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Power Calculations for Ki and MRmax

gluc based on the

two-sample test of means.

Under the assumption of a Michaelis-Menten (MM) relationship between the FDG rate

constant Ki and glucose [glc] we derive the power functions of the two-sample z-tests based

on Ki and MRmax
gluc. We describe the conditions under which the power of the test based

on MRmax
gluc dominates that of Ki, and show that the improvement occurs whenever the

coefficient of variation (CV) in Ki is less than one. Additionally, we detail the unfavorable

role of glucose variability on power. (In what follows, the superscripts c and t represent the

control and treatment groups, respectively. Subject indices are omitted for notational ease.)

Let K̄c
i , K̄

t
i denote sample averages across n independent observations of Ki in the control

and treatment groups, respectively. With a treatment effect of ∆, defined as the expected

difference between observations in the control- and the treatment groups, for sufficiently large

n, the test-statistic ZK = [(K̄c
i − K̄t

i ) − ∆]/
�

(var(Kc
i ) + var(Kt

i )/n follows the standard

normal distribution. As treatment effects are often expressed in relative terms, we write ∆ =

δKc
i for some δ < 1, where δ represents the proportion decrease in Ki due to treatment. For

simplicity, we assume that the variances are the same in each group, i.e. var(Kc
i ) = var(Kt

i ),

but this requirement is not necessary. The power of a two sided test based on Zk is then

given by Pk = prob(|Zk| > z(1−α/2)|∆), where zα/2 is a standard normal quantile taken to

ensure an α-level test. Thus, α = prob(|Zk| > z(1−α/2)|∆ = 0), the Type-I error rate.

Now, if Ki > 0 and [glc] > 0 are negatively correlated there exists constants γ > 0 and

β < 0 such that the linear form Ki ≈ γ +β[glc]+ � describes the correlation between Ki and

[glc]. Here, � is a zero-mean error process independent of [glc] with variance σ2
� , and [glc]
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is random with mean µg and variance σ2
g . Thus, var(Ki) = β2σ2

g + σ2
� . In this case, with

Φ(·) the cumulative density function (CDF) of the standard normal distribution, the power

of the z-test based on ZK is

PK = 1− Φ



z(1−α/2) −
δKc

i�
2σ2

�
n (1 + β2σ2

g/σ
2
� )



 + Φ



zα/2 −
δKc

i�
2σ2

�
n (1 + β2σ2

g/σ
2
� )



 .

We stress that, for the above, the glucose process has the same mean (i.e. µg) in both the

control and treatment groups. (The case when the treatment may alter µg is discussed in

the main text.) We further note that the effect of glucose variability on PK enters through

the term β2σ2
g/σ

2
� . Thus, when β2σ2

g/σ
2
� is non-negligible (relative to one), the term can be

translated into an equivalent %-increase in sample size for equal power compared to the case

when σ2
g = 0.

We arrive at essentially the same result if we assume that Ki follows a MM form corrupted

by noise. That is, for some constants MRmax
gluc > 0 and Km > 0, Ki = MRmax

gluc/(Km +

[glc]) + �, where � and [glc] are random processes as described above. Then, when the data

is observed in a limited range around some glucose mid-point (say µg), Ki ≈ γ + β[glc] + �,

where β = −MRmax
gluc/(Km + µg)

2
(and some γ > 0). To illustrate the validity of the

linear approximation in our setting, the left panel of Figure 1 shows 100 sample data points

{[glc], Ki} drawn from a MM model with parameters set near to the observed mean values

across our studies (i.e., MRmax
gluc = 45, Km = 130, [glc] ∼ N(90, 25

2
), and � ∼ N(0, .045

2
);

c.f. Results Section.) As seen in the left panel, the linear approximation closely follows the

MM relationship in the data range, and the power curve for the MM model can be expected

to closely follow PK .

Under the assumption that the data is sampled from the MM model, the variance of

MRmax
gluc equals var(�(Km+[glc])) = σ2

� ((Km+µg)
2
+σ2

g). Based on this, the power function

PM for testing equality of the maximal glucose uptake rate MRmax
gluc between the control and

treatment groups based on sample means of Ki(KM + [glc]) can be expressed as

PM = 1−Φ



z(1−α/2) −
δKc

i�
2σ2

�
n (1 + σ2

g/(KM + µg)
2)



+Φ



zα/2 −
δKc

i�
2σ2

�
n (1 + σ2

g/(KM + µg)
2)



 .
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Figure 1: Left: Scatter plot of [glc] versus Ki (see text for parameters.) The plot also shows

the underlying MM process (solid black) along with tangent- (black dashed) and fitted (red

dashed) LS-regression lines. Right: Power curves for MRmax
gluc (solid blue) and Ki (solid black)

as a function of the treatment effect (δ). The dotted blue and black lines represent simulated

values of PM and PK at δ = .1. The theoretical difference in power (solid cyan) and the

simulated difference at δ = .1 (dotted cyan) are also shown.

To compare PK and PM we note that only the first CDF in the power functions will

contribute to the power when 0 < δ < 1, i.e. when the treatment effect represents a (100×δ)%

reduction in Ki. Therefore, PK and PM differ only through the terms (1 + β2σ2
g/σ

2
� ) and

(1+σ2
g/(Km+µg)

2
) appearing in the denominators. We now substitute β = −MRmax

gluc/(Km+

µg)
2

in the former, and obtain the following simple result: If σ�/Kc
i (µg) < 1, where Kc

i (µg)

is the expected value of Kc
i evaluated at [glc] = µg, then the power of the z-test based on

MRmax
gluc is greater than that based on Ki. Thus, whenever the CV of Ki is less than one we

get PM > PK . Now, in our retrospective analysis across the 66 studies, sample estimates of

σ�/Kc
i (µg) ranged from .1 to .5 (mean=.22), indicating the potential for improved power.

To illustrate the power result, the right hand side of Figure 1 shows PK and PM as a

function of δ, where we have used the same set of parameters as those used to generate
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the sample data (left) but with PK and PM evaluated for n = 50. With these parameter

choices, CV = .22, and, as seen PM > PK . To test the accuracy of the depicted curves,

we estimated the power at δ = .1 using two-sided t-tests. Based on 4000 simulations, the

estimated powers were P̂M(.1) = 72.3% and P̂K(.1) = 61.0%, compared to the theoretical

values of PM(.1) = 71.9% and PK(.1) = 60.0%, respectively.
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