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Genome-wide analysis of NEWMEDS (including GENDEP and GenPod studies) 14th April 2010 

 

The following is a plan for pharmacogenetic genome-wide analyses of data on antidepressant treatment in 
the NEWMEDS project, work package 8. The main aim of the work package in the first 18 months is to 
establish genetic markers that consistently predict response to serotonergic or noradrenergic antidepressants 
across different samples, and therefore may be used for defining new drug targets and inform personalised 
prescribing. To achieve this we bring together samples with a good outcome data for treatment with either 
serotonergic antidepressants (citalopram, escitalopram, fluoxetine, sertraline, paroxetine) or noradrenergic 
antidepressants (nortriptyline, reboxetine). As we are unlikely to get sufficiently large samples of individuals 
of other ethnicities, we will focus on white Europeans. 

The NEWMEDS work package 8 combines samples from two academic studies (GENDEP,1, 2 led by King’s 
College London and GenPod3 led by the  Universities of Bristol and Cardiff) and samples made available by 
pharmaceutical companies members of EFPIA (GSK, Pfizer, Astra-Zeneca, Lundbeck). 

 

Common subject inclusion criteria: 

(1) DSM-IV/ICD10 diagnosis of unipolar depression of at least moderate severity (alternatively HRSD-17 of 
14 or more can be used to define at least moderate depression). 

(2) White European ethnicity. (Ethnicity is a major confound in genetic studies due to problems introduced 
by population stratification. At present sufficient numbers of subjects of non European ethnic groups are not 
available to be included). 

(3) Age 18-80 (with onset of first depression before age 65). 

(5) Treatment with either serotonergic antidepressant (citalopram, escitalopram, fluoxetine, sertraline, 
paroxetine) or noradrenergic antidepressant (nortriptyline, reboxetine). 

(5) At least one post-baseline visit with available measure of depression severity. 

(6) Available DNA sample 

Using the above inclusion criteria, 1719 subjects with available DNA samples have been committed to the 
work package. 

810 GENDEP samples (escitalopram, nortriptyline)* - shipped 

512 GENPOD samples (citalopram, reboxetine) - shipped 

140 GSK samples (SSRI) 

257 PFIZER samples (SSRI) 

* The GENDEP samples include 706 subjects included in a published genome-wide 

pharmacogenetic analysis2 and additional 104 subjects that were not included in 
previous analyses and are being genotyped under NEWMEDs 

Additional samples are being selected from the data bases of LUNDBECK (SSRI, 
possibly nortriptyline). Astra-Zeneca will contribute samples to a replication 
project. 
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Since the GENDEP and GenPod samples have already been shipped, the first analysis can be 
performed in these two studies only. Second and third rounds of analyses will then include the 
EFPIA samples as they are becoming available. 

Outcomes to be analyzed 

The response to antidepressant medication is a complex phenotype that includes changes in various 
symptoms occurring over a number of weeks. It is typically measured by repeated administration of 
symptom rating scales such as Hamilton Rating Scale for Depression (HRSD-17), Montgomery and Asberg 
depression rating scale (MADRS) or Beck Depression Inventory (BDI). At each time-point, a variable 
proportion of measurement is missing due to loss to follow-up, non-attendance or failure to complete a 
specific measure. The preferred method to analyse repeated measurements with missing data are approaches 
such as mixed effect regression models, which allow use of  multiple measurements and do not require the 
imputation of missing values. However, such methods are impractical for genome-wide pharmacogenetic 
analyses since they are computationally intensive. To enable a computationally feasible genome-wide 
pharmacogenetic analysis, it is practical to derive a single summary measure that best represents change in 
depressive symptoms over time. We have considered the following summary measures: absolute reduction in 
depression severity score over the study duration (e.g. 12 weeks), percentage reduction in depression severity 
over the study duration, individual intercept estimated in a mixed effect linear regression model (individuals’ 
departure from the average estimate given included covariates).  

We propose that we use the same measure as in the published GWAS analysis of the 706 subject already 
genotyped from the GENDEP study.2 Here we selected percentage improvement in depression score from 
baseline to week 12 as a summary outcome measure that reflects change in depressive symptoms over the 
study period. Percentage change was selected in preference to absolute change as it shows high correlation 
with end-score (Pearson’s r=0.84), low correlation with baseline severity (r=-0.06), and has been shown to 

better reflect clinician’s impression of improvement.4 In addition, expression of change in terms of 
percentage of the baseline score is relatively independent of which measure is used and is easily 
understandable. Also, since improvement in depression severity with treatment is a matter of degree, 
continuous measures such as percentage improvement are more efficient than cut-off-based dichotomous 
measures of response or remission.5, 6  

It has been shown that summary outcome measures can be biased in the presence of missing data if the 
commonly used last-observation-carried forward procedure is applied.7, 8 Therefore, we replaced missing 
week 12 measurements by the best unbiased estimate from a mixed effect linear regression model with fixed 
effects of linear and quadratic effects of time, baseline severity and random effects of individual and centre 
of recruitment.1 This procedure has been shown to be relatively free of bias under a wider range of 
assumptions.7, 8  

Since outcome was significantly associated with age and varied across centers of recruitment (at least in the 
GENDEP study), we propose to adjust the percentage improvement for age and centre. This procedure 
minimized the risk that minor genetic differences due to population stratification could be spuriously 
associated with outcome due to between-centre variations in recruitment, assessment and treatment. 
Adjustment for age is appropriate as genotype does not change with age and any age-related variation in 
outcome is likely to be due to factors other than genes. 

It is possible to score the various outcome measures (HRSD-17, MADRS, BDI) on a single metric using the 
item response theory9 and GENDEP as a linking dataset as it has all three measures on more than 9000 
occasions (we have the method running, and can do it if item-level data are available). This may be the most 
accurate method of linking the studies. However, if percentage change is used (all three scales start at a true 
zero) and outcome is adjusted on age and centre of recruitment, this may not be necessary. 
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Primary outcome: 

1) Quantitative trait: percentage change in primary measure of depression severity (HRSD-17, MADRS or 
BDI – depending on study) after 12 weeks, with missing data at week 12 replaced with best unbiased 
estimates from the best fitting mixed effect regression model (excluding any genetic effect) and adjusted on 
centre of recruitment (a series of binary dummy variables) and age within each study. 

 

Secondary outcomes (to be considered for additional analyses 

2) Discrete trait: remission at end-point (HRSD-17 < 8, MADRS <10, BDI < 10) 

3) Adverse reactions (a score on adverse effects rating scale or a specific adverse reaction)10 

4) Discrete trait: treatment-related increase in suicidality.11, 12 

 

Genotyping platforms and imputation of genotypes 

All datasets are genotyped on Illumina 610quad or Illumina 660 chips, which have identical tag SNP 
coverage. Therefore, imputation is not necessary for primary analyses. Integration and comparability with 
samples genotype on other platforms may require genome-wide imputation. Imputation with one of the 
commonly-used programs (BEAGLE, IMPUTE v1 or v2, MACH) will allow further exploration of 
interesting regions.   

 

Quality control 

The quality control will include SNP genotyping completeness, excluding individuals with high missingness, 
abnormal heterozygosity, ethnicity admixture, or cryptic relatedness to other individual within the same 
study (up to 3rd degree relative).  

Quality control procedures will be applied in PLINK,13 first at the level of marker and then at a level of 
individual. Markers will be excluded if they have a minor allele frequency (MAF) of less than 0.01 as effects 
of rare markers would be difficult to test and interpret with the present sample size. Markers will be filtered 
for completeness of genotyping of 99% so that all analyses are performed in a comparable set of individuals 
(this is more important for a continuous trait analyses than in case-control study, as individuals with extreme 
trait values contribute disproportionately to an association). Hardy-Weinberg Equilibrim (HWE) will be 
tested using the exact test in PLINK, but will not be used as a filter as departures from HWE may be 
expected in a case-only sample.14 Probability of departures from HWE will be given with all reported 
markers and any pharmacogenetic association with markers that show substantial HWE departures will be 
confirmed by individual re-genotyping. 

At individual level, genotypes will be first tested for sex mismatch with phenotypic data. Samples with 
ambiguous genotype sex and outliers on autosomal heterozygozity will be identified for exclusion as these 
may indicate sample contamination. Related individuals will be ascertained through estimation of identity by 
descent (IBD) obtained by application of the PLINK --genome procedure13 to an LD-pruned dataset (same as 
for analysis of population stratification, see below) and one of each pair of first- or second-degree relatives 
(the one with less complete data) will be excluded. Finally, genotyping completeness will be assessed for 
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each individual and outliers with genotyping completeness less than 95% will be excluded from further 
analyses.  

 

Population stratification 

Although recruitment is restricted to individuals of European descent, self-reported ethnicity does not 
guarantee absence of genetic admixture and significant stratification within European populations has been 
reported.15 Therefore, we propose to use principal component analysis applied in EIGENSTRAT16 to detect 
population structure and control for it in the analyses. To avoid confounding by local linkage disequilibrium 
(LD), the principal component analysis will be performed on an LD-pruned dataset excluding known regions 
of long-range LD.17 The EIGENSTRAT analysis will be performed iteratively, with removal of obvious 
outliers that would bias the principal component analysis. The first iteration of EIGENSTRAT will be run 
with HapMap2 and HapMap3 populations to detect individuals of non-European ancestry.  Second iteration 
will be run with only study data. After exclusion of outliers, detected significant principal components will 
be explored for association with centre of recruitment and significant principal components that will be used 
as covariates in the main analyses. A single EIGENSTRAT analysis will be conducted with samples from all 
studies. If significant heterogeneity remains with multiple separate clusters corresponding to different studies 
being separated on more than one principal component, the overall statistical approach will need to be 
reconsidered and studies may be analyzed separately and the  results combined using a meta-analytic method 
(see below). 

 

Primary genome-wide analyses 

The primary analysis will be carried out as joint analyses of individual data from multiple studies 
(megaanalysis; conditional on EIGENSTRAT results). To obtain estimates that are generalizable across 
studies and are not biased by between-study design differences, the outcome measure in each study will be 
adjusted on centre of recruitment and age (residuals centered at zero) and study will be used as covariate (a 
series of dummy binary covariates). 

The association between genotypes and adjusted percentage improvement in depression score will be 
performed using linear regression with an additive genetic model including significant principal components 
suggestive of population stratification and study identifier as covariates to control for population 
stratification, applied in PLINK.13  

Four tests will be performed:  

(1) Association between genotype and outcome across the whole sample to identify genetic variants 
associated with improvement irrespective of the type of antidepressant (and including placebo effect);  

(2) Association between genotype and outcome within subjects treated with SSRI antidepressants 
(citalopram, escitalopram, …) to identify genetic variants associated with outcome of treatment with a 
serotonin reuptake inhibitor;  

(3) Association between genotype and outcome within subjects treated with noradrenaline-reuptake 
inhibiting antidepressants (nortriptyline, reboxetine) to identify genetic variants associated with outcome of 
treatment with this noradrenaline-reuptake inhibitor;  

(4) Interaction between genotype and antidepressant mode of action (serotonergic/noradrenergic) to identify 
genetic variants that predict differential outcome of treatment with SSRI versus SNRI.  
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For each analysis, the quality of control for population stratification effects will be checked by visual 
inspection of quantile-quantile (QQ) plots and calculation of the genomic control inflation factor λ 
(lambda).18 

Genome-wide significance was set at the generally accepted level of p < 5*10-8.19, 20  

Suggestive significance (reporting) threshold will be set at p < 5*10-6.  

In addition, to estimate the posterior probability of true positive findings in the context of multiple non-
independent tests, false discovery rate q-values will be calculated using the step-up procedure described by 
Benjamini & Hochberg.21 The q-values calculated in this way have been shown to retain desirable properties 
for multiple related tests in genome-wide association studies22, 23 and can be interpreted as posterior 
probabilities of no association at a given locus.24 A q-value of less than 0.1 has been proposed as a criterion 
for significance in genome-wide studies.25 Therefore, we include q-value alongside p-values for results of 
interest and we report all associations with a q-value of 0.1 in any of the four primary analyses. 

Example of PLINK code (Quantitative trait: MADRS percentage reduction at 12 weeks) 

plink --bfile gendep_data_after_QC --pheno hdrs_perc_change_wk12_ adjusted --covar hcovar_un --covar-
name pc1,pc2,pc3 --hide-covar --out  gendep_md12perc_res --linear –adjust --ci 0.95 

 

Meta-Analyses (optional) 

If the principal components analysis using EIGENSTRAT detects gross stratification by study, which cannot 
be corrected for through use of principal components within a linear regression model, the primary analyses 
will be performed separately for each study and results will then be combined in a meta-analysis. 

Primary 

(1) Overall meta-analysis irrespective of what treatment was used across the samples. 

(2) Drug-specific meta-analysis (SSRI/SNRI).  

If more than two studies are included, random effects would be most appropriate, rather than fixed effects, as 
the primary statistic of merit. Meta-analysis can be completed using PLINK. 

Genome-wide significance threshold: p ≤ 5 * 10-8 

Suggestive significance (reporting) threshold: p ≤ 5 * 10-6 

 

Secondary analyses 

(1)  Analysis of candidate genes, with appropriate correction for multiple testing. This will include a 
consensus list of candidate genes the results of which are of interest even if these do not reach genome-wide 
reporting criteria. 

(2) Polygenic score analysis – this will give an indication of the common information for genetic variability 
betwee studies. E.g., between GENDEP and GenPod:  

Forty genetic profile scores will be created based on the four analyses in the GENPOD sample, including 
between 31 and 549,919 SNP markers based on 10 progressively increasing thresholds of p-values in the 
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GENPOD analyses (p < 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2 0.3, 0.4, 0.5, 1). The genetic scores will be 
created as a linear combination of tested allele number of each GENDEP participant multiplied by the 
regression coefficient [beta of ln(OR)] obtained from the GenPod analysis. These 40 genetic profile scores 
will then be tested as predictors of outcome in GENDEP, using logistic and linear regression for categorical 
and quantitative outcomes respectively. 

(3) Megavariate prediction using machine learning. Machine learning methods will be applied to optimise 
their prediction algorithm based on one study and applied it to another study (e.g. GENDEP – GenPod) to 
establish the generalisability of this prediction. This method is in development and is likely to use Gaussian 
processes (for probabilistic predictions of continuous outcomes) and either unsupervised or supervised 
learning (using prior information about the genome). 

 

Data sharing 

The principles inherent in the IMI initiative are that data generated in the NEWMEDS project are used as 
much as possible and that results are published without delays. Following these principles, we propose the 
following data sharing rules: 

(1) Phenotypic data (depression severity measurements, sex, age, centre of recruitment, ethnicity, 
adverse reactions) will be made available by the dataset owners to the team at King's College 
London (Peter McGuffin, Cathryn Lewis, Rudolf Uher), who will be responsible for the primary 
analyses. These data will be only used for the purpose specified within the NEWMEDS project 
agreements.  

(2) Genotyping data (genome-wide genotyping) will be made available to the dataset owners, who are 
free to use these data for additional projects and studies involving that datasets. 

(3) Genotype and phenotype exchange across studies is possible for the purpose of additional projects 
proposed by any collaborator conditional on the approval of dataset owners. 

 

Publication and Authorship 

All results should be published without unnecessary delays. Individuals involved in the generation of both 
phenotypic and genetic data will be involved in the publication process and offered the opportunity for 
authorship (either individual or as part of a consortium). 

Publications using the genetic data generated through the NEWMEDS project should include the following 
co-authors: Michel Guipponi, Elizabeth Neidhart, Rudolf Uher, (+ PostDoc on the NEWMEDS study, 
currently being recruited), Sarah Cohen-Woods, Cathryn M. Lewis, and Peter McGuffin. 

Publications using phenotypic and/or genetic data from the GENDEP project should also include the 
following co-authors (individually or as the GENDEP consortium): Katherine J Aitchison, Anne Farmer, Ian 
Craig, Marcella Rietschel, Ole Mors, Astrid Zobel, Joanna Hauser, Neven Henigberg, Dejan Kozel, Anna 
Placentino, Daniel Souery. 

Publications using phenotypic and/or genetic data from the GenPod project should include the following co-
authors: Glyn Lewis, Michael O’Donovan, Tim Peters, David Evans, ….(GLYN, PLEASE COMPLETE  / 
ADAPT THE LIST AS YOU JUDGE SUITABLE). 
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Publications using phenotypic and/or genetic data from the PFIZER projects should include the following 
co-authors: Xialan Hu,  

Publications using phenotypic and/or genetic data from the GSK projects should include the following co-
authors: Enrico Domenici,  

Publications using phenotypic and/or genetic data from the Astra-Zeneca projects should include the 
following co-authors: Jayne C Fox 

Publications using phenotypic and/or genetic data from the Lundbeck projects should include the following 
co-authors: Francois Menard 

 

Rudolf Uher 

14th April 2010 



  8

REFERENCES 

 (1)  Uher R, Maier W, Hauser J et al. Differential efficacy of escitalopram and nortriptyline on 
dimensional measures of depression. Br J Psychiatry 2009;194(3):252-9. 

 (2)  Uher R, Perroud N, Ng MY et al. Genome-Wide Pharmacogenetics of Antidepressant Response in 
the GENDEP Project. Am J Psychiatry 2010. 

 (3)  Thomas L, Mulligan J, Mason V et al. GENetic and clinical Predictors Of treatment response in 
Depression: the GenPod randomised trial protocol. Trials 2008;9(1):29. 

 (4)  Leucht S, Kane JM, Etschel E, Kissling W, Hamann J, Engel RR. Linking the PANSS, BPRS, and 
CGI: clinical implications. Neuropsychopharmacology 2006;31(10):2318-25. 

 (5)  Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a 
bad idea. Stat Med 2006;25(1):127-41. 

 (6)  Streiner DL. Breaking up is hard to do: the heartbreak of dichotomizing continuous data. Can J 
Psychiatry 2002;47(3):262-6. 

 (7)  Mallinckrodt CH, Clark WS, David SR. Accounting for dropout bias using mixed-effects models. J 
Biopharm Stat 2001;11(1-2):9-21. 

 (8)  Lane P. Handling drop-out in longitudinal clinical trials: a comparison of the LOCF and MMRM 
approaches. Pharmaceutical Statistics 2008;7(2):93-106. 

 (9)  Uher R, Farmer A, Maier W et al. Measuring depression: comparison and integration of three scales 
in the GENDEP study. Psychological Medicine 2008;38(2):289-300. 

 (10)  Uher R, Farmer A, Henigsberg N et al. Adverse reactions to antidepressants. Br J Psychiatry 
2009;195(3):202-10. 

 (11)  Perroud N, Aitchison KJ, Huezo-Diaz P et al. Genetic predictors of suicidality during antidepressant 
treatment in GENDEP. Submitted 2008. 

 (12)  Perroud N, Uher R, Marusic A et al. Suicidal ideation during treatment of depression with 
escitalopram and nortriptyline in genome-based therapeutic drugs for depression (GENDEP): a 
clinical trial. BMC Med 2009;7:60. 

 (13)  Purcell S, Neale B, Todd-Brown K et al. PLINK: a tool set for whole-genome association and 
population-based linkage analyses. Am J Hum Genet 2007;81(3):559-75. 

 (14)  Wittke-Thompson JK, Pluzhnikov A, Cox NJ. Rational inferences about departures from Hardy-
Weinberg equilibrium. Am J Hum Genet 2005;76(6):967-86. 

 (15)  Seldin MF, Shigeta R, Villoslada P et al. European population substructure: clustering of northern 
and southern populations. PLoS Genet 2006;2(9):e143. 

 (16)  Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components 
analysis corrects for stratification in genome-wide association studies. Nat Genet 2006;38(8):904-9. 

 (17)  Price AL, Weale ME, Patterson N et al. Long-range LD can confound genome scans in admixed 
populations. Am J Hum Genet 2008;83(1):132-5. 

 (18)  Bacanu SA, Devlin B, Roeder K. Association studies for quantitative traits in structured populations. 
Genet Epidemiol 2002;22(1):78-93. 



  9

 (19)  Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide association scans. 
Genet Epidemiol 2008;32(3):227-34. 

 (20)  Pe'er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for 
genomewide association studies of nearly all common variants. Genet Epidemiol 2008;32(4):381-5. 

 (21)  Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to 
multiple testing. J R Stat Soc Ser B 1995;57(1):289-300. 

 (22)  Sabatti C, Service S, Freimer N. False discovery rate in linkage and association genome screens for 
complex disorders. Genetics 2003;164(2):829-33. 

 (23)  Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 
2003;100(16):9440-5. 

 (24)  Kall L, Storey JD, MacCoss MJ, Noble WS. Posterior error probabilities and false discovery rates: 
two sides of the same coin. J Proteome Res 2008;7(1):40-4. 

 (25)  Sullivan PF, de Geus EJ, Willemsen G et al. Genome-wide association for major depressive 
disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 2008. 

 
 


