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Fig. S1 Effects of deferoxamine (DFO) on chronic hypoxia-induced
pulmonary hypertension in intact rats. Rats were intraperitoneally
injected daily with saline (vehicle control) or 20 mg/kg body weight of DFO
during 2-week exposure to normoxia or hypoxia (10% O,). H & E staining
showing large pulmonary arteries (PA) with the diameter ranging 116 - 363
um. Scale bars, 50 um. The bar graph represents means + SEM of % wall
thickness (n =3 - 6). *, P<0.05 vs. normoxia; a, P<0.05 vs. hypoxia.
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Fig. S2 Effects of deferoxamine (DFQO) on right ventricular contractility.
Rats were intraperitoneally injected daily with saline (vehicle control) or 20
mg/kg body weight of DFO during 2-week exposure to normoxia or hypoxia
(10% O,). Right ventricular dP/dt_,, (as an indication of contractility) was
measured using a Millar catheter (n = 3). No significant differences were
detected.



Fig. S3 Wong et al.

ns

—
o
o

Ratio
Ferritin/actin
(% control)
(@)

o

o

-DFO +DFO

Fig. S3  Effects of chronic hypoxia and deferoxamine (DFQO) on
pulmonary arterial ferritin levels in rats. Rats were intraperitoneally
injected daily with saline (vehicle control) or 20 mg/kg body weight of DFO.
Western blotting was performed on pulmonary arterial homogenates to
monitor ferritin and b-actin expression. Bar graphs represent means =+ SEM
(n = 3). ns, not significantly different.
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Fig. S4 Effects of
deferoxamine (DFO) on
the already developed
pulmonary vascular
remodeling in intact rats.
Rats were treated with
normoxia or hypoxia (10%
O,) for 2 weeks, then
intraperitoneally injected
with saline or 20 mg/kg
body weight of DFO. Rats
were then placed back in
normoxia or hypoxia for 3
days. The images show
representative data on
histology (H & E staining)
of pulmonary arteries (PA).
Scale bars, 50 um. The bar
graph represents means =
SEM of % wall thickness
(n = 4). * P<0.05 vs.

% wall
thickness
o
e

0.2- normoxia; a, P<0.05 vs.
hypoxia.
0.0- > o P
. > . >

&O.P &O.P QO.P QO.‘>

O& °§ Q* ’z(\“\
¢ < O

L &

Q



Fig. S5 Wong et al.

A Hypoxia (days) Carbonylated
0 2 7 15 protein bands
kDa i CPB1 (208 kDa
L Eambaies
a
97 > <+ PB4 ( 97 kDa
68 = < CPB5 ( 74 kDa)
<+ CPB6 ( 61 kDa
t CPB7 ( 52 kDa
43 => CPB8 ( 47 kDa
} <= CPB9 ( 39 kDa)
29 =
21 =»
e S GRS S .
5 min exposure
Hypoxia (days)
0 2 7 15
kDa s R o—
97
68
Carbonylated
43 protein bands
CPB10 (33 kDa
29 = CPB11 (30 kDa
CPB12 (27 kDa
CPB13 (24 kDa
21 CPB14 (21 kDa
CPB15 (14 kDa
CPB16 (11 kDa
CPB17 ( 9 kDa

11 min exposure



content

Carbonyl
(normalized to

content

Carbonyl
(normalized to

content

Carbonyl
(normalized to

control)

control)

control)

CPB1 (208 kDa)

1.5-
1.0, £5
£5
0.5- S0
0.0-
0 2 7 15 35
Hypoxia (days)
CPB3 (129 kDa)
1.5-
1.0- 25
£5
0.5- 8o
0.0-
0 2 7 15 35
Hypoxia (days)
CPB5 (74 kDa)
%
2.0+ _
1.5, 25
2 c
0.5
0.0-

0 2 7 15 35

Hypoxia (days)

(normalized to (normalized to

(normalized to

control)

control)

control)

Fig. S5 Wong et al.

CPB2 (191 kDa)

2.0- *
1.5
1.0-
0.5-
0.0-
0 2 7 15 35
Hypoxia (days)
CPB4 (97 kDa)
2.0- *
1.5-
1.0+
0.5-
0.0-
0 2 7 15 35
Hypoxia (days)
CPB6 (61 kDa)
1.5,
1.0-
0.5-
0.0-
0 2 7 15 35

Hypoxia (days)



W

content

Carbonyl
(normalized to

content

Carbonyl
(normalized to

content

Carbonyl
(normalized to

control)

control)

control)

CPB7 (52 kDa)

2.5
2.0-
1.5

content

Carbonyl
(normalized to

0.5
0.0-

2 7 15 35
Hypoxia (days)

CPB9 (39 kDa)

2.5-
2.0-
1.5
1.0-
0.51
0.0-

content

Carbonyl
(normalized to

0o 2 7 15 35

Hypoxia (days)

CPB11 (30 kDa)

2.5-
2.0+
1.5-
1.0+
0.5-
0.0-

content

Carbonyl
(normalized to

0 2 7 15 35

Hypoxia (days)

Fig. S5 Wong et al.

CPB8 (47 kDa)

control)
i

-—
1

e

2 7 15 35
Hypoxia (days)

CPB10 (33 kDa)

» @ &

control)

-—
1

o

2 7 15 35
Hypoxia (days)

CPB12 (27 kDa)

- =N
o & o©

control)

o
rk

o
e

2 7 15 35
Hypoxia (days)



Carbonyl

Carbonyl

Carbonyl

content
(normalized to

content

(normalized to

content
(normalized to

control)

control)

control)

2.0-
1.5-
1.0+
0.5-

0.0-

12-
10-

0

0

CPB13 (24 kDa)

2 7

15 35
Hypoxia (days)

CPB15 (14 kDa)

2 7 15 35
Hypoxia (days)

CPB17 (9 kDa)

% * *

2 7 15 35
Hypoxia (days)

Carbonyl

Carbonyl

content
(normalized to

content
(normalized to

control)

control)

Fig. S5 Wong et al.

CPB14 (21 kDa)

0o 2 7

15 35
Hypoxia (days)

CPB16 (11 kDa)

2.0+ *

1.5- x 7

1.04

0.5

000 2 7 15 35

Hypoxia (days)



Fig. S5 Effects of chronic hypoxia on protein carbonylation in an in vivo
model of pulmonary hypertension. Rats were subjected to chronic hypoxia
(10% O,) for durations indicated. After treatment, pulmonary arteries were
isolated and homogenized. Proteins were derivatized with DNPH and
subjected to Western blotting with rabbit polyclonal IgG for DNP to monitor
total carbonylated proteins. (A) Numbers were assigned for each of
carbonylated protein (CPB) bands, CPB1 - CPB17. The molecular weights
for carbonylated proteins were calculated using the DNP-conjugated
standard proteins. 5 and 11 min exposures of the film are shown. (B) The
bar graph represents means = SEM (n = 4). *, P<0.05 vs. normoxia (0 day
hypoxia).
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Fig. S6 Effects of chronic hypoxia on secondary protein carbonylation
in an in vivo model of pulmonary hypertension. Rats were subjected to
chronic hypoxia (10% O,) for indicated durations.  After treatment,
pulmonary arteries were isolated and homogenized. Samples were subjected
to Western blotting with (A) 4-HNE and (B) MDA antibodies. Total protein
levels were monitored by Coomassie Blue staining. The bar graph represents
means + SEM (n = 4). No significant differences were detected.
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Fig. S7 Effects of PDGF and 5-HT on total protein carbonylation in
pulmonary artery SMCs. Growth-arrested bovine pulmonary artery SMCs
were treated with (A) PDGF (10 ng/mL) or (B) 5-HT (1 pumol/L) for
indicated durations. (C) Human pulmonary artery SMCs were treated with
ET-1 (30 nmol/L). Cell lysates were prepared, derivatized with DNPH, and
subjected to Western blotting with rabbit polyclonal IgG for DNP to detect
changes in the level of protein carbonyls. A negative control without the
addition of DNPH is also shown in the far right lane. Protein expression
levels were monitored by Coomassie Blue staining. Bar graphs represent
means = SEM (n=4 — 8). *, P<0.05 vs. untreated (0 control).
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Fig. S8 Proteomic analysis of carbonylated proteins in response to 5-HT
in pulmonary artery SMCs. Growth-arrested bovine pulmonary artery
SMCs were treated with 5-HT (1 wmol/L) for 15 min. Cell lysates were
subjected to 2-dimensional gel electrophoresis and immunoblotted with DNP
antibody.  Gels that were run in parallel with the immunoblotting were
stained with Coomassie Blue. (A) Spots that were indicated by the arrow
exhibited a significant increase in carbonyl content. Corresponding spots
from the Coomassie Blue-stained gel were analyzed by mass spectrometry.
Bar graphs represent means + SEM of (B) carbonylated proteins, (C) protein
expression, and (D) the ratio (n = 3). *, P<0.05. ns, not significantly
different.
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Fig. S9 Proteomic analysis of carbonylated proteins in IPAH. (A)
Representative 2-dimensional gels with 9 carbonylated protein spots (CPS)
that were identified to have significantly higher carbonyl content in IPAH
samples compared to controls. (B,C,D) Bar graphs represent means + SEM
(n=135). *,P<0.05. ns, not significantly different.
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