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Supplemental material 
 
Algorithm for computation of µ 
 
The vector µ, the ratio of activity levels for vehicle controls to activity levels for positive 
controls, is calculated as follows.  
 
For assays with plates in format 1 or format 2 (all assays other than the Jurkat cell assay), 
a vector of vehicle control values and a vector of positive control values are computed for 
each plate.  
 
The vehicle control vector consists of the 32 values from the column of vehicle controls 
(either column 3 or column 4, depending on format).  
 
The positive control vector also has 32 values, each of which is the minimum for one of 
the 32 rows on the plate of the positive control data point in column 3 or 4 (depending on 
plate format) and the activity values in the 44 wells used for study substances. For the 
assay using NIH 3t3 cells, the 100 µM tamoxifen positive control actually produces much 
less loss of viability than do the most active study substances at their highest 
concentrations, so it was necessary to take the minimum row value to get an accurate 
description of the minimal possible measured activity. The minimum row value was used 
for the other assays to account for possible similar effects. Also, for the NIH 3T3 assay, 
the strong responses occurred mostly only for the two highest concentrations, so only the 
values from plates 15 and 16 (containing the two highest concentrations) were used. For 
the other assays, all plates were used. 
 
For each of the 2 (for the NIH 3T3 assay) or 18 (other assays in format 1 or 2) plates used, 
the ratio (vehicle control activity/positive control activity) was calculated. The log of that 
ratio was regressed against a V-shaped length-32 vector [16 15 … 2 1 1 2 … 15 16] plus 
an intercept term and the regression fit was used as the value of µ in the algorithm. 
Because there are some positive control wells with very low values, there are a few points 
where the neutral:positive ratio is much lower than elsewhere on the plate. Using the log 
ratio reduces the effect of these low values. Figure S1 shows the actual and fitted values 
of the ratios.  
 
For the Jurkat cell assay, full columns of vehicle control data were not available. The µ 
for the calculations using that assay’s data was computed by computing the ratios for all 
other assays, as above, and then performing the regression, also as above, under the 
assumption that the Jurkat cell assay would be somewhat similar to the other assays. 
 
Effects of varying cutoff in parameter-reduction step 
 
This section considers how the results of the model vary when the p-cutoff parameter 
from step 7 of the optimization algorithm is allowed to vary. Results will be given for 
cutoffs of p=0.05, and 0.05/1408, as well as for a model with no cutoff.  
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Quality of fit  
 
The quality of fit can be studied by looking at the value of the error standard deviation σ. 
Table 1 shows ratios of the value of σ for a given cutoff value to the σ from the runs with 
no cutoff. The ratio increases as the cutoff decreases. This is to be expected since the 
cutoff is a constraint on the optimization and decreasing the cutoff makes the constraint 
more stringent, thereby reducing the number of parameters available to fit the data. 
 
Strength, significance, and activity classification of modeled responses 
 
Tables 2-4 give measures of the computed significance of the modeled concentration-
response and the strength of that response. Tables 2 and 3 show that the number of 
responses significant in the model results drops as the cutoff becomes stricter. (The third 
columns of tables 2 and 3 are identical. In step 7, all substances with p-values over the 
cutoff are forced to have v=0. Thereafter, the p-values for those substances are all 1. So 
when looking at the p-values at the end of the optimization, no p-values can be between 
the cutoff value and 1. Thus any response significant at p<0.05 with cutoff 0.05/1408 is 
also significant at p<0.05/1408.)  Table 4 shows that over half responses for each assay 
except the NIH 3T3 assay are forced to have v=0 when the cutoff is 0.05. (When there is 
no cutoff, no responses have v exactly = 0, though some are very close.) However, as 
Table 5 shows, the number of substances classified as active does not change as much 
when the cutoff changes. Table 6 shows the classification by response strength and 
activity over all assays for each cutoff level. The main effect of increasing the strictness 
of the cutoff is to move responses from the “weak and not active” category into the “no 
response” category.  
 
Comparison of replicates 
 
Table 7 shows the correlation of the parameters v, k, and n and of the response at the 
highest concentration for the duplicate substances across all assays when the value of the 
p-cutoff is varied. (In all cases, “correlation” refers to the Pearson correlation 
coefficient.) The correlation is computed for duplicate pairs for which both duplicates are 
classified as active. The correlation of v changes hardly at all, while the other correlations 
increase slightly as the cutoff becomes stricter. Table 8 shows the concordance between k 
values as discussed in the main text. The concordance increases slightly as the cutoff 
becomes stricter.  
 
Parameter limits 
 
Table 9 shows how often the Hill function parameters were at their upper or lower 
limiting values in the optimization algorithm. Making the p-cutoff stricter decreases the 
number of v values at the lower limit, since it forces nonsignificant responses to zero and 
most of the fits with v at the small lower limit are nonsignificant. Because the criteria for 
classification as active includes a requirement for strength of response, no fit classified as 
active has v at the lower limit. Fits with v at the upper limit of 1 tend to be the stronger 
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concentration responses, which are less likely to be forced to zero, so the number of such 
fits changes less with the cutoff. Making the p-cutoff stricter also decreases the number 
of k and n values at either the upper or lower limits. The change is less for the active fits. 
Many n values for the active fits are at the upper limit. In some cases, the concentration-
response curve has a number of points with more or less zero response, followed by only 
one high response at the highest concentration or two nearly identical responses at the 
two highest concentrations. In those cases, where the concentration spacing in the 
experiment leaves out points with intermediate response, there is really not enough 
information to accurately estimate the Hill shape parameter n, which can become 
arbitrarily large and still fit the data well.  
 
 
Simulation studies 
 
A simulation study was carried out to examine the performance of the algorithm under 
simulated conditions where the “true” values of the study parameters are known.  
 
The concentration-response model used in the simulation was the same as that used in the 
study (equation (3)), but the simulation used 96-well plates (8 rows by 12 columns). 
Using a smaller plate reduces the time needed to perform the optimization of model 
parameters and makes it feasible to run multiple simulations. The first column in the 
simulated plate was of vehicle control data. The ratio µ of vehicle/positive control values 
was fixed to be 10 for all rows, rather than varying across rows as in the actual data 
analysis, and it was assumed to be a known value, rather than being calculated before the 
parameter optimization. This was done because it was thought that the effects of varying 
µ were not an important part of how well the analysis performs in terms of sensitivity and 
specificity. The simulated data were generated for 15 plates with the same concentration 
levels as were used in the actual screening.  
 
Simulated data were generated according to equation (3)  (for the concentration-response 
model) and then error was added (as in equation (6)). The concentration-response model 
requires parameters for the plate effects (row and column factors α and γ) and the 
concentration-response (Hill function parameters v, k, and n). The error added was 
normally distributed with mean 0 and σ=100. 
 
The row and column factors α and γ were computed randomly for each plate.  
 
For α, generate uniform random variables ( )2100,1900~0 Uf , ( )2,2~1 −Uf , and 
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relative to those in the first column. These formulas generate a control response which is 
higher on the edges than on the interior of the plate. The location of the lowest control 
response on the plate, the range between the highest and lowest responses, and the overall 
strength of the control response vary depending on the values of the random variables. 
 
The parameters for the Hill function concentration-response model were generated in a 
multistep process. First, the response at maximum concentration was generated according 
to an empirical distribution resembling that found in the model results when run with no 
cutoff in the parameter-reduction step (step 7). That distribution is shown in Figure S2. 
This distribution is a discrete distribution with 88 elements. The distribution was not 
randomly sampled; instead, each element of the distribution was used once. 
 
Next, the parameters n and v were randomly generated for each of the 88 responses, with 
distributions chosen to resemble those seen in the model results. Finally, k was chosen for 
each response, with k calculated to give the chosen response at maximum dose given the 
generated values of v and n. This gives 88 sets of parameters (v, k, n). The same 
parameters were used in 100 runs of the simulation, with the well locations corresponding 
to the parameter triplets randomized for each run. In each of the 100 runs, the 
optimization was performed with no parameter reduction step (step 7) or with a p-value 
cutoff of 0.05 or 0.05/1408 in the parameter reduction step. The model results include 
predicted Hill function parameters as well as p values from the likelihood ratio test.  
 
A simulation was also performed to examine the effects of replication on the performance 
of the high throughput screening using the given model. In this simulation, each 
simulated experiment had three plates at each concentration level. The Hill function 
parameters were generated as above and were the same for each of the three plates in 
each of the 100 runs of the simulation, but the added normal error and the plate effects 
(row and column factors α and γ) were generated separately for the replicates. The 
optimization was the same as described in the main text, except that the Hill parameters 
for all three plates were identical and were optimized simultaneously. 
 
To examine the effects of confounding between concentration-response effects and plate 
location effects, simulations with one or three plates per concentration level were also 
carried out with stronger simulated responses. Those simulations were the same as 
described above except for the choice of response at maximum concentration. The 
highest 44 fixed values from the discrete maximum-response distribution shown in 
Figure S2 were each used twice to give 88 non-zero responses for the non-control cells of 
the simulated 96-well plate. The results from these simulations are referred to under the 
heading “high response” below. 
 
Sensitivity and specificity 
 
The sensitivity (fraction of true positive responses predicted as positive) and specificity 
(fraction of true negative responses predicted as negative) for the simulation under 
various conditions are shown in Table 10. A true positive is a substance with true Hill 
parameter v>0; a true negative has true v=0. A predicted positive is a substance with p 
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value (from the likelihood ratio test) less than a given test threshold and a predicted 
negative is one with p-value greater than or equal to the threshold. Two run parameters 
can be varied: the cutoff used in the parameter reduction step (step 7 of the optimization) 
and the p-value threshold for the test of significance. Reducing the test threshold can only 
have the effect of reclassifying predicted positives as predicted negatives. Doing so can 
keep the sensitivity the same, or decrease it; it keeps the specificity the same, or increases 
it. For the “high response” results, there are no true negative results, so there can be no 
measure of specificity. 
  
With no cutoff or with cutoff 0.05, changing the threshold from 0.05 to 0.05/1408 in this 
simulation greatly increases the specificity while producing a smaller decrease in the 
sensitivity. Decreasing the cutoff value from no cutoff to 0.05 to 0.05/1408 also decreases 
the sensitivity and increases the specificity. The sensitivity and specificity values from 
the simulation with 3 replicates are about the same as or noticeably better than those from 
the simulation with only 1 replicate. The simulations with the high response show a 
somewhat greater sensitivity than the others.  
 
 
Correlation of parameters 
 
Table 11 shows the correlation of parameters, over 100 simulation runs, between the 
optimized parameters from the simulation and the parameters used to generate the 
simulated data. When all of the positive responses are used or only the weakest responses 
are excluded in the correlation calculation, the correlation is much greater for v and the 
response at high concentration than for k. The correlation for n is better than that for k but 
not as high as for the other two variables. This pattern changes when only the strongest 
responses are considered. In that case, k has the highest correlation. The correlations from 
the 3-replicate simulation are generally nearly the same as or higher than those from the 
study with 1 replicate. The correlations for the “high response” simulations are mostly 
less than those from the other simulations. This is especially noticeable for the v 
parameter. It seems that the effect of using only substances with positive concentration-
responses is to reduce the ability of the method to correctly model the parameters of the 
concentration-response curve. Examination of the same correlations using parameters 
from the algorithm with no p-cutoff  (results not shown) also shows a reduction in the 
correlations, though not to the same extent. The p-cutoff in the parameter reduction step 
of the algorithm acts to reduce the number of false positives in the algorithm and helps to 
distinguish between true plate location effects and the effects of noise by forcing small 
and therefore nonsignificant responses to zero. This effect cannot happen if there are no 
true negatives in the experiment. The simulation shows that, in a sense, the non-
responding substances on the plate can act like additional neutral controls. 
 
Another measure of accuracy of fit of the parameters is the fraction of fitted k values 
which are within a factor of 2 of the true k parameters. This fraction was computed for all 
true positives classified as positive by the fitting algorithm. For the simulation with 1 
replicate, including inactive substances, 0.70 of the k values were within a factor of 2 of 
the true values. This decreased to 0.68 for the high-response simulation. For the 



 26 

simulation with 3 replicates, the fractions of similar k values were 0.67 and 0.69. These 
values are in the range of the same similarity measure for the duplicate substances in the 
fits to the real data.  
 
Comparison of fits to two normalizations 
 
Normalized data for the 15 assays were obtained from the NCGC and fitted using the Hill 
function model 
 

( ) ( )
nn

n

dk
dvvvdf

+
−

+= 0
0  

 
for each substance/assay combination. Points indicated as outliers in the analysis were 
not used in the fit.  
 
Figure S3 shows the normalized data values from the NCGC and from this normalization. 
Data from this normalization use the same p-cutoff value (0.05/1408) as in the main 
paper. 
The normalized data values were very similar. The largest difference is at the lower end 
of responses, where this algorithm’s normalization using plate location effects tends to 
cluster values more closely around a value of -1 for full suppression of response, while 
the previous analysis based on plate control values includes more highly negative 
responses, presumably because the response for a given compound may be noticeably 
lower than that for the positive control on a given plate.  
 
Figure S4 compares the fitted values from the fit to the NCGC normalized data and the 
values from the fit using this paper’s normalized data. The fitted values are similar for the 
two normalizations, with the exception of some values where the reduction of parameter 
space step in this algorithm fixes the fitted response at 0. 
 
It is possible for multiple sets of parameters to give fits of statistically equivalent quality 
to a given data set, i.e., there may be several parameter sets whose likelihoods are not 
significantly different using the likelihood ratio test. The fit to the NCGC normalized data 
was performed with k and n fixed at the values from the current fit, or with v, k, and n 
fixed at the values from the current fit. The likelihood ratio test was used to compare 
those constrained fits to unconstrained fits (ones which did not fix the values of v, k, and 
n). Table 12 shows the fraction of fits (out of all substance/assay combinations which this 
paper’s algorithm classified as active) for which the difference between the constrained 
and unconstrained fits was significant (p<0.05/1408 using the likelihood ratio test). The 
fractions do not vary much as the cutoff value in the algorithm changes. The fraction of 
significant differences here is much less than the fraction of triplicate HepG2 substances 
which could not be described by identical parameter values (see the main section); of the 
substances in the HepG2 study, 26% could not be fitted by identical parameter values, 
while for the two normalizations only 14-17% could not be fitted by identical values. 
With k and n fixed, 17% of the HepG2 study substances could not be fitted equally well, 
while for the different normalizations only 3.9-4.6% could not be fitted equally well.  
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For each assay, an error standard deviation σ and the significance of the concentration-
response for each compound were computed by comparing the fit using the Hill model 
above to a fit with v-v0=0, using a likelihood ratio test. This significance was calculated 
both with and without the final data point. An activity measure was computed as in the 
main section of this paper, using the significance values, response strength, and 
parameter values. A concordance measure was calculated as the fraction of 
concentration-responses which were active in both assays or inactive in both. Table 13 
shows the concordance values. They show little variation by p-cutoff. The majority of 
nonconcordant results (at least 71%, depending on p-cutoff) were fits that were classified 
as active in this paper’s analysis but not in the fit to the NCGC normalized data. 
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Tables for supplemental material 
Table 1  
 
Assay Cutoff level  
 p<0.05 p<0.05/1408 
N2a 1.061 1.178 
HUV-EC-C 1.085 1.135 
NIH 3T3 1.060 1.163 
H-4-IIE 1.065 1.120 
mesenchymal 1.063 1.169 
BJ 1.068 1.132 
Jurkat 1.062 1.149 
MRC-5 1.079 1.170 
SK-N-SH 1.078 1.149 
HEK 293 1.074 1.133 
SH-SY5Y 1.071 1.145 
Primary renal 
proximal tubule 

1.080 1.140 

HepG2 #1 1.071 1.144 
HepG2 #2 1.063 1.170 
HepG2 #3 1.069 1.140 
 
Table 2   
 
Assay Cutoff 

level 
  

 no 
cutoff 

p<0.05 p<0.05/1408 

N2a 472 433 277 
HUV-EC-C 330 255 158 
NIH 3T3 894 635 374 
H-4-IIE 460 459 380 
mesenchymal 455 400 258 
BJ 437 381 251 
Jurkat 438 439 385 
MRC-5 501 379 204 
SK-N-SH 404 366 264 
HEK 293 356 348 315 
SH-SY5Y 534 453 298 
Primary renal 
proximal 
tubule 

371 325 232 

HepG2 #1 424 399 273 
HepG2 #2 519 489 290 
HepG2 #3 416 387 263 
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Table 3   
 
Assay Cutoff 

level 
  

 no 
cutoff 

p<0.05 p<0.05/1408 

N2a 341 323 277 
HUV-EC-C 183 172 158 
NIH 3T3 594 431 374 
H-4-IIE 368 389 380 
mesenchymal 299 288 258 
BJ 300 293 251 
Jurkat 370 385 385 
MRC-5 307 236 204 
SK-N-SH 287 284 264 
HEK 293 298 314 315 
SH-SY5Y 338 320 298 
Primary renal proximal 
tubule 

252 245 232 

HepG2 #1 289 297 273 
HepG2 #2 369 355 290 
HepG2 #3 290 291 263 
 
Table 4  
 
Assay Cutoff 

level 
 

 p<0.05 p<0.05/1408 
N2a 725 1097 
HUV-EC-C 1095 1248 
NIH 3T3 701 1024 
H-4-IIE 841 1023 
mesenchymal 783 1112 
BJ 933 1146 
Jurkat 717 1005 
MRC-5 899 1188 
SK-N-SH 907 1136 
HEK 293 869 1084 
SH-SY5Y 864 1108 
Primary renal proximal tubule 965 1165 
HepG2 #1 881 1123 
HepG2 #2 758 1105 
HepG2 #3 931 1138 
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Table 5  
  
 
 Assay Cutoff level   
 no cutoff p<0.05 p<0.05/1408 
N2a 155 153 140 
HUV-EC-C 97 93 91 
NIH 3T3 282 224 196 
H-4-IIE 211 218 208 
mesenchymal 136 140 136 
BJ 170 169 166 
Jurkat 226 228 224 
MRC-5 120 116 110 
SK-N-SH 171 176 172 
HEK 293 170 175 181 
SH-SY5Y 217 212 203 
Primary renal 
proximal tubule 

121 118 114 

HepG2 #1 175 175 170 
HepG2 #2 186 186 168 
HepG2 #3 164 161 150 
Total 2601 2544 2429 
 
 
Table 6  
Cutoff No loss of 

viability 
Weak, 
not 
active 

Weak, 
active 

Medium, 
not 
active 

Medium, 
active 

Strong, 
not 
active 

Strong, 
active 

No cutoff 10586 7378 505 527 989 60 1075 
p<0.05 14972 3005 459 558 983 63 1080 
p<0.05/1408 16898 1161 400 576 944 76 1065 
 
 
Table 7  
 
Cutoff Number of 

duplicate 
pairs (out of 
825) with 
both 
duplicates 
active 

v k n high-
concentration 
response 

no cutoff 103 0.90 0.76 0.70 0.90 
p<0.05 103 0.89 0.79 0.72 0.92 
p<0.05/1408 103 0.91 0.79 0.73 0.93 
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Table 8  
 
Cutoff Duplicates with 

at least 1 
significant 

 Duplicates with 
both significant 

 

 Ratio < 2 Ratio < 10 Ratio < 2 Ratio < 10 
no cutoff 0.51 0.66 0.76 0.98 
p<0.05 0.53 0.67 0.78 0.98 
p<0.05/1408 0.54 0.69 0.78 0.99 
 
 
Table 9  
 
 v low v high k low k high n low n high 
no cutoff 0.13 0.093 0.11 0.059 0.10 0.49 
0.05 0.033 0.084 0.037 0.034 0.038 0.14 
0.05/1408 0.0054 0.075 0.0056 0.015 0.0059 0.066 
Actives       
no cutoff 0 0.34 0.038 0.033 0.039 0.32 
0.05 0 0.36 0.032 0.031 0.031 0.27 
0.05/1408 0 0.37 0.015 0.017 0.014 0.22 
 
Table 10  
 
Cutoff Test 

threshold for 
p 

1 replicate  3 
replicates 

 

  Sensitivity Specificity Sensitivity Specificity 
none 0.05 0.98 0.26 0.97 0.48 
none 0.05/1408 0.87 0.69 0.91 0.84 
0.05 0.05 0.90 0.58 0.94 0.74 
0.05 0.05/1408 0.75 0.81 0.85 0.90 
0.05/1408 0.05/1408 0.53 0.98 0.80 0.96 
High 
response 

     

none 0.05 0.96 n/a 0.95 n/a 
none 0.05/1408 0.86 n/a 0.88 n/a 
0.05 0.05 0.95 n/a 0.94 n/a 
0.05 0.05/1408 0.85 n/a 0.87 n/a 
0.05/1408 0.05/1408 0.69 n/a 0.83 n/a 
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Table 11  
 
X 1 

replicate 
   3 

replicates 
   

 v k n Rmax v k n Rmax 
0 0.82 0.33 0.67 0.98 0.85 0.42 0.77 0.99 
0.1 0.82 0.33 0.68 0.98 0.84 0.43 0.80 0.99 
0.3 0.76 0.73 0.80 0.97 0.83 0.70 0.89 0.99 
0.5 0.75 0.94 0.90 0.94 0.80 0.94 0.86 0.98 
0.8 0.73 0.99 0.95 0.83 0.86 1.00 0.70 0.92 
High 
response 

        

0 0.81 0.29 0.61 0.97 0.77 0.34 0.67 0.99 
0.1 0.81 0.31 0.63 0.97 0.78 0.34 0.71 0.99 
0.3 0.62 0.58 0.87 0.96 0.84 0.91 0.84 0.98 
0.5 0.55 0.95 0.92 0.95 0.77 0.93 0.88 0.97 
0.8 0.59 0.99 0.94 0.83 0.78 0.99 0.95 0.90 
 
Table 12 Comparison of normalizations: Fraction of substance/assay combinations for 
which a fit to the NCGC normalized data with free parameters was significantly better 
than one with two or three parameters fixed at the value from this paper’s fit to the data 
 
p-cutoff for this paper’s fit Fraction significant  
 k and n fixed v, k, and n fixed 
no cutoff 0.039 0.14 
0.05 0.041 0.15 
0.05/1408 0.046 0.17 
 
Table 13: Comparison of normalizations: Concordance between the fit to the NCGC 
normalized data and fit using this paper’s model.  
 
p-cutoff for this paper’s fit Concordance 
no cutoff 0.9598 
0.05 0.9612 
0.05/1408 0.9633 
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Table Captions for Supplemental Material 
 
Table 1 Effects of varying cutoff: Ratio of σ for a given assay and cutoff to σ for the 
assay with no cutoff. 
 
Table 2  Effects of varying cutoff: Number of substances with concentration-response 
significant at p<0.05 with v>0 
 
Table 3  Effects of varying cutoff: Number of substances with concentration-response 
significant at p<0.05/1408 with v>0 
 
Table 4 Effects of varying cutoff: Number of responses with v forced to equal 0 
 
Table 5 Effects of varying cutoff: Number of substances classified as active 
 
Table 6 Effects of varying cutoff: Classification by activity and strength of response 
 
Table 7 Effects of varying cutoff:  Concordance and correlation measures. Correlations 
are for the given parameter, between duplicates in which both pairs are significant 
 
Table 8 Effects of varying cutoff: Concordance of k values 
 
Table 9 Fraction of parameter values found to be equal to the high or low constraints, for 
all data and for substances classified as active 
 
Table 10 Simulation: Effects of varying cutoff: sensitivity (fraction of positives predicted 
as positive) and specificity (fraction of negatives predicted as negative) for various 
combinations of cutoff level and p-value used for test.  A prediction is counted as a 
positive if the p-value (from the test of the null hypothesis v>0) is less than the listed 
value. “High response” indicates results from the simulation using only positive 
concentration-responses. 
 
Table 11 Simulation: Correlation of modeled and true parameters across simulation 
results. Correlation is taken for substances with predicted response with v>0, true 
k<0.092, and true loss of viability at highest concentration > X. Rmax is the response at 
the highest concentration, which is a function of v, k, and n. Results are from simulations 
with cutoff of p<0.05/1408 for the parameter reduction step. “High response” indicates 
results from the simulation using only positive concentration-responses. 
 
Table 12 Comparison of normalizations: Fraction of substance/assay combinations for 
which a fit to the NCGC normalized data with free parameters was significantly better 
than one with two or three parameters fixed at the value from this paper’s fit to the data 
 
Table 13: Comparison of normalizations: Concordance between the fit to the NCGC 
normalized data and fit using this paper’s model.  
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Figure Captions for Supplemental Material 
 
Figure S1 Data and fitted values of µ, the ratio of neutral to positive control responses 
 
Figure S2 Distribution of the response at high concentration used when generating data in 
the simulation study 
 
Figure S3 Normalized data values from the NCGC normalization and this paper’s 
normalization, on the scale where 0 is no response and -1 is full loss of viability. Each dot 
is one data point 
 
Figure S4 Fitted values from the Hill function model, from fits to both sets of normalized 
data, on the scale where 0 is no response and -1 is full loss of viability. Each dot is one 
data point. 
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