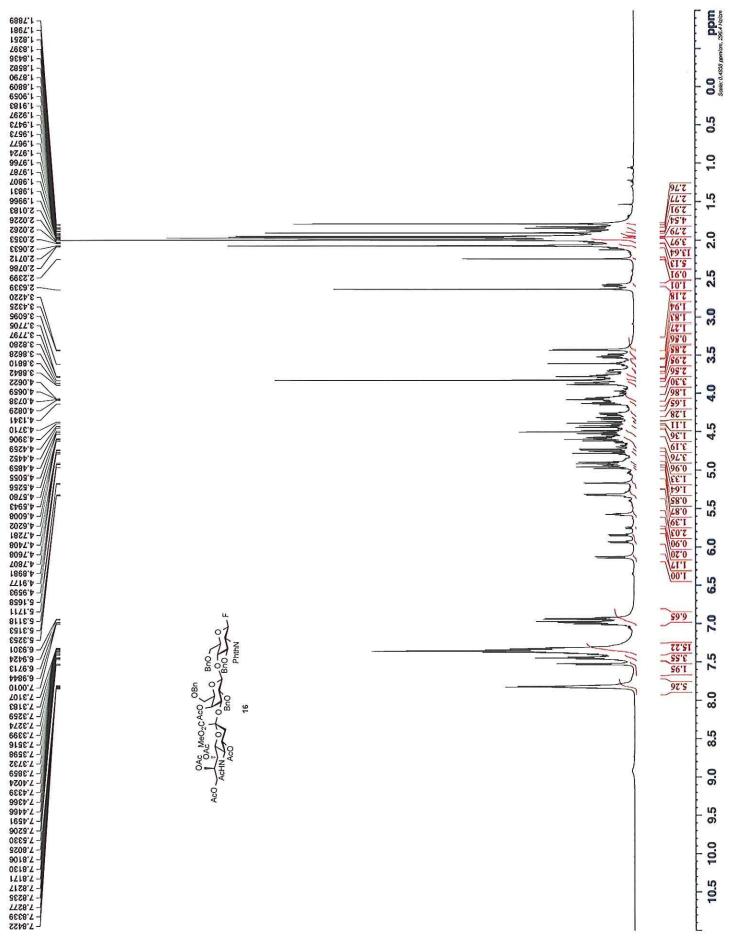


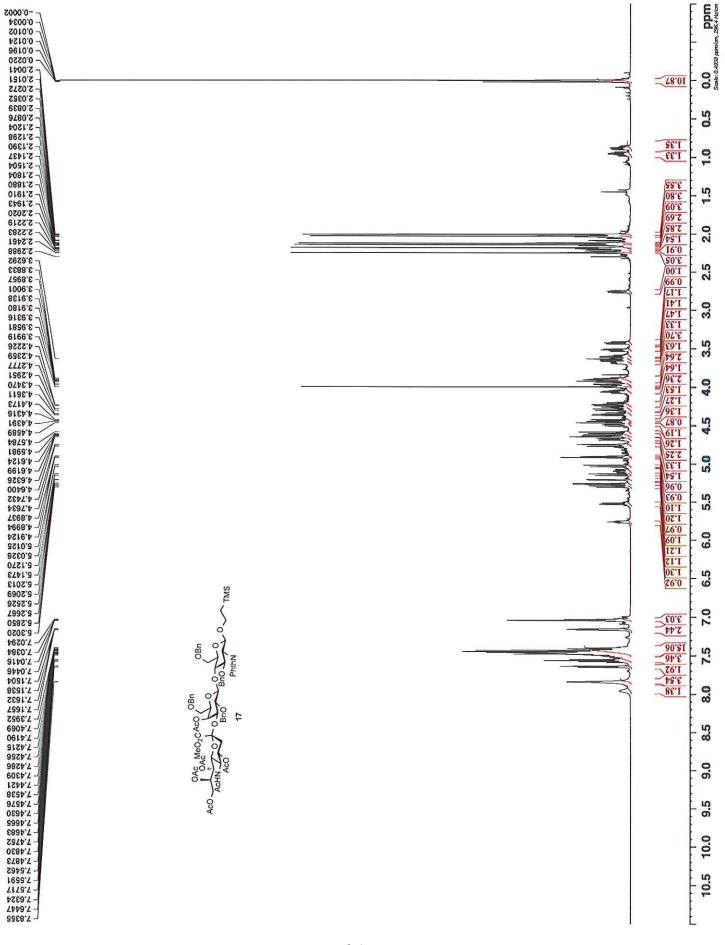


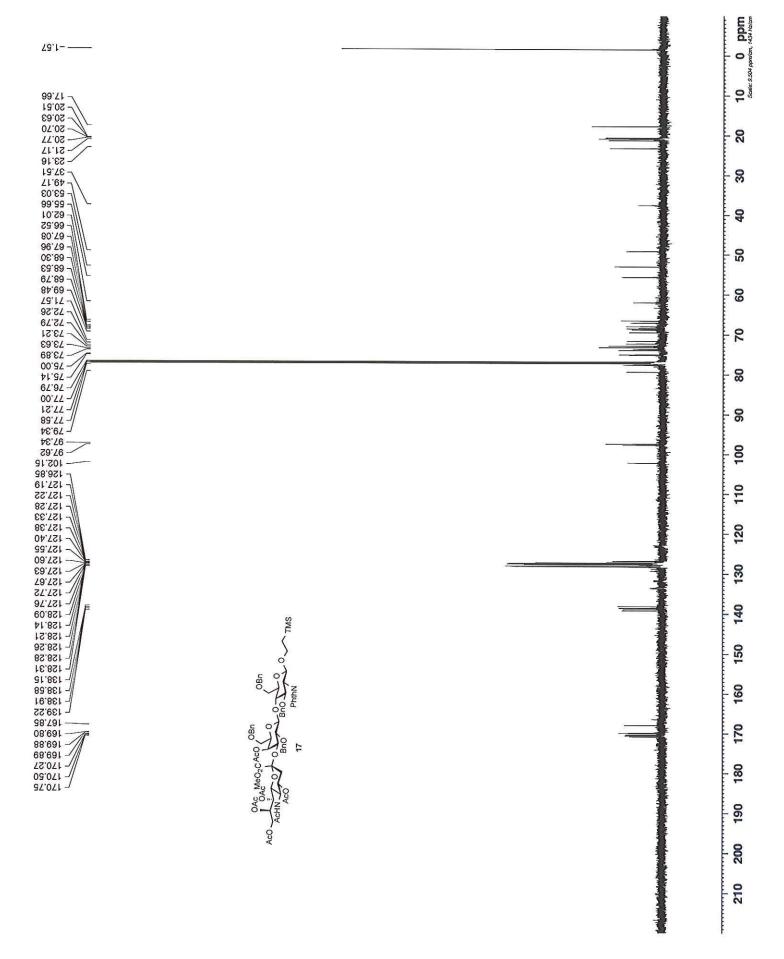


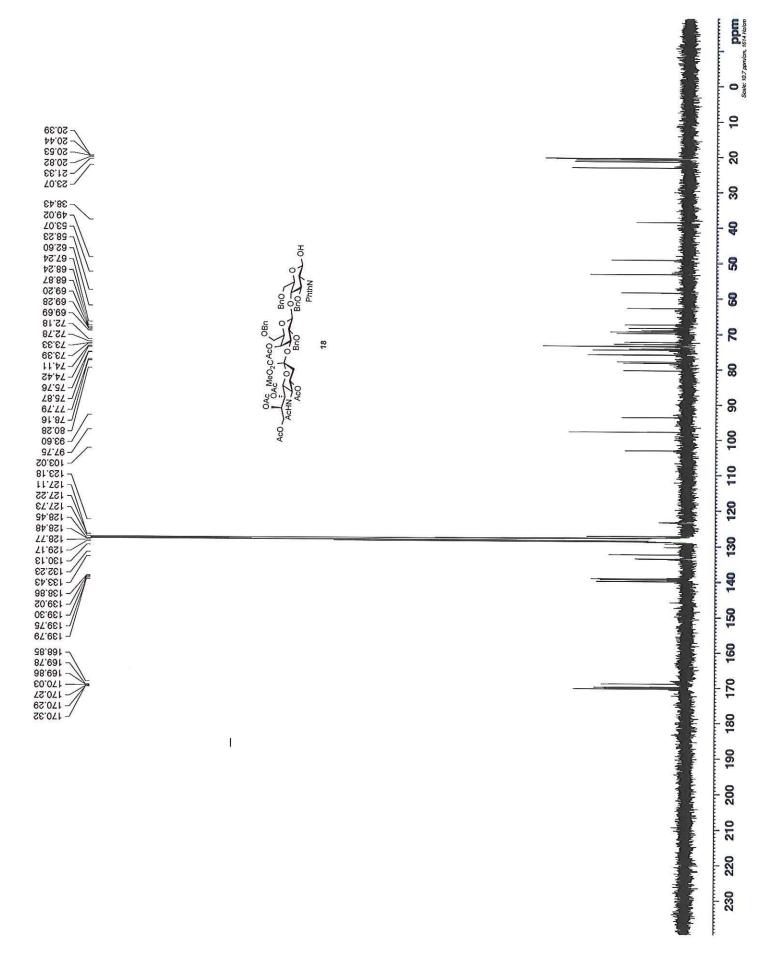


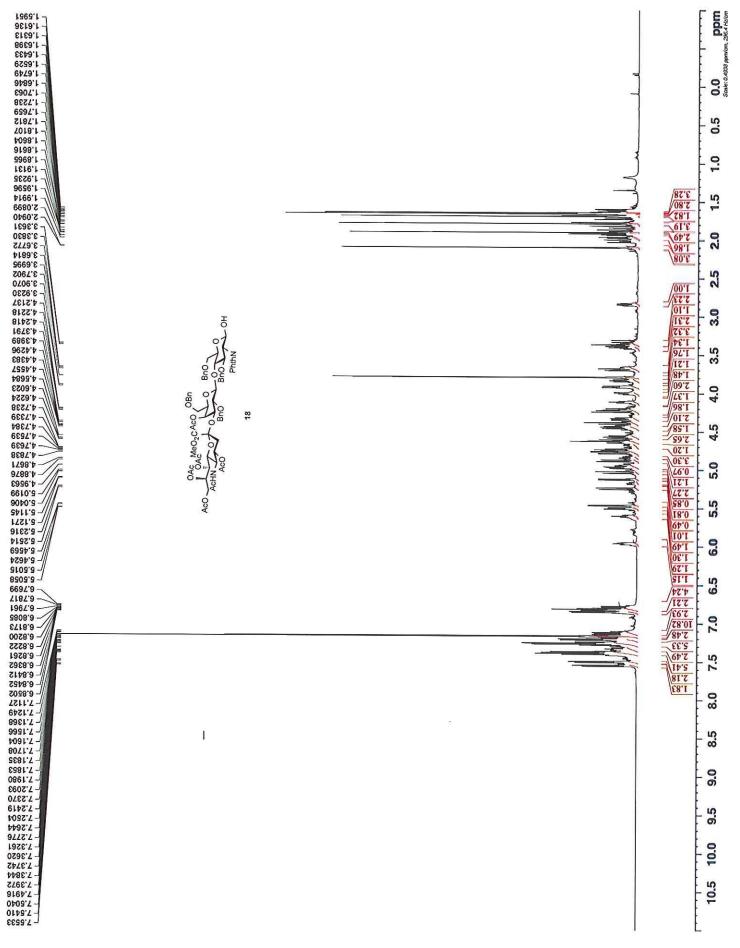


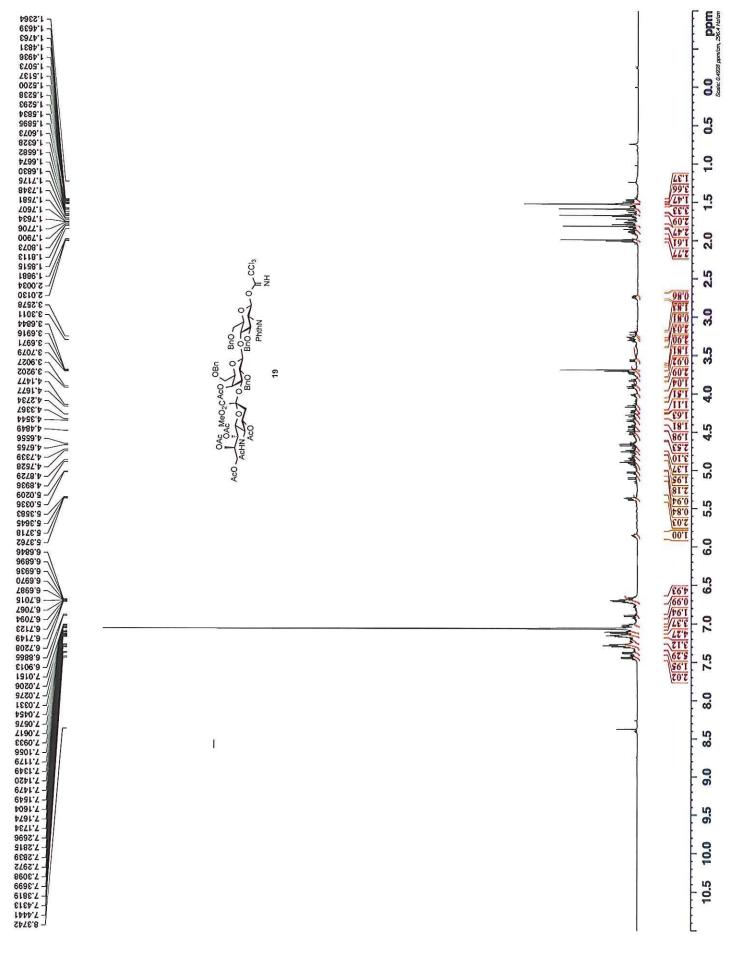


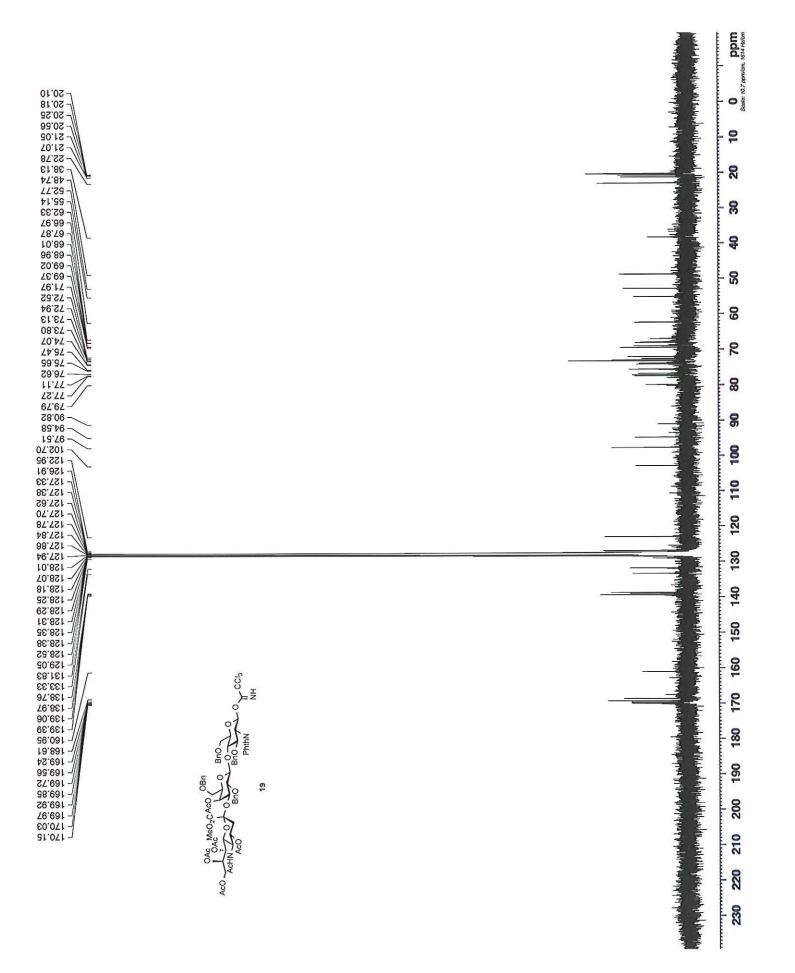


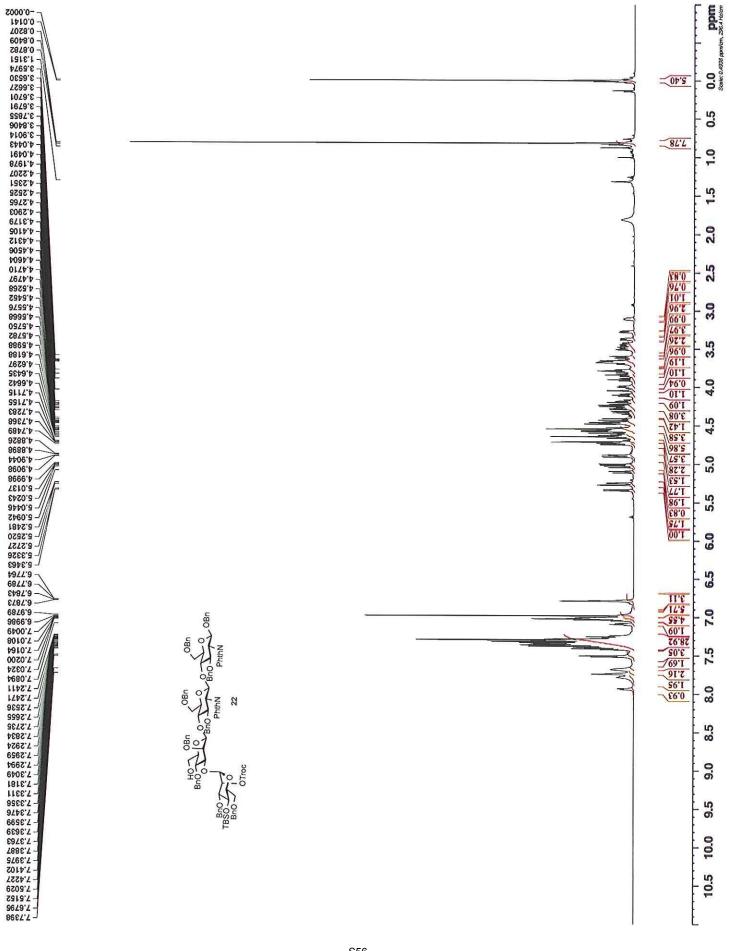


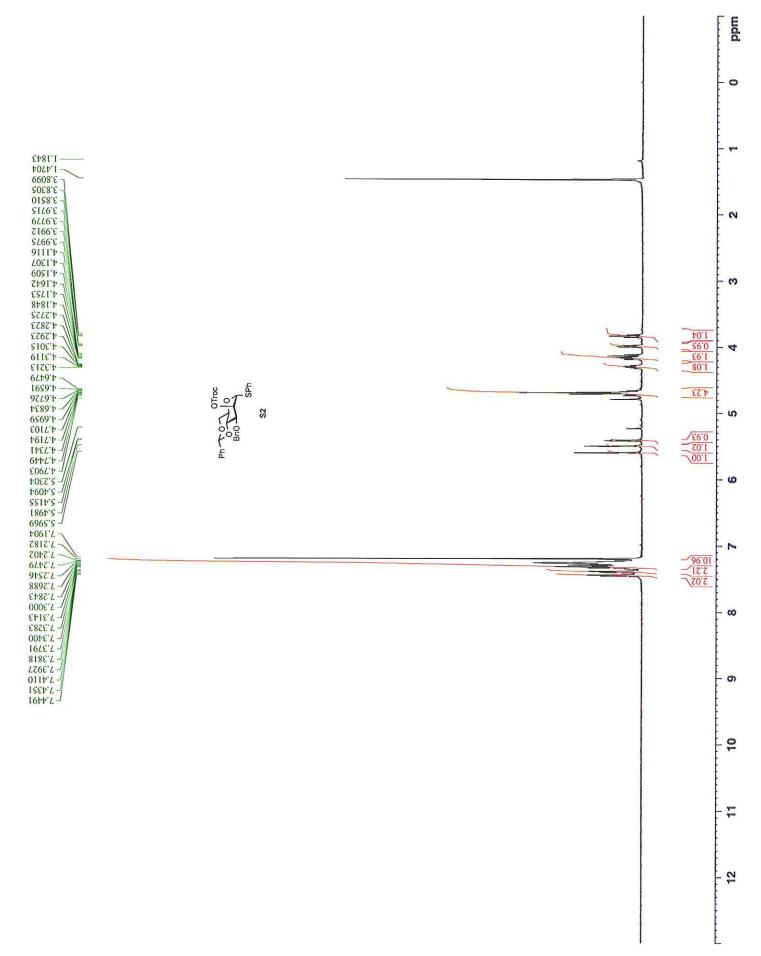








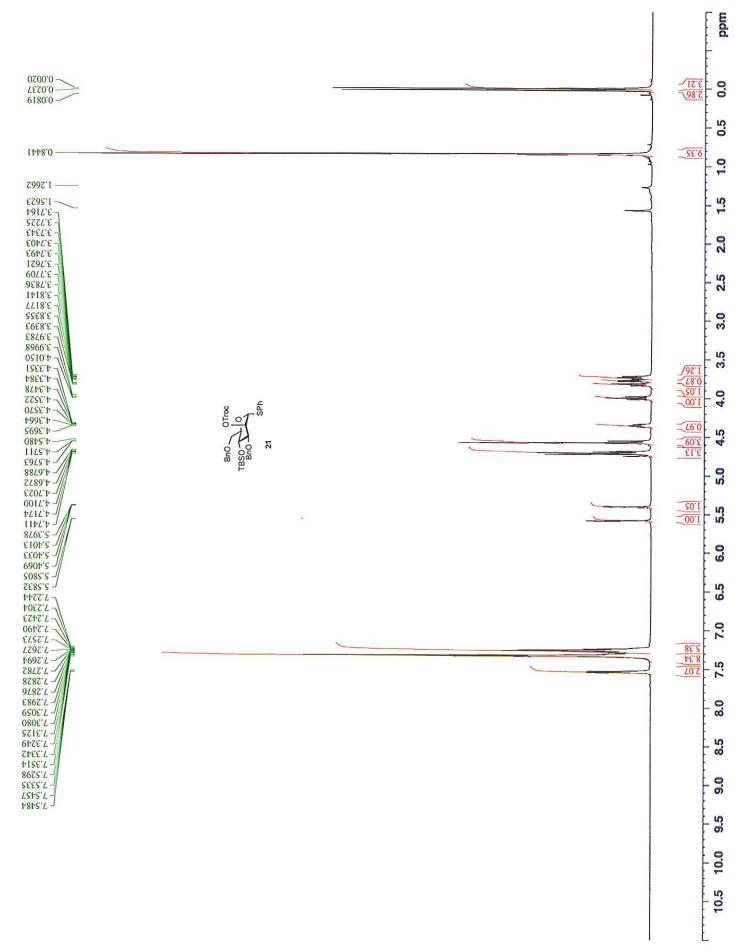




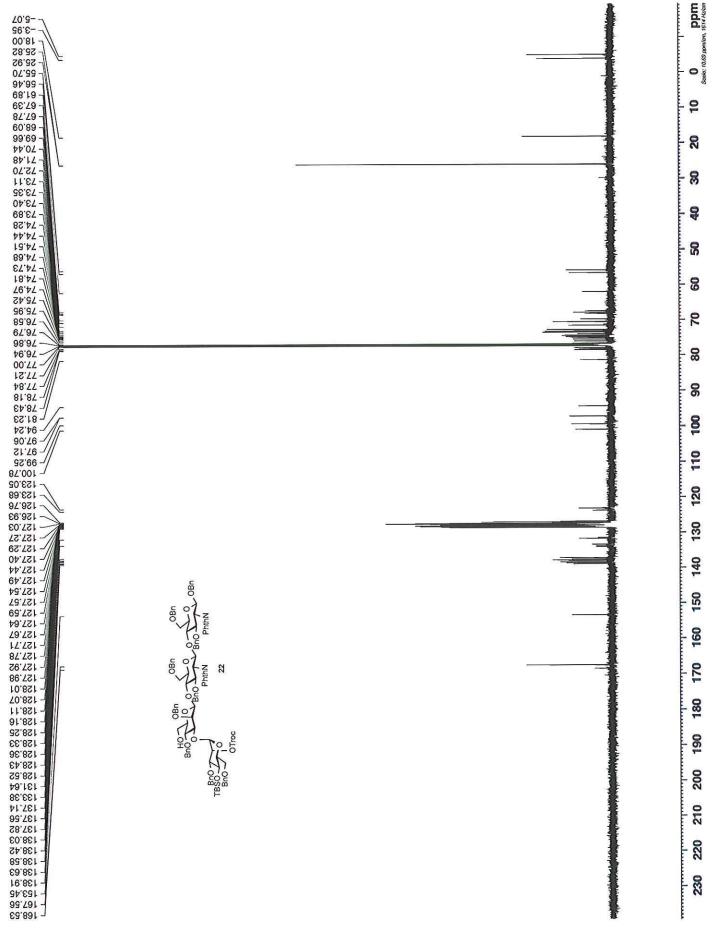
S56

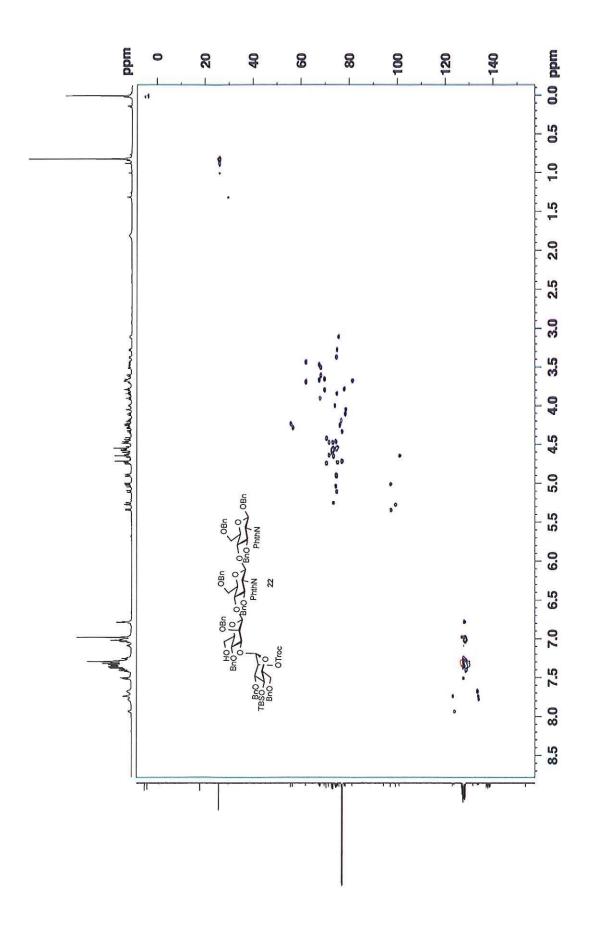
0 ppm and and a second second وتنزيزه والمارا ومعرفة تحمرا فرابه للامران ويعرفوا فتحار الراجية والمتعار المرويا لورما لتنه وريابا المرز المريرة مرينهما والمرواني والمراجع والمراجع وأبله عاليته مقتم بالإللانا بأمل 1726: 10 -ALAUNUL BUL -20 بالاليد عليقاء 30 المسابا الثابلة مناجعة 40 and the bit to be 50 80 20 8 وسومه والمراحلة المحمدة فعلمه فراجعهم والأقافين المعرو ألأقافين المراحبة لحليه المحد والمراح لأرخلك مرامو كالمرام ورجعاه والمراحد مصافح الماليس مناخل والمراحد 8 100 110 E 120 130 1 della. 140 الال للنام الدلماط Ph To To Droc Bno Ho SPh test au 150 لملائع بنيرل أمزابته أودناه بالمتعالية بالمتعاصلين منابقه بمايته لبابن منابق المرعط للقامت بمنابر معرفين أبريها لل 160 170 180 190 200 210

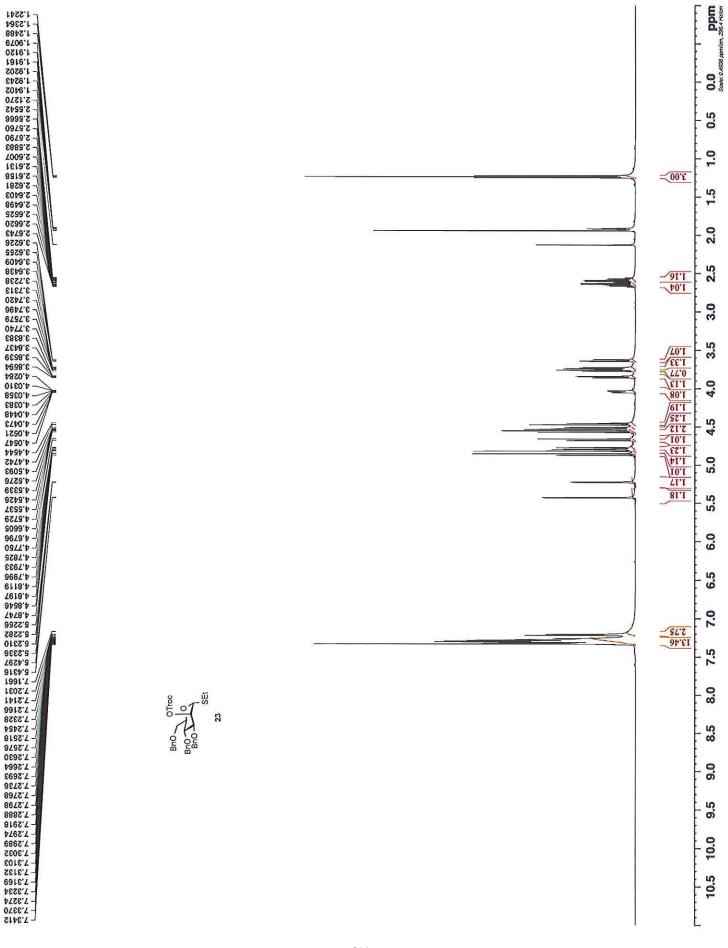
69.99 -

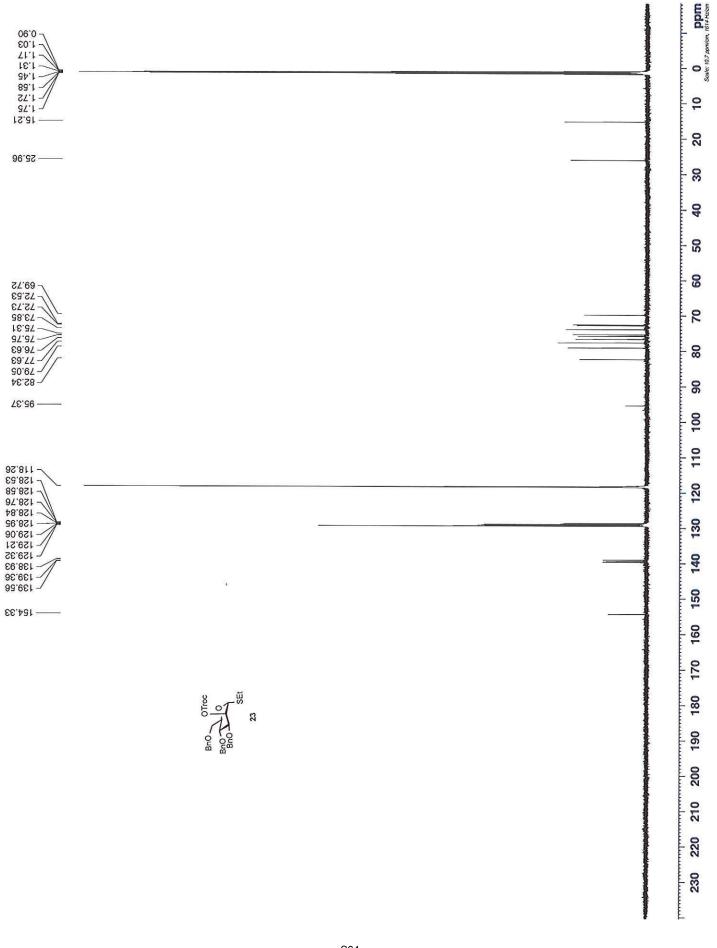

EL'69 -El'+L -S+'SL -S6'LL -SL'6L -

t-1.88 -

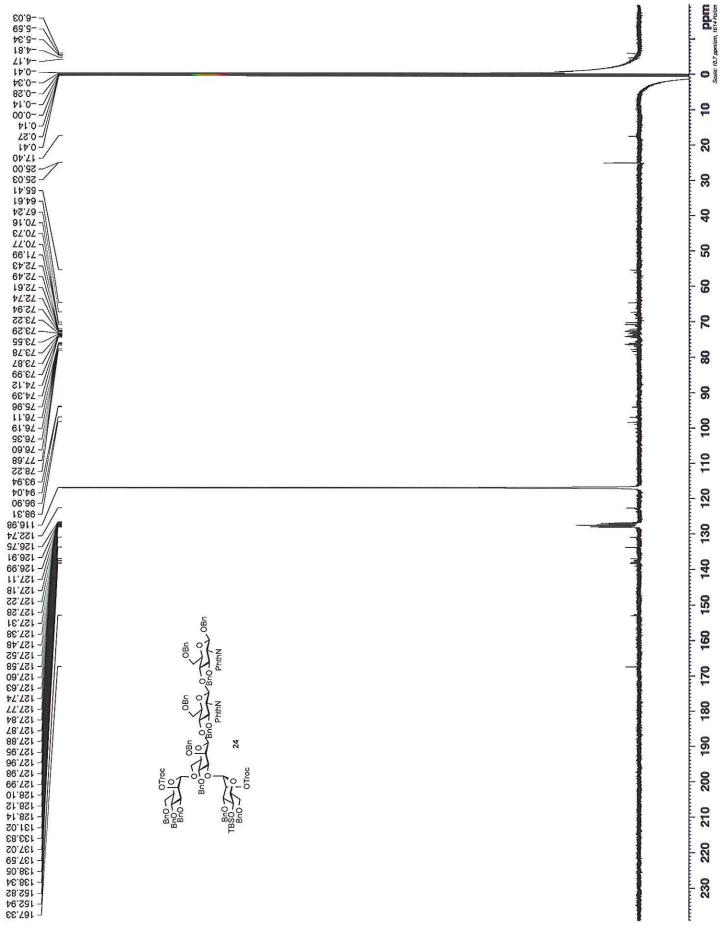

90.601 ------

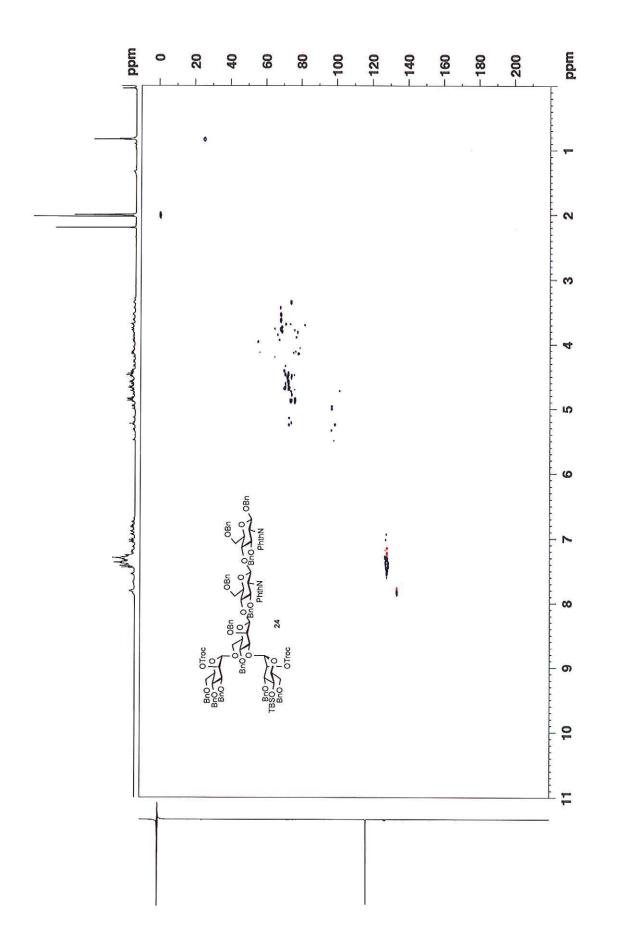

+5'221 21'621 52'621 29'621 54'061 62'861 62'861 60'661

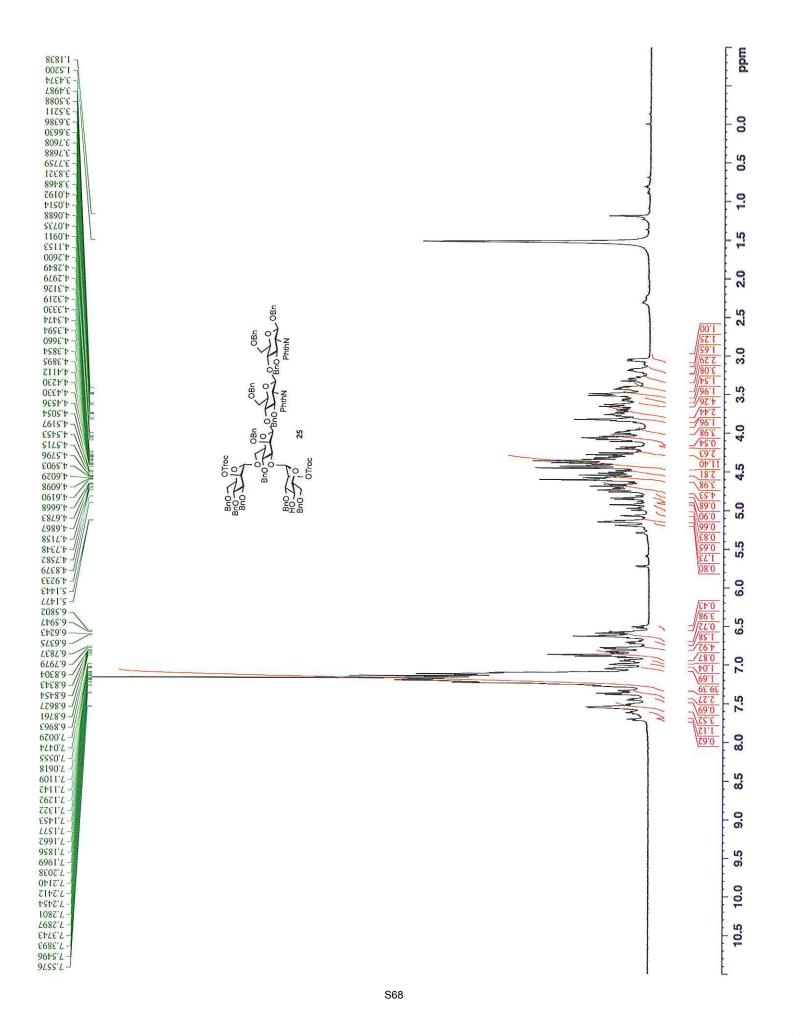

£0.221 ------

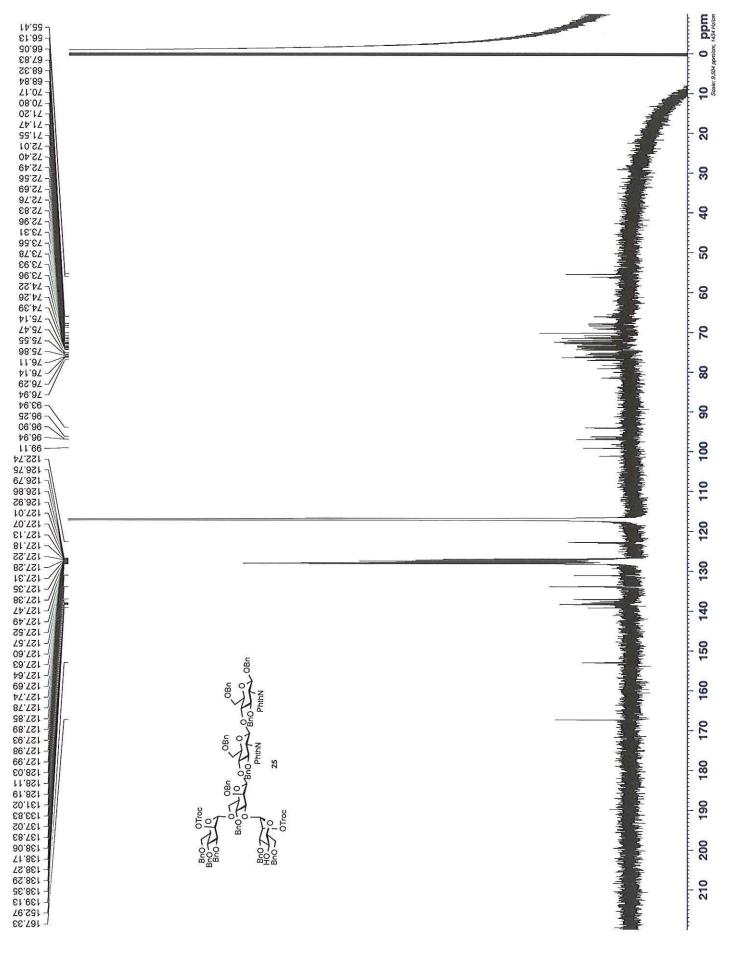


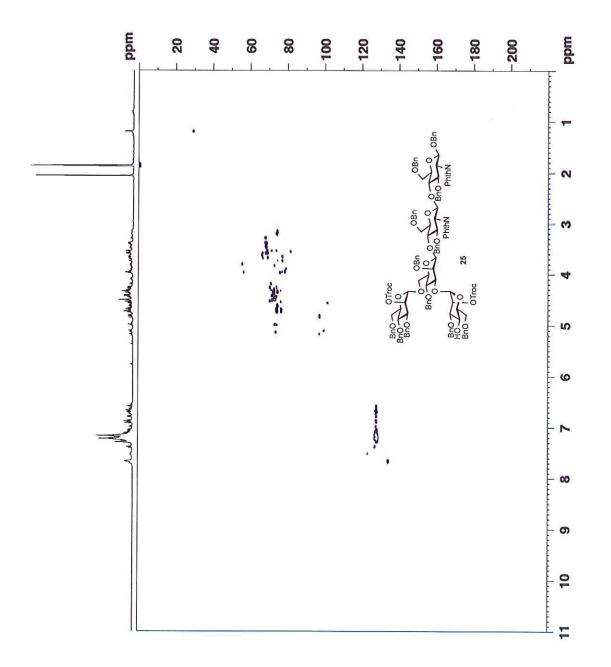
66't		10 0 ppm scale: 9.274 ppm/cm, 1165 Hz/cm
£1'81		20 10 Scale 92
16.25.		
		8
		40
		20
16.19 ->		60
L6 ⁻ L9 2t ⁺ 69 8t ⁺ 1L 81 ⁺ 62 L8 ⁺ bL t6 ⁻ 9L 15 ⁻ 8L		- 20
15.87 12.45		80
12.28		- 6
64'50		100
		110
157.47		120
155/21 t6'/21 t5'21		 130
25/21 24/221 4/21 4/2		140
		150
05 051	21 SPh	160
	TBSO PHO 2	170
		180
		190
		210

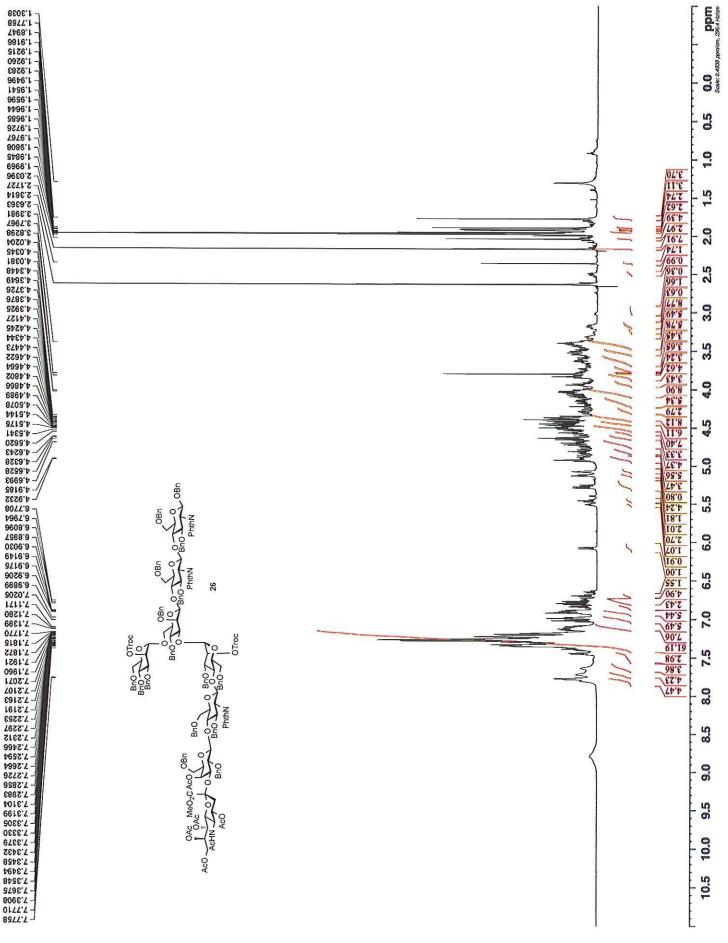


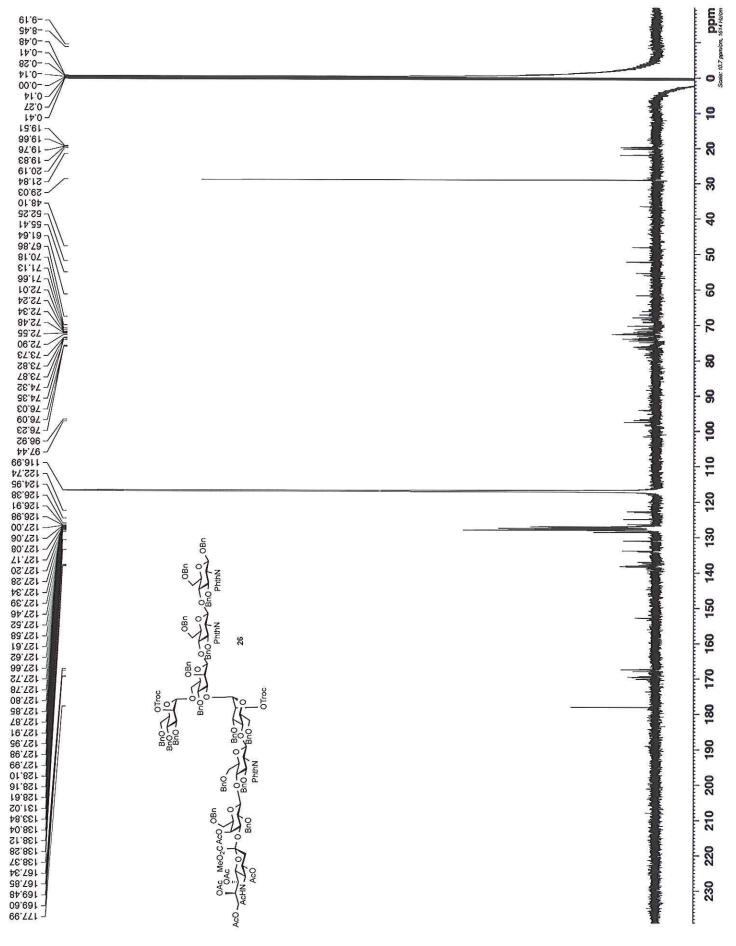


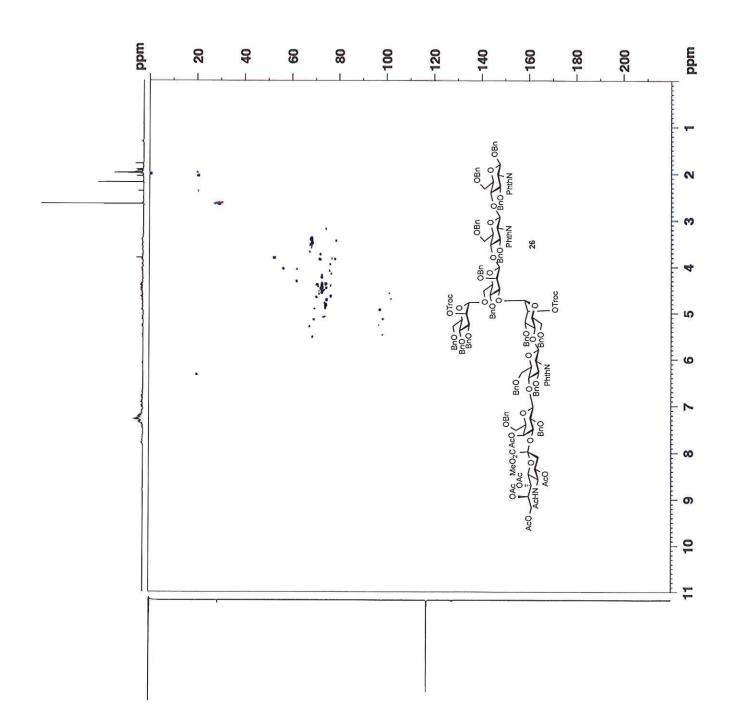


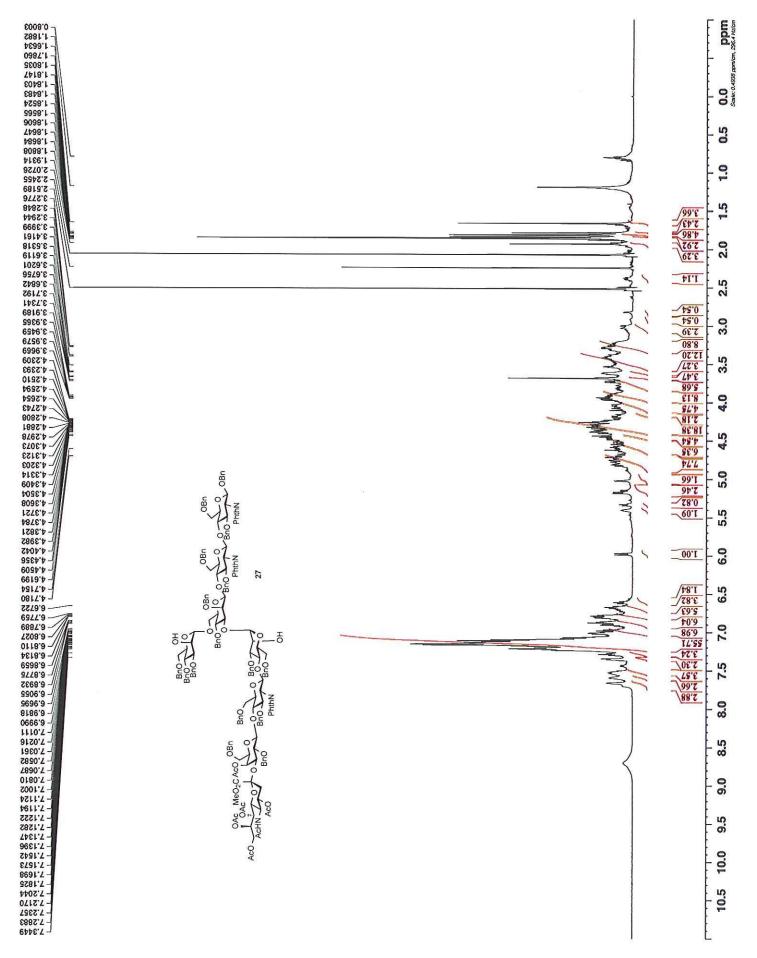




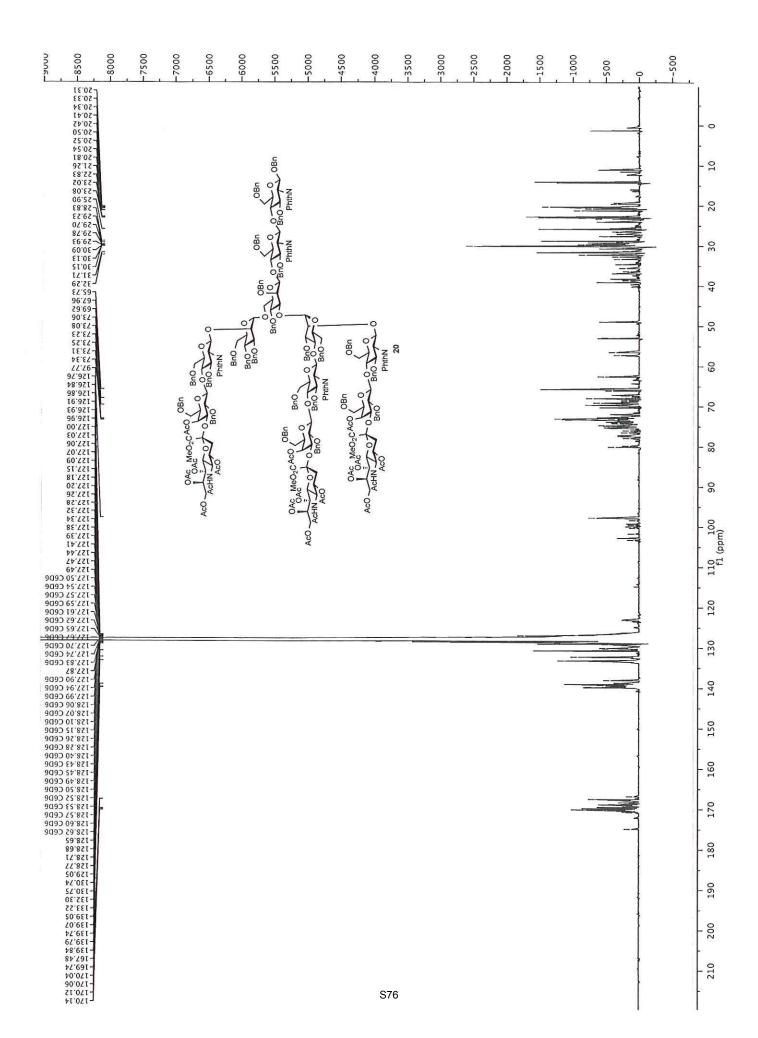


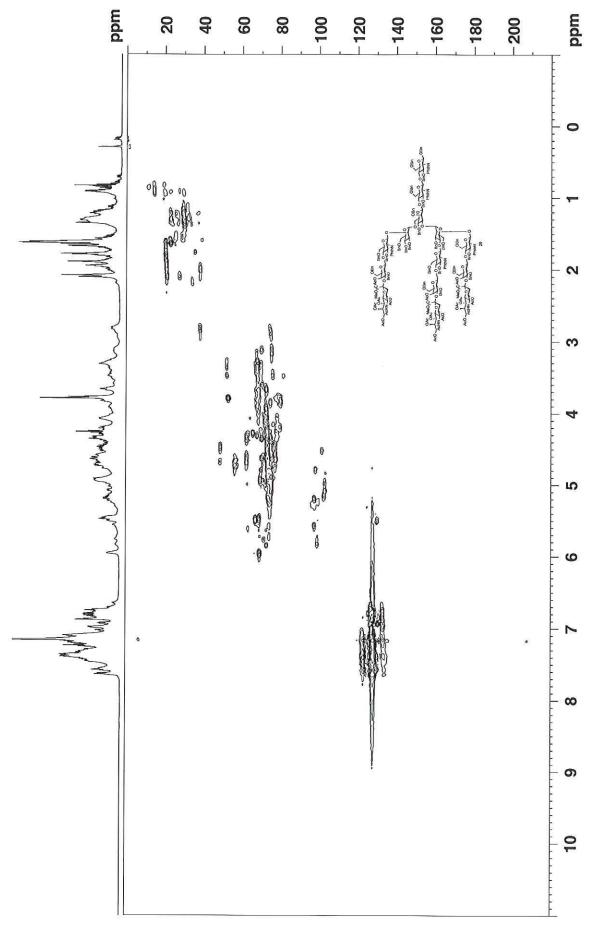


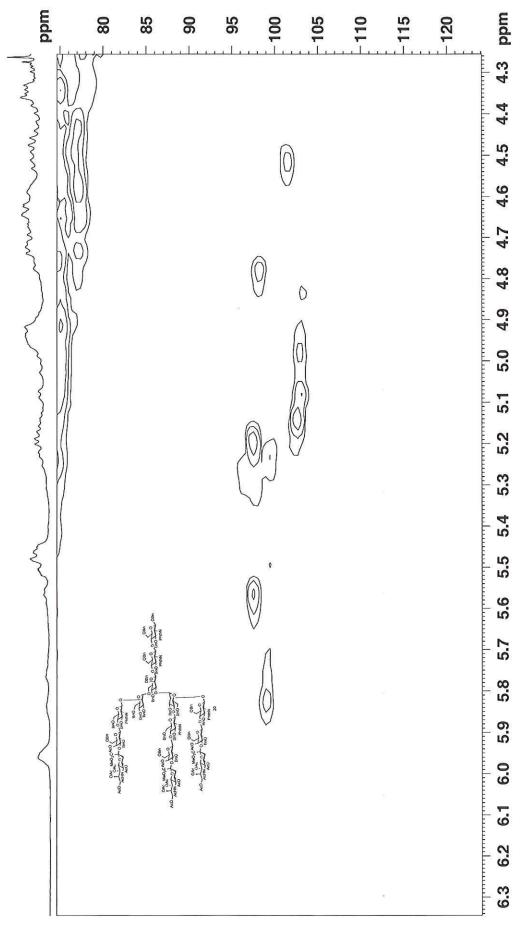


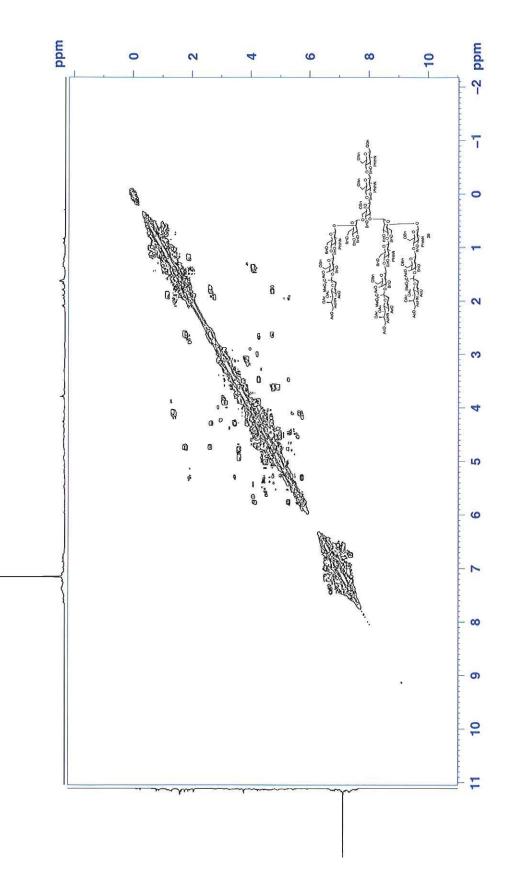


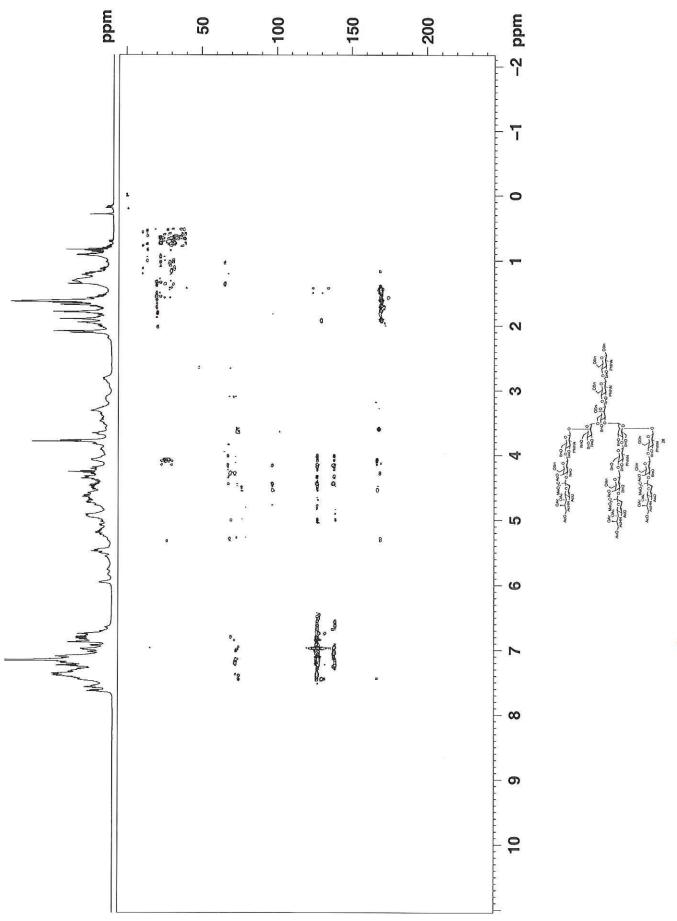


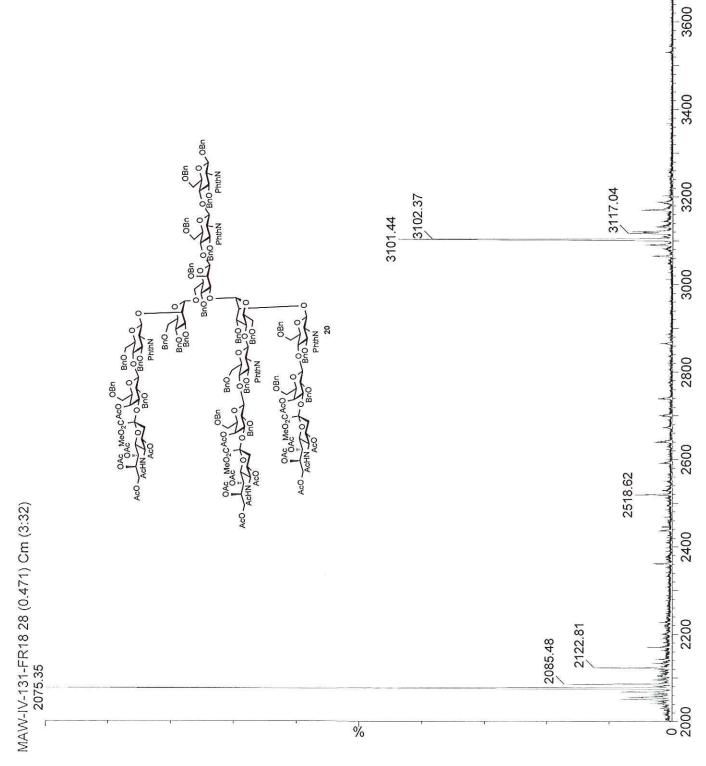




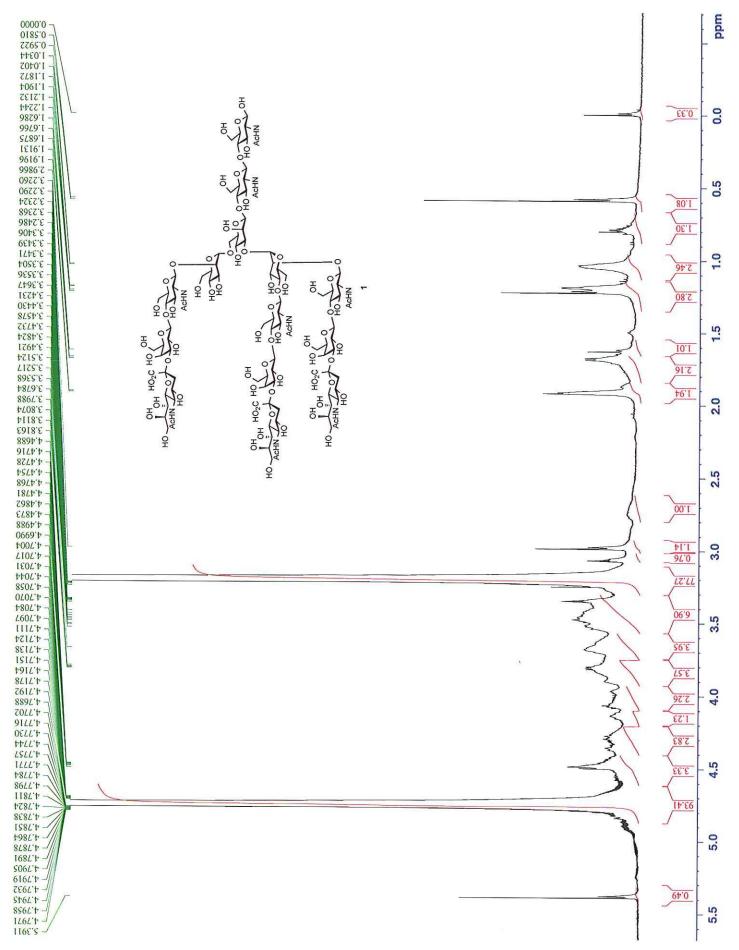








S78



Scan ES+ 6.71e6

- m/z

3800

