
1. Gillespie Stochastic Simulation Algorithm (SSA),
optimizations and implementations in STEPS

In a system where molecules are uniformly distributed and their velocities are thermally
randomized to the Maxwell-Boltzman distribution the position and velocity of individual
molecules can be ignored and one can describe the probability of the system moving
from one discrete state x, a vector listing the number of molecules present for N
species, to another state accurately. These chemical transitions are governed by the
propensity function aj, defined so that aj (x)dt is the probability that one reaction Rj out of
M possible reactions will occur in the next infinitesimal time interval for a specific state
xt. The propensity function was first derived for dilute gases [17] and, importantly for
cellular systems, has recently been derived for solute molecules in a bath of smaller
solvent molecules [66]. The zero propensity a0 is the sum of all propensities and gives
the probability that any reaction will occur in the infinitesimal time interval. The SSA
uses these propensity functions to compute when the next reaction occurs. The
algorithm applies to irreversible reactions but a reversible reaction can always be
described as the combination of two irreversible ones.

Different variations of the SSA exist, mostly originate from the Direct Method, which can
be summarized as:
1. Set t = 0 and initialize the state x = x0.
2. Evaluate aj(x) for all reactions 1<= j <= M and compute a0(x).
3. Draw a random number r1 from the unit-interval uniform distribution.
4. Generate τ, which is the time interval until the next reaction event using the

equation τ =
1

a0 xt() ln
1
r1

⎛
⎝⎜

⎞
⎠⎟

. If t + τ > tend set t = tend and quit the loop.

5. Draw another random number r2 from the unit-interval uniform distribution. Find
the index j of the next reaction Rj by performing a linear search along the

propensity values until the condition aj xt()
j=1

j−1

∑ < r2 *a0 xt() ≤ aj xt()
j=1

j

∑ is met.

6. Apply reaction Rj to xt. Update all affected propensities and recompute a0(x).
7. Set t = t + τ.
8. Go back to step 2 for another iteration.

1.1 Well-mixed solver

Optimized data structure and searching/updating algorithms are essential to the
performance of SSA simulators. The original Direct method [17] performs linear
searching and updating on an array of propensities, giving an overall computational
complexity of O(M). It was later enhanced by Gibson and Bruck ([28], section 7.2) using
a binary tree structure and a dependency graph of kinetic processes. In the enhanced
version, each leaf of the binary tree stores a propensity value. The values of each pair

1

of sibling nodes, i.e. nodes sharing the same parent node, are summed and stored in
their parent node iteratively

until a single “root” node is produced, which stores a0 (the zero-propensity). The entire
tree contains log2M levels, thus can be stored in 2M memory space. With the binary tree
structure, both searching and updating can be performed in a logarithmic time scale as
O(log2M). This enhancement is adapted in the implementation of STEPS. Furthermore,
to make use of modern hardware, we extend the binary tree to k-ary tree, which
provides O(logkM) complexity as well as better caching performance (above figure, A).
The search of the next kinetic process is performed bottom-up, i.e., from the root node
to its descendant leaves (B), while the updating is performed top-down (C, D). A
significantly high percentage of cpu time is spent on the updating of propensities [67]
and it is important to optimize this process. To update the propensities of E kinetic
entries, the Gibson and Bruck method requires updating partial sums of logkM - 1
branches of the k-ary tree in the best case, when all changing entries have the same
parent node (C), compared to ElogkM - 1 branches in the worst case, if neither the
updating entries nor their ancestor nodes are siblings until the root node is reached (D).

We replace steps 5 and 6 in the Direct Method with:
5. [STEPS 1.3: Wmdirect] Draw another random number r2 from the unit-interval

uniform distribution. Search the k-ary tree to find the index j of the next reaction Rj

that meets the condition aj xt()
j=1

j−1

∑ < r2 *a0 xt() ≤ aj xt()
j=1

j

∑ .

6. [STEPS 1.3: Wmdirect] Apply reaction Rj to xt. Update affected branches of the
k-ary tree.

1.2 Spatial solver

In version 1.3 the implementation of Tetexact solver adopts the Composition and
Rejection (CR) Method [31], whose time complexity is constant even for systems with
large number of reactions. In the CR Method, reactions are grouped by their propensity
magnitudes. For each SSA iteration, the CR Method firstly select a group g by linear or

binary search so that sumg xt()
g=1

g−1

∑ < r2 *a0 xt() ≤ sumg xt()
g=1

g

∑ , where sumg is partial sum of

propensities in g. In most of the simulations the total number of groups, G, is bounded
and independent of the number of reactions in the system, thus the time of above

���

������	�

��� ��� ��	��

������

�� �� �� ��

������

�	 �
 �� ��

�������

� ��� ���

�����	�

���

������	�

��� ��� ��	��

������

�� �� �� ��

������

�	 �
 �� ��

�������

� ��� ���

�����	�

���

������	�

��� ��� ��	��

������

�� �� �� ��

������

�	 �
 �� ��

�������

� ��� ���

�����	�

���

������	�

��� ��� ��	��

������

�� �� �� ��

������

�	 �
 �� ��

�������

� ��� ���

�����	�

�

�

�

�

2

searching can be considered as constant. After a group is picked, a constant time
rejection sampling is performed to select the next suitable reaction from this group.
Updating time is also constant by a carefully designed data structure and algorithm. The
search and update of the CR Method can be described as:

5. [STEPS 1.3: Tetexact]
5.1. Composition: Draw another random number r2 from the unit-interval uniform

distribution. Find the group g that meets the condition

sumg xt()
g=1

g−1

∑ < r2 *a0 xt() ≤ sumg xt()
g=1

g

∑ .

5.2. Rejection: In group g with k reactions, draw a uniform random integer i from
1 to k, and a uniform random number ar from agmin to agmax which are the
minimum and maximum of propensities in group g. If ar < aig xt() , go to step 6,
else repeat step 5.2.

6. [STEPS 1.3: Tetexact] Apply reaction Rgi to xt. Update affected groups and
recompute a0(x) from group sums.

3

