Isolation and characterization of a cDNA coding for human factor IX

(cDNA hybridization/DNA sequence analysis/blood coagulation)

KOTOKU KURACHI AND EARL W. DAVIE

Department of Biochemistry, University of Washington, Seattle, Washington 98195

Contributed by Earl W. Davie, July 29, 1982

ABSTRACT A cDNA library prepared from human liver has been screened for factor IX (Christmas factor), a clotting factor that participates in the middle phase of blood coagulation. The library was screened with a single-stranded DNA prepared from enriched mRNA for baboon factor IX and a synthetic oligonucleotide mixture. A plasmid was identified that contained a cDNA insert of 1,466 base pairs coding for human factor IX. The insert is flanked by G-C tails of 11 and 18 base pairs at the 5' and 3' ends, respectively. It also included 138 base pairs that code for an aminoterminal leader sequence, 1,248 base pairs that code for the mature protein, a stop codon, and 48 base pairs of noncoding sequence at the 3' end. The leader sequence contains 46 amino acid residues, and it is proposed that this sequence includes both a signal sequence and a pro sequence for the mature protein that circulates in plasma. The 1,248 base pairs code for a polypeptide chain composed of 416 amino acids. The amino-terminal region for this protein contains 12 glutamic acid residues that are converted to γ -carboxyglutamic acid in the mature protein. These glutamic acid residues are coded for by both GAA and GAG. The arginyl peptide bonds that are cleaved in the conversion of human factor IX to factor IX_a by factor XI_a were identified as Arg^{145} -Ala¹⁴⁶ and Arg^{180} -Val¹⁸¹. The cleavage of these two internal peptide bonds results in the formation of an activation peptide (35 amino acids) and factor IX_a, a serine protease composed of a light chain (145 amino acids) and a heavy chain (236 amino acids), and these two chains are held together by a disulfide bond(s). The active site residues including histidine, aspartate, and serine are located in the heavy chain at positions 221, 270, and 366, respectively. These amino acids are homologous with His⁵⁷, Asp¹⁰², and Ser¹⁹⁵ in the active site of chymotrypsin. Two potential carbohydrate binding sites (Asn-X-Thr) were identified in the activation peptide, and these were located at Asn¹⁵⁷ and Asn¹⁶⁷. The homology in the amino acid sequence between human and bovine factor IX was found to be 83%.

Factor IX (Christmas factor)* is a vitamin K-dependent plasma protein that plays an important role in the middle phase of blood coagulation (1). Individuals lacking this protein may bleed spontaneously into their skin, soft tissues, and joints, and this bleeding is often serious in patients after minor injury. A deficiency of factor IX (Christmas disease or hemophilia B) affects primarily males because it is transmitted as a sex-linked recessive trait. Factor IX has been extensively purified from bovine and human plasma (2, 3). At the present time, approximately 20% of the amino acid sequence for the human molecule has been determined (4), and the entire sequence for the bovine molecule has been established (5). Both proteins are single-chain glycoproteins (M_r 55,000–57,000) with an amino-terminal sequence of Tyr-Asn-Ser-Gly-Lys. The human and bovine proteins also contain 12 γ -carboxyglutamic acid residues in their amino-terminal regions. During the coagulation process, factor IX is converted to factor IX_a (a serine protease) by factor XI_a (6). This reaction requires a divalent cation, such as Ca^{2+} . Factor IX_a then converts factor X (Stuart factor) to factor X_a in the presence of factor VIII_a (activated antihemophilic factor), phospholipid, and Ca^{2+} .

In this manuscript, we describe the identification and structure of a recombinant plasmid containing a cDNA coding for the mature protein found in human plasma. This plasmid also codes for a leader sequence on the amino-terminal portion of factor IX.

MATERIALS AND METHODS

Preparation of Probes for Screening the cDNA Library. Two different radiolabeled DNA probes were used in these experiments. One probe was prepared from baboon liver mRNA that was enriched for factor IX by the following procedures. A young male baboon (body weight, 5 kg) was injected, over a period of 48 hr, with a total of 73 mg of affinity-purified goat antibodies to human factor IX. This procedure reduced the circulating factor IX coagulant activity to less than 1% of normal. The baboon was then sacrificed and the liver was rapidly removed and frozen in liquid nitrogen. Poly(A)-containing RNA was isolated (7) and assayed for factor IX with a rabbit reticulocyte lysate (8) by specific immunoprecipitation of the radiolabeled product (9). By this assay, the liver mRNA level for factor IX was increased approximately 5-fold when compared with that of a control animal (unpublished data). The mRNA for factor IX was enriched another 20-fold by specific immunoprecipitation of the liver polysomes with affinity-purified goat antibodies to human factor IX by the procedure of Gough and Adams (10). The final factor IX mRNA level was approximately 2% of the total mRNA as estimated by the reticulocyte translation assay. This mRNA was then used to synthesize a radiolabeled cDNA in the presence of dATP, dGTP, $[\alpha^{-32}P]$ dCTP, $[\alpha^{-32}P]$ TTP, reverse transcriptase, and oligo(dT) as primer (11). The specific activity of the cDNA was 5×10^7 cpm/µg. Goat antibodies to human factor IX were kindly provided by Walter Kisiel in our laboratory.

The second probe was a mixture of synthetic DNAs 14 nucleotides in length and contained 12 different DNA sequences. These sequences were complementary to the amino acid sequence of Met-Lys-Gly-Lys-Tyr. The DNA mixture contained the following sequences:

$$T-A-\binom{T}{C}-T-T-\binom{C}{T}-C-C-\binom{T}{C}-T-T-C-A-T.$$

The DNA mixture was radiolabeled with T4 kinase and $[\gamma$ -

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

^{*} The nomenclature for the various clotting factors is that recommended by an international nomenclature committee (24).

³²P]ATP to yield a specific activity of approximately 4×10^8 cpm/ µg (11). The synthetic DNA mixture was purchased from P-L Biochemicals, and the T4 kinase was a product of Bethesda Research Laboratories. Approximately 18,000 transformants were screened by a modification of the method of Wallace *et al.* (12). The human liver cDNA library was kindly provided by S. L. C. Woo and T. Chandra and contained cDNA inserted into the *Pst* I site of plasmid pBR322. Four recombinant plasmids that hybridized strongly with the probe were isolated and purified by cesium chloride gradient centrifugation. DNA samples from the positive clones were then digested with *Pst* I, and the resulting fragments were analyzed by polyacrylamide gel electrophoresis. These inserts were also mapped by using restriction endonucleases (Bethesda Research Laboratories).

DNA Sequence Analysis. Restriction fragments were labeled at the 3' end with cordycepin 5'-[α -³²P]phosphate in the presence of terminal deoxynucleotide transferase under conditions specified by the manufacturer (New England Nuclear). They were also labeled at the 5' end with $[\gamma^{-32}P]$ ATP in the presence of T4 kinase after prior treatment of the DNA with bacterial alkaline phosphatase (Worthington) or by exchange of the 5'phosphate group of $[\gamma^{-32}P]$ ATP in the presence of T4 kinase (13). Labeled fragments were then subjected to base modification and cleavage as described by Maxam and Gilbert (13) and subjected to electrophoresis on 0.35-mm polyacrylamide gels containing 8.3 M urea. The majority (92%) of the nucleotide sequence was established by two or more sequence experiments, and approximately 80% was determined on both strands. DNA sequences were stored and analyzed by the computer programs of Staden (14, 15). These programs were adapted for use on a departmental computer facility by Jon Herriott.

RESULTS AND DISCUSSION

Four positive clones were identified from a human liver cDNA library of 18,000 recombinant plasmids by using as probes a synthetic oligonucleotide mixture and a single-stranded DNA prepared from enriched mRNA for baboon factor IX. With two of these plasmids, the cDNA was readily released by digestion with Pst I, yielding an insert of approximately 1,500 base pairs. In preliminary experiments, these two clones were found to be identical by restriction mapping. With the third and fourth plasmids, the cDNA insert was not released by Pst I digestion, indicating that only one of the cleavage sites for the restriction enzymes was reconstituted. These two plasmids were not examined further. The insert from the first clone, designated pHfIX1, was further mapped by restriction endonuclease digestion (Fig. 1). The strategy used in determining the complete nucleotide sequence of the insert is also illustrated in Fig. 1. Sites for cleavage and end-labeling were chosen from the detailed restriction map, and both 5' and 3' labeling methods were used.

The complete DNA sequence for the insert is shown in Fig. 2. The coding strand was used to number the DNA sequence which is presented in the same orientation as the ampicillinresistance gene of pBR322. The insert is composed of 1,466 base pairs and is flanked by G-C tails of 11 and 18 base pairs at the 5' and 3' ends, respectively. Nucleotides 12 through 149 correspond to a leader sequence of 46 amino acids. This leader sequence contains three potential methionine start sites located at positions -46, -41, and -39. It cannot be established from

FIG. 1. Strategy for determining the nucleotide sequence of the insert of plasmid pHfIX1. The region of the plasmid containing the insert is shown. The *Pst* I site corresponds to nucleotide 3,612 of pBR322. Restriction sites used for sequence determination are shown. The arrows indicate the direction and extent of sequence analysis.

the present data, however, whether one of these methionine residues or some methionine residue further upstream is the actual start site for the leader sequence. The methionine residues are then followed by a charged amino acid(s) (arginine at position -45 or glutamate at position -37) and a hydrophobic region rich in leucine, isoleucine, and tyrosine. These residues are typical of signal sequences found in most secreted proteins (16). The last two residues in the leader sequence (positions -2 and -1) are lysine and arginine. These residues occur just prior to the Tyr-Asn-Ser-Gly-Lys sequence which is the aminoterminal sequence of the mature protein circulating in plasma. Because the Arg-Tyr bond is not a typical cleavage site for signal peptidase (16), it appears likely that the newly synthesized factor IX in liver contains a pro leader sequence analogous to serum albumin (9, 17, 18). In serum albumin, the pro leader sequence is six amino acids in length and contains Arg-Arg adjacent to the amino-terminal residue present in the mature protein. Thus, it is possible that a similar situation exists in the case of factor IX. This suggests that a signal peptidase cleaves at a peptide bond further upstream from the Arg-Tyr sequence, such as the Ala-Asn sequence (positions -10 and -9), the Ala-Glu sequence (positions -21 and -20), or the Ser-Ala sequence (positions -22 and -21).

The mature protein for human factor IX is coded for by 1,248 base pairs (nucleotides 150 through 1,397) and is followed by a pair of adjacent stop codons, TAA and TGA. The noncoding sequence following the first stop codon is 48 base pairs in length. Although the cDNA sequence was primed with oligo(dT), the cDNA insert for this plasmid did not contain a poly(A) sequence at the 3' end. This is probably due to the action of a nuclease(s) during the construction of the double-stranded cDNA. The noncoding region on the 3' end contains the sequence A-A-T-T-A-A which could be involved in the synthesis or processing of mRNA (19).

The amino acid sequence predicted for the mature protein is also shown in Fig. 2. The amino acid composition of the mature human factor IX was determined to be as follows: Asp_{18} , Asn_{28} , Thr_{28} , Ser_{23} , Glu_{28} , Gln_{13} , Gla_{12} , Pro_{14} , Gly_{35} , Ala_{21} , Val_{35} , Met_3 , Ile_{21} , Leu_{21} , Tyr_{15} , Phe_{20} , Lys_{27} , His_9 , Arg_{16} , $\frac{1}{2}Cys_{22}$, and Trp_7 . The molecular weight for the protein free of carbohydrate was calculated as 47,079. This is equivalent to a molecular weight of 56,722 upon the addition of 17% carbo-

FIG. 2 (on following page). Complete nucleotide sequence of insert pHfIX1. The nucleotide sequence of the coding strand and the corresponding predicted amino acid sequence are also shown. The coding strand is inserted and numbered in the same orientation as the ampicillin-resistance gene of pBR322. The amino acid sequence corresponding to the entire mature protein is numbered 1–416, and the amino acid sequence that corresponds to the leader sequence is represented by the minus numbers in the opposite direction. The two arginyl peptide bonds (residues 145 and 180) cleaved during the activation of factor IX are shown by the heavy arrows.

	5	' ₆₍₁	Ме 1) АТ	-4 t Gli GCA	5 n Arj GCG	g Val CGT 20	Asn GAA(Met CAT (-40 Ile GATC 30	Met ATG	Ala GCA	Glu G A A 40	Ser TCA	-35 Pro CCA	Ser AGC 50	Leu CTC	Ile A T (Thr CAC	-30 Ile CAT 60	Cys CTG	Leu CCT1	Leu TTTA 70	Gly G G A	-25 Tyr T A T
с	Leu T	Le ACT 0	u Se: CAG	r Ala TGC	–20 a G1u TGA 90) ATG	Thr TACA	Val G T T 100	Phe TTT	-15 Leu CTT	Азр G А Т 110	His C A T	Glu GAA	Asn AAC 1	-10 Ala GCC 20	Asn A A C	Lys A A A	11e A A T 130	Leu TCT	-5 Asn GAA1	Arg C G G 140	Pro C C A	Lys A A G	Arg A G G
T 150	+1 Tyr A	Ası FAA	n Sen TTC	C G13 AGG 160	7 Lуз ТАА	Eeu ATT (Glu GGAA 170	Glu GAG	Phe TTT	10 Val G T T 10	Gln CAA BO	61y G G G	Asn AAC	Leu C T T 190	Glu G A G	Arg AGA	Glu GAA 200	Cys TG'	Met TAT(20 Glu GGAA 2	Glu GAA 10	Lys AAG	Cys TGT	Ser AGT 220
T	Phe T 7	Glu GA	Glu AGA 23	I Ale AGC 80	Arg ACG	30 Glu AGAA	Val AGTT 240	Phe T T T	Glu G A A	Asn A A C 250	Thr ACT	Glu G A A	Lys A A G 260	Thr ACA	Thr ACT	40 Glu G A A 2	Phe TTT 70	Trp TG	Lys GAA(Gln GCAG 280	Tyr T A T	Val G T T	Asp G A T 290	Gly GGA
G	Asp A 1	50 Glm C A	Сув GTG 300	Glu TGA	Ser GTC	Asn CAAT 310	Pro CCA	Cys TGT	Leu TTA 320	Asn A A T	Gly G G C	60 Gly G G C 33	Ser AGT 30	Cys TGC	Lys A A G	Авр G А Т 340	Авр G A C	Ile AT 1	Asın FAAT 350	Ser TCC	Tyr T A T	70 Glu GAA 36	Cys TGT 0	Trp TGG
т	Cys GT	Pro C C 370	Phe CTT	Gly TGG	Phe ATT: 380	Glu TGAA O	Gly GGA	80 Lys A A G 39	Asn AAC 90	Cys TGT	Glu G A A	Leu T T A 400	Asp GAT	Val GTA	Thr ACA 410	Cys TGT	Asn AAC	90 Ile A T 1 4	Lys CAAG 20	Asn AAT	Gly GGC	Arg A G A 430	Cys TGC	Glu G A G
c c	31n A G 440	Phe T T	Cys TTG	100 Lys FAA	Asn A A A 1 450	Ser IAGT	Ala G C T	Asp GAT 460	Asn A A C	Lys A A G	Val G T G 470	Val G T T	Cys T G C	110 Ser T C C 48	Cys TGT Ю	Thr ACT	Glu GAG	G1y G G A 490	Tyr TAT	Arg C G A	Leu C T T 500	Ala G C A	Glu G A A A	120 Asn A A C
G C	in AG	Lys A A (Ser GTC	Cys CTG 520	Glu ГСАЯ	Pro A C C A	Ala G C A 530	Val G T G	Pro C C A	130 Phe T T T 54	Pro C C A ' O	Cys IGT	Gly GGA	Arg A G A 550	Val G T T	Ser TCT	Val G T T 560	Ser TCA	Gln CAA	140 Thr A C T 51	Ser TCT 70	Lys A A G	Leu CTCZ	Thr A C C 580
A C	rg G T		G1u CGA (59(Ala GGC1)	Val GTI	150 Phe TTTT 60	Pro CCT 00	Asp GAT	Val G T G	Asp G A C 1 610	Tyr ГАТ(Val GTA	Asn A A T 620	Pro C C T	Thr ACT	Glu GAA 63	Ala GCT O	Glu GAA	Thr ACC	Ile A T T 6 40	Leu TTG	Asp GATA	Asn A A C <i>A</i> 650	Ile ATC
T A (hr C T	Gln CAA	G1y G G C 660	Thr ACC	Gln C A A	Ser TCA 670	Phe TTT.	Asn A A T	Asp G A C 1 680	Phe ГТСЛ	Thr ACT(Arg C G G G 690	Val G T T O	Val G T T (Gly GGT	Gly G G A 700	Glu G A A	Asp G A T 210	Ala G C C 710	Lys A A A	Pro C C A	Gly G G T (72(Gln C A A T)	Phe T C
P1 C (ro C T	Тгр ТСС 730	Gln CAG	Val G T T 220	Val G T T 740	Leu TTG	Asn AAT	Gly G G T . 750	Lys AAA(O	Val G T T (Asp GATO 7	Ala 5 C A 1 60	Phe TTC	Cys TGT(230	Gly G G A (770	Gly G G C I	Ser ICT	Ile ATC 71	Val GTT BO	Asn A A T	Glu GAA	Lys A A A 1 790	Trp GGA	11e T T 240
Va G 1 8	al [A 300	Thr ACT	Ala GCT	Ala GCC 8	His CAC 10	Cys TGT	Val GTT(Glu G A A A 820	Thr ACTO	G1y G T C 250	Val 5 T T A 830	Lys AAA	Ile ATT,	Thr ACAC 840	Val GTT()	Val GTC(Ala GCA	Gly G G T 850	Glu G A A	His C A T 260	Asn AAT 860	Ile ATTO	Glu G A G G	Glu A G
Th A C 870	nr CA	Glu G A A	His CAT	Thr ACA 880	Glu GAG	Gln CAA 270	Lys AAG(890	Arg CGAA	Asn AATO	Val 5 T G A 900	Ile TTC	Arg G A G	Ala GCA S	11e A T T / 910	Ile ATT(Рго ССТС 280	His C A C 920	His C A C	Asn A A C	Tyr TAC 93	Asn AAT 0 [.]	Ala G C A G	Ala : C T A 9	11e T T 40
As A A	in T	Lys AAG 290	Tyr T A C 950	Asn AAC	His C A T	Asp GAC 96	Ile ATT(O	Ala GCCC	Leu CTTC 9	Leu TGG 70	Glu A A C	Leu TGG 300	Авр 5 АС (980	Glu GAAC	Pro CCT	Leu TA (990	Val G T G)	Leu C T A	Asn A A C 1	Ser AGC 000	Tyr T A C (Val G T T A 310	Thr C A C 1010	Pro C T
II A T	e T	Cys IGC 10:	Ile ATT 20	Ala G C T	Asp GAC]	Lys A A G 1030	Glu GAAI	Туг ГАСА 320	Thr CGA 1040	Asn ACA	Ile TCT	Phe T C C 1050	Leu TCA	Lys AAI	Phe TTG 10	Gly G A T 60	Ser CT	Gly G G C 330	Tyr T A T 1070	Val G T A J	Ser AGT(Gly G G C T 1080	Trp GGG	Gly G A
Ar A G	g A (1(Va1 G T C 090	Phe. TTC	His C A C 340	Lys A A A 1100	G1y G G G G	Arg AGAT	Ser C A G 1110	Ala CTT	Leu TAG	Val 1 TTC 11	Leu TTC 20	Gln AGI	Туг АСС 350	Leu T T A 1130	Arg GAG	Val ; T T (Pro C C A 114	Leu CTT 0	Val G T T (Asp GACC 11	Arg GAG .50	Ala CCA	Thr CA
Су Т G 11	s T (60	Leu CTT	Arg C G A	Ser TCT 117	Thr ACA 70	Lys AAG ⁷	Phe TTCA 11	Thr CCA 80	Ile TCT	Tyr ATA 370	Asn A ACA 1190	Asn I ACA	Met TGT	Phe T C T 1200	Cys GTG	Ala C T G	G1y G C 1 12	Phe T T C 210	His CAT	Glu GAA(380	G1y G A C 1220	Gly A	Arg A GAG	Asp AT
Sei T C 1230	r A T	Cys GT	Gln C A A 1	Gly G G A 240	Asp G A T .	Ser AGTG 390	Gly G G G 1250	Gly I GAC	Pro H CCC	His V ATG 1260	al I TTA	hr G CTG	Glu AAG 12	Val (TGG 70	Glu (AAG	G1y 1 GGA 1 400	Thr C C A 1280	Ser GT1	Phe TTCT	Leu T A A 1290	Thr CTG	GIY I GAA	.1e I TTA 130	TT 0
Sen AG	ст	Trp G G 410	G1y G G T 1310	Glu GAA	Glu GAG	Cys F G T G 1320	Ala P CAA	Met I TGA	Lys (A A G 133	GCA GCA 80	ys T AAT	yr G ATG 1	G A A G A A 1340	LIE T TAT	IYF 1 ATA	CCA 1350	.ys AGG	VAI TAJ	5er CCCC 13	лтg : G G T :60	ATG	TCA TCA	ып Т АСТ 370	гр G G
Ile A T	TA	Lys A G 138	Glu GAA O	Lys AAA.	Thr ACAA 13	Lys AAGC 390	Leu 1 TCA	Thr S CTT J	ТОР ААТ 1400	GAA	AGA	T G G 1410	ATT	тсс	AAG 142	стт 20	ААТ	тся	АТТ G 1430	GAA	ТТG	A A A 1440	ATT	A A
<i>~</i> ·							~ ~																	

САССССССССССССССССССС 1450 1460 3'

FIG. 2. (Legend appears at the bottom of the preceding page.)

hydrate (4). Human factor IX contains two potential amino acid sequences for attachment of carbohydrate chains. These two sequences (Asn-X-Thr) were found at asparagine residues 157 and 167 and are located in the activation peptide. These two sequences are also present in the activation peptide for bovine factor IX (5). The human molecule, however, lacks two other carbohydrate binding sites present in bovine factor IX, including an Asn-Gln-Ser sequence starting with residue 172 and an Asn-Ala-Ser sequence starting with residue 261 in the bovine protein. Human factor IX contains 12 glutamic acid residues in the amino-terminal region of the protein that are present as γ carboxyglutamic acid (Gla) in the mature molecule. These residues are located at positions 7, 8, 15, 17, 20, 21, 26, 27, 30, 33, 36, and 40. These residues have been encoded by both triplets that code for glutamic acid, including GAA and GAG.

The two internal peptide bonds hydrolyzed by factor XI_a during the activation reaction (4) have been identified as Arg¹⁴⁵-Ala¹⁴⁶ and Arg¹⁸⁰-Val¹⁸¹. Cleavage of these two arginyl peptide bonds results in the formation of factor IX_a $(M_r, 43, 196)$, a serine protease composed of a light chain (145 amino acids) and a heavy chain (236 amino acids), and these two chains are held together by a disulfide bond(s). The activation peptide (35 amino acids) is composed of residues 146–180 and includes eight aspartic acid residues, three glutamic acid residues, probably several sialic acid residues, and one arginine residue. This accounts for the marked difference between the electrophoretic migrations of factor IX and factor IX_a (4). The heavy chain of human factor IX_a includes amino acid residues 181-416. It starts with a Val-Val-Gly-Gly sequence which is typical of the plasma serine proteases and those from other tissues (20). The heavy chain also contains the three principal residues involved in the catalytic activity of this serine protease, specifically His²²¹, Asp²⁷⁰, and Ser³⁶⁶. These residues are homologous with His⁵⁷, Asp¹⁰², and Ser¹⁹⁵ in the active site of chymotrypsin (21). Asp³⁶⁰ (corresponding to Asp¹⁸⁹ in trypsin) is probably located in the bottom of the binding pocket of the enzyme and is characteristic of trypsin-like enzymes that are specific for the hydrolysis of peptide bonds containing arginine and lysine (22, 23).

The synthetic probe that was used in the screening for the human factor IX plasmid was a nucleotide mixture that included a base sequence of T-A-T-T-G-C-C-T-T-C-A-T. This sequence is complementary to A-T-G-A-A-A-G-G-C-A-A-A-T-A and codes for the Met-Lys-Gly-Lys-Tyr sequence in factor IX starting with Met³⁹². This amino acid sequence is present in both human and bovine factor IX. There are 69 changes in amino acid sequence between the human and bovine proteins (5), in addition to one insertion in bovine (Lys¹⁴³) and one deletion in bovine (Asn²⁵⁹). Both proteins contain 22 cysteine residues which are present in the same position in each protein. Also, each protein contains three methionine residues, although only two are located in the same position (residues 349 and 392). The largest difference in sequence between the two proteins occurs in the activation peptide where 17 of 35 residues have been changed. The overall identity between human and bovine factor IX is 83%.

The codon usage for human factor IX showed no unusual characteristics. Five codon triplets were not utilized-TGC, GCG, CCG, AGG, and CGC that code for Ser, Ala, Pro, Arg,

and Arg, respectively. A somewhat higher usage for A and T for the second position (59%) and third position (63%) in the codon was noted; the first position utilized A and T equally well with G and C.

The isolation of a cDNA for factor IX has made it possible to screen a human genomic library for the gene.

The authors thank Drs. Dominic Chung, Iwao Ohkubo, Mark Lively, Orville Smith, S. L. C. Woo, and T. Chandra for helpful discussions and assistance and Charles M. Johnson for excellent technical help. This work was supported in part by National Institutes of Health Grant HL 16919 to E.W.D. and National Institutes of Health Grant RR00166 to the Regional Primate Research Center at the University of Washington. K.K. is a recipient of a Research Career Development Award (HL 00404) from the National Institutes of Health.

- 1. Hedner, U. & Davie, E. W. (1982) in *Hemostasis and Throm-*bosis, eds. Colman, R. W., Hirsh, J., Marder, V. J. & Salzman,
- E. W. (Lippincott, Philadelphia), pp. 29–38. Fujikawa, K., Thompson, A. R., Legaz, M. E., Meyer, R. G. & Davie, E. W. (1973) *Biochemistry* 12, 4938–4945. 2
- DiScipio, R. G., Hermodson, M. A., Yates, S. G. & Davie, E. W. (1977) Biochemistry 16, 698-706.
- 4. DiScipio, R. G., Kurachi, K. & Davie, E. W. (1978) J. Clin. Invest. 61, 1528–1538.
- Katayama, K., Ericsson, L. H., Enfield, D. L., Walsh, K. A., Neurath, H., Davie, E. W. & Titani, K. (1979) Proc. Natl. Acad. Sci. USA 76, 4990-4994. 5.
- 6. Fujikawa, K., Legaz, M. E., Kato, H. & Davie, E. W. (1974)
- Biochemistry 13, 4508–4516. MacGillivray, R. T. A., Degen, S. J. F., Chandra, T., Woo, S. L. C. & Davie, E. W. (1980) Proc. Natl. Acad. Sci. USA 77, 7 5153-5157
- 8. Pelham, H. R. B. & Jackson, R. J. (1976) Eur. J. Biochem. 67, 247 - 256
- 9. MacGillivray, R. T. A., Chung, D. W. & Davie, E. W. (1979) Eur. J. Biochem. 98, 477-485.
- 10.
- Gough, N. M. & Adams, J. M. (1978) Biochemistry 17, 5560-5566. Stein, J. P., Catterall, J. F., Woo, S. L. C., Means, A. R. & 11. O'Malley, B. W. (1978) Biochemistry 17, 5763-5772.
- Wallace, R. B., Johnson, M. J., Hirose, T., Miyake, T., Kawashi-ma, E. H. & Itakura, K. (1981) Nucleic Acids Res. 9, 879–894. 12.
- Maxam, A. M. & Gilbert, W. (1980) Methods Enzymol. 65, 13. 499-560.
- 14. Staden, R. (1977) Nucleic Acids Res. 4, 4037-4051.
- Staden, R. (1978) Nucleic Acids Res. 5, 1013-1015. 15.
- Blobel, G., Walter, P., Chang, C. N., Goldman, B. M., Erick-son, A. H. & Lingappa, R. (1979) in Secretory Mechanisms, So-16. ciety for Experimental Biology Symposium, eds. Hopkins, C. R. & Duncan, C. J. (Cambridge Univ. Press, London), Vol. 33, pp. 9-36.
- 17. Patterson, J. E. & Geller, D. M. (1977) Biochem. Biophys. Res. Commun. 74, 1220-1226.
- Strauss, A. W., Bennett, C. A., Donohue, A. M., Rodkey, J. A., Boime, I. & Alberts, A. W. (1978) *J. Biol. Chem.* **253**, 6270–6274. Proudfoot, N. J. & Brownlee, G. G. (1976) *Nature (London)* **263**, 18.
- 19. 211-214.
- 20. Davie, E. W., Fujikawa, K., Kurachi, K. & Kisiel, W. (1979) Adv. Enzymol. 48, 277-318.
- Sigler, P. B., Blow, D. M., Matthews, B. W. & Henderson, R. (1968) J. Mol. Biol. 35, 143-164. 21.
- Ruhlmann, A., Kukla, D., Schwager, P., Bartels, K. & Huber, H. (1973) J. Mol. Biol. 77, 417-436. 22
- 23 Blow, D. M., Janin, J. & Sweet, R. M. (1974) Nature (London) 249, 54-57.
- Wright, I. S. (1959) J. Am. Med. Assoc. 170, 325-328. 24.