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Figure S1. Read coverage and UTR predictions (A) RNA-seq read coverage for the
pro4l gene locus. BAM files containing the mapping information were visualized in
the Artemis genome browser [43]. The coding region (blue arrow) and the mRNA
structure (gray arrow) were determined in previous experiments [9], and RNA-seq
read coverage correlates accurately with the mRNA. The coverage plot shows the 3’
bias of the microdissection samples (wt proto: blue) whereas in the mycelial samples
(veg: red, sex: green), the complete mRNA is covered. The introns are not covered
(as expected), but spanned by reads as indicated by light gray lines. (B) Length
distributions for predicted 5' and 3' UTRs. The box plots show the length distributions
of predicted 5' and 3' UTRs with the median value as a horizontal line in the box
between the first and third quartiles. Outliers are not included in the graph.



For annotated CDSs do:
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Figure S2. Algorithm for modelling UTRs.
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For annotated genes do:
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Figure S3. Algorithm for improving exon-intron structures based on RNA-seq data.



A) Prepare genome information from EMBL flat files
Make hash with positions for mRNAs (CDS for mitochondrial genes): key = Scaffold+Position, value = locus_tag+bin
Binning: each mRNA should be divided into four parts starting at the 5 end.

Example: In both cases, bin2 contains only those positions that are covered by exons, not the intron!

100 400 500 900 1100 1500 1700 2000
genel gene2
1 1 1 1 : : 1 1 ] 1
1 1 I 1 1 1 1 ] ] 1
1 1 ] 1 1 ] ] ] ] ]
! binl! bin2 ' bin3 ! bind ! ' bind ! bin3 ! bin2 ' binl!

Example for dividing mRNA length in bins:
e.g. mRNA length 102 bases, integer of length(mRNA)/4 = 25

therefore:
binl: 1-25
bin2: 26-50
hin3: 51-75
bin4: 76-102

Implementation:

1. make array with positions that are covered by mRNA, e.g. 10..40, 70..141 (no strand specificity needed here, comes
when moving through array).

2. sort array (numeric upwards for forward strand, numeric downwards for reverse strand).

3. walk through each member of hash, start with bin1, keep counting to bin size, then go to next bin, at the end put rest of
mRNA in last bin.

B) Count reads in bins (1-4) if they map to an mRNA

Possible arrangements for mapped reads with respect to annotated genes
(Not shown are reads that don‘t map to annotated genes or those where split reads map to two different genes or cover >1 intron)

genel
\___ gene?

e o
e 7 W 5 6
-
Implementation: 8
1. take read line from SAM file and determine whether split read or completely mapped to one position (e.g. ,36M")
2. if split read: split mapping info and get positions for all parts
3. check for start and end position of read whether read maps to annotated feature
if yes, check whether start and end map to same feature or one end doesn‘t map to feature (see figure, reads 1, 3, 6, 7),
if both ends map (e.g. reads 2, 4, 5, 8 in figure), count read in bin (implemented as hash) with lowest number (e.g. in binl if one
end maps to binl and the other to bin2), if only one end maps, don‘t count in program ,stringent”, count in other version.
Not counting reads that map only with one end leads to loss of reads that map in the UTR regions of genes where UTRs were not
annotated, but keeps reads from precursor mRNAs etc. that map in introns out of the count.

C) Make final count for each gene and determine measurement for evenness of coverage

Implementation:

1. sum up counts of all four bins for each gene to get total count

2. for evenness of coverage determine mean count number across bins, standard deviation, coefficient of variance
and CV/length of mMRNA as a meaure for evenness (longer genes tend to have fewer full-length cDNAs)

3. output: all data from points 1 and 2 for each gene

Figure S4. Algorithm for counting reads that map to predicted features (e.g. mMRNAS)
for implementation in Perl.
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Figure S5. Analysis of genome-wide coverage of different genomic regions (exons of
protein-coding genes, introns of protein-coding genes, intergenic regions). Non-
coding RNAs and repeats are not included in this analysis. Percent of reads that map
to the corresponding regions are shown (only reads are counted where both ends
map to the same type of region). At the right end of the graph (separated by a
dashed line), the relative distribution of these regions across the genome is indicated.



Figure S6. Venn diagram of numbers of genes without any read counts. Read counts
were summed up from the two replicates of each condition (veg, sex, wt proto, prol
proto). In total, there are 764 genes that have no counts in at least one condition.
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Figure S7. Transcript analysis of selected genes by quantitative real time PCR and
RNA-seq. Hierarchical clustering of log, of fold ratios for wild type
protoperithecia/sexual mycelium (A) and vegetative/sexual mycelium (B). Letters C
and L indicate classic (C) and LOX (L) analysis of gene expression from RNA-seq
data. Quantitative real time PCR experiments were done at least twice for each gene
with independent biological replicates. Quantitative real time PCR experiments in (A)
were performed in this study, data in (B) were from this study for SMAC_01397,
SMAC 06025, SMAC 07008, SMAC 09142, ppgl, ppg2, and prol, and from
previous experiments for the other genes [9, 41, 53, 73]. Note that growth conditions
for total vegetative and sexual mycelia for real time PCR experiments were in defined
medium, whereas for RNA-seq analysis, RNA from mycelia grown in defined medium
and cornmeal medium were pooled. However, the genes investigated here are
mostly involved in development or strongly differentially regulated depending on the
developmental stage, and therefore not expected to be greatly dependent on the
growth medium. Hierarchical clustering and heatmap generation were done in R.
Gene names are given for genes that were previously shown to be involved in or
differentially regulated during development.
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Figure S8. Expression of known developmental genes. Hierarchical clustering of log,
of fold ratios as determined by classic (C) and LOX (L) analysis. Log, ratios < -10 or
> 10 were set to -10 and 10, respectively, to make for better scaling visibility.

Hierarchical clustering and heatmap generation were done in R.
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Figure S9. Phylogenetic tree of all DUF3328 proteins from Sordaria macrospora
(red, genome version 02), Neurospora crassa (light blue, data from
http://www.broadinstitute.org/annotation/genome/neurospora/MultiHome.html)  and
Neurospora  tetrasperma  (dark  blue, data  from http://genome.jgi-
psf.org/Neute_matA2/Neute_matA2.home.html). The tree was calculated with
neighbor joining with 10.000 bootstrap replications, bootstrap support in % is given at
the branches. The three S. macrospora genes that are physically clustered within the
genome are shown in grey boxes. Interestingly, the three clustered DUF3328-
containing genes are not part of a closely related paralogous group, but are present
on distant braches of the phylogenetic tree. Furthermore, the DUF3328-family seems
to be expanded in S. macrospora with 10 genes in contrast to six and seven genes in
N. crassa and N. tetrasperma, respectively.
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Figure S10. Distribution of gene expression levels. Histograms of log, of coverage
(normalized to coverage per kilobase per million counted bases) for each locus tag
for each sample (left, midle), and estimated frequency distribution functions for the
mean for each condition (right). In case of zero coverage, log, coverage was set to -
13 (otherwise all log, values > -13) and was not used here. The distribution function
(red) for each condition could be dissected into components. The components (blue,
green and yellow lines) are normal distributions with varying means and variances
that make up different proportions of the observed distribution. Estimation of mixtures
was done with the mclust package from R [66] and manual curve adjustments.
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2. Supplemental Tables

Table S1. Transcription factors among the genes with top 500 read counts and their homologs in Neurospora crassa and Fusarium
graminearum. Locus tag numbers are given for the S. macrospora (S.m.) genes and their homologs in N. crassa (N.c.), and F.
graminearum (F.g.) with e-values for the best BlastP hit. Described phenotypes of knockout strains for the corresponding genes are
from the Neurospora knockout project [55] (http://www.broadinstitute.org/annotation/genome/neurospora/MultiHome.html) for N.
crassa and from the Fusarium graminearum Transcription Factor Phenotype Database [56] (http:/ftfd.snu.ac.kr/FgTRPD) for F.
graminearum, and from [54] and [9] for S. macrospora mcm1 and pro44, respectively; n.d., no knockout phenotype described.

A. transcription factors among top500 genes occuring in wt proto and prol proto (therefore most likely not or not completely dependent on prol)

e_

e_

sSm Sm S.m. knockout N.C N.C value N.c. knockout F.g value F.g. knockout
I. ' " phenotype for sexual T - . phenotype for sexual el S.m. phenotype for sexual
ocus_tag gene locus_tag gene locus_tag
evelopment VS. development VS. development
N.c. F.g.
SMAC_00418 n.d. NCU03033 210" n.d. FGSG_00352 4*10°? normal
few protoperithecia and slightly delayed perithecial
SMAC_00439 n.d. NCUO00499 ada-1 0.0  perithecia, no FGSG_00515 0.0 maturation
ascospores
SMAC_01754 n.d. NCU04390 col-22 0.0 normal FGSG_09594 0.0 normal
reduced number of
SMAC_03124 n.d. NCU03593 kal-1 0.0 normal FGSG_09019 3*10% perithecia, delayed
perithecial maturation
reduced number of
SMAC_05219 mcm1 NO Perithecia and NCU07430 3¥10™ n.d. FGSG 08696 1+10°% Perithecia, delayed
ascospores perithecial maturation, no
ascospores
small protoperithecia, no
SMAC_05375 n.d. NCU01924 0.0 perithecia and FGSG_08924 4*10°*" normal
ascospores
SMAC_06421 n.d. NCU06095 0.0 normal FGSG_06356 0.0 increased number of

perithecia, fertile
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e- e-
sm sm S.m. knockout N.C N.C value N.c. knockout = value F.g. knockout
C " phenotype for sexual e . S.m. phenotype for sexual 9 S.m. phenotype for sexual
locus_tag gene locus_tag gene locus_tag
development VS. development VS. development
N.c. F.g.
SMAC_07774 n.d. NCU03536 2410 n.d. FGSG 05171 2+10 MO Perithecia and
ascospores
SMAC_08084 n.d. NCU00116 810" n.d. FGSG_02608 2+10 delaved perithecial
maturation
reduced number of
perithecia, maturation
SMAC_08565 n.d. NCU07952 0.0 nd. FGSG_01341 6*10™° delayed, abnormally
shaped ascospores, no
ascospore discharge
SMAC_09436 n.d. NCU11358 0.0 nd. FGSG_04203 6*10""" normal
SMAC_09459 n.d. NCU08807 0.0 nd. FGSG_09715 6*10'% normal
delayed perithecial
maturation, abnormal
SMAC_04294 n.d. NCU02724 0.0 normal FGSG_01307 3*10™* shape of ascospores,
reduced ascospore
discharge
SMAC_02795 n.d. NCU03064 0.0 n.d. FGSG_01183 0.0 n.d.
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B. transcription factors among top500 genes occuring in wt proto only (might therefore to some degree be dependent on prol)

e- e-
sm sm S.m. knockout N.C N.C value N.c. knockout = value F.g. knockout
o " phenotype for sexual e . S.m. phenotype for sexual 9 S.m. phenotype for sexual
locus_tag gene locus_tag gene locus_tag
development VS. development VS. development
N.c. F.g.
SMAC_00425 n.d. NCU03043 0.0 normal FGSG_07052 2+10°%s reduced number of
perithecia
SMAC_02359 n.d. NCU01629 0.0 normal FGSG_04293 6*10°% normal
submerged submerged
SMAC_03223 pro4a Protoperithecia, no NCUO1154 sub-1 00 Protoperithecia, no FGSG_09992 3+10¢ NO perithecia and
perithecia and perithecia and ascospores
ascospores ascospores
SMAC_03952 n.d. NCU01252 0.0 n.d. FGSG_07456 0.0 n.d.
delayed perithecial
3+10- maturation, abnormal
SMAC_ 06113 n.d. NCU03938 0.0 normal FGSG_08626 124 shape of ascospores,
reduced ascospore
discharge
e . -
SMAC_07526 n.d. NCU04628 0.0 normal FGSG_13711 210 no perithecia and
045 ascospores
* -
SMAC_09009 n.d. NCUO05767 0.0 normal FGSG_00774 32130 normal
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Table S2. Comparison of results from RNA-seq and microarray analysis. Differential
gene expression between sexual and vegetative mycelium was compared for genes
with expression ratios in the RNA-seq analysis and published microarray data (9).
Note that mycelia for RNA extraction for microarray analysis were grown in synthetic
medium, while for RNA-seq analysis, RNA from mycelia grown in synthetic medium
and complete medium was combined (for both sexual and vegetative mycelium) to
maximize the number of expressed genes. This might lead to a lower number of
differentially expressed genes, because signals for genes that are only differentially
expressed when grown in a certain medium might be quenched in this type of
analysis. However, this might indicate that genes that are differentially regulated in
both array and RNA-seq experiments are more likely to be affected by sexual
development than by the growth medium.

significantly diff. expression

expression** tendency*?

Genes with expression data in both experiments: 7136 7136
Genes not differentially expressed: 6899 2922
Genes upregulated in both experiments: 1 330
Genes downregulated in both experiments: 14 405
Genes upregulated only in array exp.: 54 908
Genes downregulated only in array exp.: 116 1269
Genes upregulated only in the RNA-seq exp.: 1 932
Genes downregulated only in the RNA-seq exp.: 51 370

*'genes with significantly differential expression according to the thresholds that were used in the
respective analyses. Thresholds for significantly differential expression were higher for the RNA-seq
data than those used in previous microarray analyses.

*zgenes with a tendency towards differential expression (ratio >1.5 or <0.67 for both types of
experiment).
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Table S3. Oligonucleotides used in this study.

name sequence5' - 3 remarks
T7N9 GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGGNNNNNNNNN RNA
oligo-dT(24)-anchored tttttttttttttttttttt(a/c/qg) (a/c/g/t) amplification
app-for2 GGAGATAGCTGGAGGGCTGA guantitative
app-rev2 ATCTCGGGCTGACTTCCATC real time
ppgl-for CTCCGTGACACCACCTTCAG PCR
ppgl-rev GGAGGCATAGCGCTTCCA

ppg2for CGGTATCTCGCCTCTCAACGT

ppg2rev GTTGTGCTCCCATTGTGCAGA

SMAC 00256-for cgccttgcgagttgtatttg

SMAC 00256-rev acacgcggttcaaaagtcaa

SMAC_00711-for ctttggttcatcggtgatgg

SMAC _00711-rev

tgttgcctcaaaccaaaacg

SMAC _01397-for

ataagtgccgccecgtatgtce

SMAC 01397-rev

ccccattatgtgccaatcct

SMAC _02363-for ggtaatccggcgttcttgat
SMAC _02363-rev tacgaagccatccgtecettt
SMAC _05286-for ctggttgggggacatttacg

SMAC_05286-rev

agaacgccatttcccttgtg

SMAC_05446-for

cgaggctttcaccgactacc

SMAC _05446-rev ttggcagcagacttggtgac
SMAC _05699-for gagggaagaggccggatact
SMAC_05699-rev caacctccgectttttettyg
SMACLDSSBOJor TAAGGGCATCACGGTCAATG
SMAC_05880-rev TGCTCAGCCATCATCCTCTC
SMAC_06025-for CGATGGGGTTCAAGTGTGTG
SMAC_06025-rev TGACCACGTCCATCTTCAGC
SMAC _06203-for cgagaagggtgcttcctacg
SMAC _06203-rev ggcatcgaagatggaagagg

SMAC_07008-for

tttcctcecgtgacgttgaga

SMAC_07008-rev

ctctaatggccaccgagacc

SMAC _08176-for attgtccggttgaggaggaa
SMAC _08176-rev ggaaatcaggcggaaagatg
SMAC _09142-for cgcaatggacgagttgttgt

SMAC_09142-rev

gtcacgaccccttctettge

SMAC _12706-for

gcgacagcaaaaggatgatg

SMAC _12706-rev

gttgtgtcggcgatcaagag
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3. Supplemental Methods

Method S1. UTR (untranslated region) predictions from RNA-seq data.

UTRs were predicted according to the principle shown in Figure S1 with custom-
made Perl scripts. The algorithms used to predict 5' and 3' UTRs were implemented
as subroutines (sub) and can be described as follows:

a) sub search_for_slope

sub to search for sloping read counts (indicative of end of transcript) in given RNA-
seq data. It takes an array with count data (must be sorted previously in correct
order) and returns position of putative UTR (minimum) with respect to length of input
array. Conditions to search for in windows of 20 nt (overlapping sliding window
analysis): slope of < -1.3, and counts at beginning of slope more than 5x the counts
at end of slope, and slope of next window again larger and previous window same or
larger (i.e. find the steepest slope), and the number of reads at the beginning of one
window has at least once reached the number of average counts for this CDS. Also,
search is stopped if reads at the beginning of one window have once reached the
number of average counts and afterwards drop to lower than 0.2x the average counts
(without finding a UTR) or dropped to <=1 counts (even without reaching average
counts previously). These conditions are specifically set for reads with a 3' bias
where the peak of reads can be after the end of the CDS.

b) sub search_for_slope_full _coverage

sub to search for sloping read counts (indicative of end of transcript) in given RNA-
seq data. It takes an array with count data (must be sorted previously in correct
order) and returns position of putative UTR (minimum) with respect to length of input
array. Conditions to search for in windows of 20 nt (overlapping sliding window
analysis): slope of < -1.3, and counts at beginning of slope more than 5x the counts
at end of slope, and slope of next window again larger and previous window same or
larger (i.e. find the steepest slope). The difference to the subroutine search_for_slope
is that here search is stopped if the number of counts at the beginning of a window is
outside 0.2-5 x the average number of counts for the CDS. This is useful if the
coverage of each transcript is even (no 3' or 5' bias in the reads), because then, an
upward slope might indicate the beginning/end of another transcript. In data with end
bias, this subroutine is not useful, because here the reads might cluster in a bell-
shaped curve after the end of the CDS.

c) sub search_for_slope_gradient_to_zero

sub to search for sloping read counts (indicative of end of transcript) in given RNA-
seq data. It takes an array with count data (must be sorted previously in correct
order) and returns position of putative UTR (minimum) with respect to length of input
array. Conditions to search for in windows of 100 nt (overlapping sliding window
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analysis): slope of < -1, and counts at beginning of slope more than 3x the counts at
end of slope, and the reads at the end of the slope < 10 (i.e. no more coverage
beyond the transcript save background), and slope of next window again larger and
previous window same or larger (i.e. find the steepest slope), and the number of
reads at the beginning of one window has at least once reached the number of
average counts for this CDS. Also, search is stopped if reads at the beginning of one
window have once reached the number of average counts and afterwards drop to
lower than 0.1x the average counts (without finding a UTR) or dropped to <=10
counts (even without reaching average counts previously). This condition is
specifically set for reads with a 3' bias where the peak of reads can be after the end
of the CDS. This sub is for finding gentler, longer slopes when the search for the
more steep slopes has failed.

d) sub search_for_coverage

This sub is to be used if the search for slope fails (e.g. if the slope is not steep
enough). This sub searches for consecutive coverage of at least 0.5x average
coverage, i.e. it can find a minimum UTR. A UTR is only given as a result if the
search stops before reaching the end of the upstream/downstream region which is in
most cases the beginning of a new CDS or other annotated feature and transcripts at
this end are most likely derived from this gene. This should prevent UTRs to be found
in case of continuous coverage between two genes (where it cannot be decided
where one UTR starts and the other ends). To prevent spurious reads (background)
to be taken into account for UTR determination, a UTR is only calculated if the
average counts are >= 50.

Method S2. Annotation of novel gene models based on RNA-seq data.

For the genome version 02, we annotated 125 novel genes based on RNA-seq
patterns of spliced reads that are evidence of processed transcripts, and improved
the exon-intron structure of 869 predicted genes (Figure S2). Altogether, ~1,000
genes were improved or newly annotated which corresponds to ~10 % of all genes in
the S. macrospora genome (publicly available in genome version 2, CABT02000001-
CABT02001583, http://c4-1-8.serverhosting.rub.de/public/). There could be additional
not yet annotated genes that are not spliced, because for the annotation in genome
version 2, new genes were derived from splice sites only (not from regions that
showed some read coverage, but no evidence for spliced reads). This approach was
chosen, because it seems to be a “safer” way to ensure that the annotated genes are
“real” genes and not just spurious transcripts. Also, a threshold of at least 50 spliced
reads to support a splice site was required, and this could probably be lowered;
however, for the present annotation, a rather conservative approach was chosen to
avoid calling false-positive "genes".
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