
Appendix 1 – Area and velocity formulation of wave intensity 

In this study we propose that it is useful to express wave intensity in terms of A and U when working with 

MR measurements and thus the relevant derivations from first principles follow. 

In 1-D analysis, U, A and P are taken as functions only of axial length (x) and time (t). Defining U as mean 

velocity over a cross-section and hence UA as the flow rate, the equations of conservation of mass and 

conservation of momentum are: 
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where ρ is the fluid density and F is the resistance arising from the viscosity of the flowing medium. A tube 

law relating the area of the vessel and the pressure is then assumed: 

)(PAA =  (3) 

and the gradient of P can be expressed in terms of A: 
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The resulting conservation equations in matrix form are: 
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Where we use subscript notation for partial derivatives. The eigenvalues of the matrix multiplying the x-

derivatives, according to the method of characteristics, are: 

cU ±=±λ  (6) 

where we have defined the wave speed, c: 
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where D is vessel distensibility, as firstly derived by Bramwell and Hill.   

Following the method of characteristics, along the characteristic directions dx/dt = U ± c, the conservation 

equations (1 and 2) become: 
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By multiplying equation (8) by a factor of 
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given dA/A = dlnA. Note that + is valid along the forward characteristic (dx/dt = U + c) and – along the 

backward characteristic (dx/dt = U – c). 

The changes in velocity (dU) and the fractional changes in area (dlnA) are related by the waterhammer 

equation: 

±± ±= AcddU ln  (11) 

Assuming that the forward and backward waves are additive, the measured dU and dlnA can be separated 

into their forward (+) and backward (–) components by using the waterhammer equations: 
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Finally, wave intensity can be defined in terms of area (dIA), as: 
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It can be shown that the net wave intensity can be divided into the forward and backward intensities: 
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with the  separated dIA  expressed as: 
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