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Increasing $ decreases average distance to normalized SHAPE data

In this section, we generalize the theorem from the text to show that as RNAsc parameter (3 increases,
the expected distance to normalized SHAPE data decreases. The proof, which generalizes the proof of the
theorem in the main text, is given below.

First, we begin with some notation. Thoughout this section, S denotes a secondary structure of an
arbitary, but fixed RNA sequence aq,...,a,. As in the text, each secondary structure S is associated
with a binary sequence by,...,b, such that b; = 1 if the nucleotide a; is unpaired and b; = 0 if a; is
base-paired. Given experimental SHAPE data yielding probabilities q* = (¢5,...,q3), where ¢} is the
probability that nucleotide ¢ is unpaired, the distance of S to q° is defined by:

das (8) = 3 [bi = i 1)

For secondary structure S and parameter § > 0 in the algorithm RNAsc, SHAPE weight for (S, 8) is defined
to be

we: (S, 8) = Hexp ((—Blbi — g;|)/RT)

= exp((—fdqg:(5))/RT). (2)
The [-weighted partition function then becomes
Zs =Y tar (S.B) exp(~E(S)/RT). (3)
s

The [-weighted Boltzmann probability P(S) of secondary structure S is defined by

_ wq: (8, B) exp(—E(S)/RT)
Zg

Pp(S) (4)

Let 0 < 81 < B2 be arbitrary, but fixed values for the parameter § in RNAsc. Define the critical
distance d.(f31, B2) by

~RTIn (42
de(Br, B2) = ﬁ2_</;ﬁl) ()

Note that d.(81,82), which has the form of a change in ensemble free energy, does not depend on any
particular secondary structure S, although it does depend on n, T, 51, B2, q® and of course the input RNA
sequence ag, .. ., Gy.

CLamM 1: If d; < ds and 8 > 0, then
exp(—pdy/RT) > exp(—fds/RT).



Claim 1 is obvious. We now prove the following principal claim.

CLAIM 2: For any secondary structure S,
dgs(S) < de(Br, B2) <= P3,(S) 2 Ps, (5) (6)

and strict inequalities hold as well.

For notational ease, let d. abbreviate d.(31, 82). By Equation (5) and Claim 1, for any S,

—RTIn(Zs,/Z
Ao (S) < dy = dp(5) < — BT 5/ Z51)
B2 — P
hence " — o .
— > —P2 = Pu)de _ Zp,
exp ( RT ) > exp ( BT ) 7o,
Multiply both sides of the last line by P(S) = Mg)/m") to obtain
7,32qu (S) ﬁld (S)
exp <T) exp <7T>
Pa(8) = P(S) - ——7 =2 2 P(S) ——5 = = P (8),
B2 e

This establishes Claim 2.
For 0 < 3, define the B-expected distance (Dg) between q°, obtained by normalizing SHAPE data,
and the ensemble of low energy structures by

= 37 P5(8)dg: (9): (7)
S

When S = 0, we write (D), instead of (Dy).
Define disjoint sets A, B of secondary structures S of ay,...,a, by

A = {S . dqs(S) S dc(ﬁhﬁz)}
B = {SquS(S) >dc(617ﬁ2)}‘
It follows by definition that for all S € A, dgs(S) < d., and for all S € B, dq:(S) > d..

THEOREM: For any given RNA sequence ay,...,a,, normalized SHAPE data q* and 0 < 57 < fa,
(Dg,) > (Dg,); moreover, strict inequalities hold as well.

PROOF:
(Dp,) — (Dg,) = Zd ) (Ps,(S) — Pp, (S +Zd ) (Ps,(S) — Pp,(5))
SeA SeB
> de (P3,(S) = Ps,(S) + > de (P3,(S) — P, (9))
SeA SeB

:dC'Z(Pﬁl(S)_Pﬁz _d (ZPﬂl ZP52 )Z -0=0.
S

To justify the inequality, note that for S € A, Pg, (S) — P3,(S) < 0, hence for S € A, we have dg-(5) -
(Ps, (S) — P3,(S)) > d. - (Ps,(S) — P3,(S)). On the other hand, for S € B, P3, (S) — Pg,(S) > 0, hence
for S € B, we also have dg=(S) - (Pg, (S) — Pg,(S)) > d. - (Ps,(S) — Ps,(S)). Finally, the last line follows
from the fact that Pg, and Pg, are both probability distributions, hence )¢ Pg, (S) =1 = >4 P3,(5).
This completes the proof that (Dg,) > (Dg,). The proof for inequality is similar.



SHAPE discrepancies

In order to directly characterize how well SHAPE data reflects RNA secondary structure, we compared
normalized SHAPE data with base pairing status, as determined from crystallographic or NMR structures.
We define SHAPE distance to equal the difference between normalized SHAPE reactivity (see Methods),
scaled from 0 to 1, as just defined, and binary base-pairing status, with 0 for paired, 1 for unpaired, as
derived from NMR or crystal structure. Using SHAPE data for S. cerevisiae apartyl-tRNA [1], HCV IRES
[2], bI3 group I intron p456 [3], E. coli phenylalanine-tRNA [4], E. coli 5S RNA [4], and Fusobacterium
nucleatum glycine riboswitch [4], we computed SHAPE distance at each nucleotide. We observed that at
many positions the SHAPE distance has an absolute value greater than 0.5, thus indicating a significant
difference between SHAPE reactivity and the actual secondary structure. We refer to these positions as
discrepancies. Over the the set of RNAs we examined, between 24 — 35% of the total data corresponded
to such discrepancies (see Fig. 1).

Cumulative distributions and Histograms of SHAPE reactivity

Nucleotides with SHAPE reactivities > 0.7 or 0.3 — 0.7 are considered highly and moderately reactive,
respectively [2]. Hence it is reasonable to normalize the SHAPE reactivities in a piecewise linear fashion,
where 0.3 will be roughly mapped to 0.5. However, very low SHAPE reactivities should not be mapped
close to 0.5 either. For this reason the SHAPE reactivity values < 0.25 are linearly mapped to the interval
[0.0.35), the reactivity values in [0.25,0.3) are linearly mapped to the interval [0.35,0.55), the reactivity
values in [0.3,0.7) are linearly mapped to the interval [0.55,0.85), and lastly, the reactivities > 0.7 are
linearly mapped to the interval [0.85,1.0]. See Fig. 2 for the distribution of SHAPE reactivities.

Integrating pseudo-energy terms into the Partition function re-
cursions

In this section, we provide the full recursive definitions necessary to compute the partition function, where
pseudo-energy factors have been included for every nucleotide position. The recursions are adaptations of
recursions from [5]. Corresponding recursions for the minimum free energy (MFE) secondary structure are
obtained by replacing the Boltzmann factors of energy by the energy, replacing addition by minimization,
and replacing multiplication by addition— hence will not be given explicitly.

Definition 1 Define:

e V(i,j): The partition function for the fragment from nucleotides i to j, inclusive, with i paired to
7.

o W(i,j): The partition functions for the fragment from nucleotides i to j, inclusive, such that this
fragment will be incorporated in a multibranch loop and it has one single helical branch.

e WL(i,7): The partition functions for the fragment from nucleotides i to j, inclusive, such that this
fragment will be incorporated in a multibranch loop and it has one single helical branch. Also j
is required to terminate the helical branch as either a paired nucleotide, a 3' dangling end, or a
nucleotide in a terminal mismatch.

o WMB(i,j): The partition function from nucleotides i to j, inclusive, such that this fragment will
be incorporated into a multibranch loop and it contains two or more branches.
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Figure 1. sHAPE discrepancies. Distribution of SHAPE discrepancies for east tRNA-Asp, HCV
IRES [2], bI3 group I intron p456 [3], E. coli 5S RNA [4], and Fusobacterium nucleatum glycine
riboswitch [4].Using crystal structure as ‘gold standard’, red squares indicate locations, where the
absolute value of the difference of SHAPE data and crystal structure (1 unpaired, 0 paired) exceeds 0.5.

o WMBL(i,j): The partition function from nucleotides i to j, inclusive, such that this fragment will
be incorporated into a multibranch loop and it contains two or more branches. Also j is required to
be paired or associated with a heliz as either a 3’ dangling end, a nucleotide in a terminal mismatch,
or a nucleotide in a mismatch between two coaxially stacked helices.

e WC(i,7): The partition function from nucleotides from i to j, inclusive, such that there are two
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Figure 2. SHAPE reactivity distributions. Distribution of reactivities of data for HCV IRES [2], bI3
group I intron p456 [3], E. coli phenylalanine-tRNA [4], E. coli 5S RNA [4], and Fusobacterium
nucleatum glycine riboswitch [4]. The fraction of base-pairs could be used to estimate the threshold
SHAPE moderate reactivity.

coazially stacked branches. Nucleotides i and j must either be paired, e.g. (i,k), (k+1,j), or be in
a single mismatch separating the two helices, e.g. (i+ 1,k —1), (k+1,5) or (i, k), (k+ 2,5 —1).

o W5(i): The partition function for the nucleotide fragment from the 5’ end of the sequence to and
including nucleotide i



o W3(i): The partition function from and including nucleotide i to the 3 end of the sequence.

See [5,6] for details on the storage and calculation of the arrays. V is the sum of terms involving a pair
between i and j, base pair stacking, hairpin loop closure, internal loop closure, and multibranch loop
closure. For j < N, we have:

V(i,7) ={Vh(i,j) + Vs(i,j) + Vi(i,j) + Vm(i, j)} x w(0,4) x w(0,7),
and for j > N we have:
V(i,j) ={Vs(i,j) + Vi(i,j) + Vm(i,j) + Ve(i, j)} x w(0,7) x w(0, ).

Note that V' is not defined for ¢ = N and for j = N +1 (i.e., the ends of the sequence.) Vh is the energy
contribution of the hairpin and is defined by

—AG (hairpin)/RT ; ;o ) <
Vh(i, ) = e x F(i+1,7-1) for j < N,
0 else.

Vs is the stacking contribution (of a base pair on a previous pair) and is defined by:
Vs(i,j) = e ACEtack)/BT sy 41,5 — 1),
Vi is the energy contribution of internal loops which also considers bulge loops. Vi is defined by,

Vi(i,j) =Y V(i,i)F(i+1,i = )F(j' +1,j — 1) x e 8 tack)/ AT
Z‘/ j/

Computation of Vi requires a search over i’ and j' where 7 < ¢/ < j/ < j except where i = ¢ + 1 and
j = 7 — 1 simultaneously, that is, the base pair stacking case. The search is limited to internal loops of
size 30 nt that is, i’ —i +j — 5’ — 2 < 30, to limit the algorithm to O(N?3). In what follows 3’ d refers to
3" dangles, 5" d refers to 5 dangles, TM refers to Terminal mismatch and CS refers to Coazial Stacking.
V'm is the multibranch contribution and is define by

Vmn(i,j) = WMB(i+ 1,7 — 1) x e~ (@F)/RT e—AG(3 d)/RT
X WMB(i+2,j — 1) x e @HH/BT o (1 4 1) 4 ¢~ AG6E" /BT
X WMB(i+1,j — 2) x e (@H0H/BT o y(1 5 — 1) 4 ¢ AG(TM)/RT
x WMB(i + 2,5 — 2) x e (@t204)/RT o 51 i 41) x w(l,j — 1)

+) e BGOSR V(i 1, k) x (W(k+ 1,5 — 1) + WMB(k+1,j — 1)} x e~ (*F2/ BT

k

+) e BGOSR v (k,j— 1) x (W(i+ 1,k — 1) + WMB(i + 1,k — 1)} x e~ (a+2e)/RT
k

+ Z e ACES/RT o (i 42 k) x {W(k+2,j— 1)+ WMB(k+2,j — 1)} x e (at2+2)/RT
k

xw(li+1) xw(l k+1)+ Y e 2COSET y (g j—2)

k
X AW(i+1,k—2) + WMB(i + 1,k — 2)} x e (@F2F2)/ BT o ;1 k —1) x w(1,j — 1).



Ve is the energy contribution from the exterior loops. It is defined only when j > N:

Ve(i, ) = W3(i + 1) x W5(j — 1 — N) + W3(i +2) x W5(j —1 — N) x e AGE" d)/RT
X w(l,i+1)+W3(i+1) x W5(j —2 — N) x e 266 /BT 51,5 —1 - N)
+ W3(i+2) x W5(j —2— N) x e 2FIM/ET o 51,5+ 1) x w(l,5 — 1 — N)

+ Y e SCORT S V(i 4 1,k) x W3(k + 1) x W5(j — 1 - N)
k

+ D e ACOS/RT Yk j— 1= N) x W3(i + 1) x W5(k — 1)
k

+ 3 eTACOYRT (i 42,k — 2) x W3(k) x W5(j —1— N)
k

xw(li+1) xw(lk—1)+ Y e 8O/ V(i 42 k) x W3(k+1)
k

xW5([—2—N)xw(l,i+1)xw(l,7—1—N) JrzefAG(CS)/RT
k

XV(k+1,j—2—=N)x W3(>i+1) x W5(k —1) x w(1,j — 1= N) x w(1,k)

+ 3 eTACO/RT Y (g j— 2~ N) x W3(i +2) x W5(k — 1)
k
xw(l,j—1=N)xw(li+l).

W5(7) is the fragment from 1 to ¢ and is computed by:
Wh(i) = W5(i — 1) x w(l,i) + > W5(k) x V(k+1,i) + > _ W5(k) x e~ 26 O/ET
k k
X V(k+1i—1) xw(l,i)+ > Wh(k) x e 2 DALy 4 2.4)
k
xw(lk+1)+ Y Wh(k) x e” ST/ 5y (425 — 1)
k

X w(lk+1) x w(l,4) + Y Wh(k) x e 2SR v(k 4 1,m)

k.,m
x V(m+1,4) + Y Wh(k) x e 2T V(4 1,m) x V(m +2,i— 1)
k.,m
xw(l,m+1) xw(l,i)+ Y Wh(k) x e 2O BT (k4 2,m — 1)
k,m

xV(im+1,i) xw(l,k+1) xw(l,m).

W5(0) is initialized to 1.



W3 is defined similarly, as follows.

W3(i) = W3(i + 1) x w(l,i) + > W3(k) x V(i,k— 1) + > _ W3(k) x e- 2" O/RET
k k
X V(i+1,k—1) xw(l,i)+ > W3(k) x e 2E DALy (i | — 2)
k

xw(lk—1)+ Y W3(k) x e 2T/ v (i 41,k — 2)x
k

w(l i) x w(lk—1)+ Y W3(k) x e 2O/ v (i m)

k,m

X V(m+1,k—1)+ Y W5(k) x e 2O/ BT V(i m) x V(m+2,k - 2)

k,m

xw(l,m+1) xw(lk—1)+ > W5(k) x e 2O/ y(i+1,m—1)
k,m
xV(im+1,k—1) xw(l,i) x w(l,m).
W3(N + 1) is initialized to 1.
W' is the energy contribution of coaxial stacking inside a multiloop and is defined by:

WC(i,j) =Y e GO RT 5 V(i k) x V(k +1,5) x e /T
k
+ Ze—AG(CS)/RT % V(Z + 1,I€) % V(k 4 2’3) % e—2b—20/RT
k

x w(l,i) x w(l,k+ 1)+ Y e 2SRy (k)
k

X V(k+2,7—1)xe 2272/BT 5 (1, k4 1) x w(1, )

W M BL, the energy contribution of the last part of a multibranchloop with at least two components
is defined by:

WMBL(i,j) = (WL(i, k) — w(l,i) x WL(i + 1,k) x e*b/RT)
k
+WC(i, k) x {WL(k+1,5) + WMBL(k+1,5)}
W L, the energy contribution of the last part of a multibranchloop with one components is defined by:
WL(i,5) = V(i,j) x e /BT 4 ¢ AGE O/RT /(i 5 1) x e~ OH/BT 5 451, 5)
4 e AGE A/RT oy 11 j) x e~ OHO/RT 5 (1,4)
+ e ACIM/RT o /(5 41,5 — 1) x e~ BHI/BT 5 5(1,4) x w(l, §)
+ WL(i +1,7) x e BT x w(1,4).
Finally, W M B, the energy contribution of multibranch loop with at least 2 components is:
WMB(i,j) = WMBL(i,j) + WMB(i,7 — 1) x e " BT x w(1, 5)
The probability of a base pair involving nucleotides i and j is:
L V(i,j) x V(j,i+ N)
"7 W5(N) x w(0,1) x w(0, )

This is because W5(N) = @ and V (i, 5) x V(4,7 + N) represents the total contribution to @ of secondary
structure conformations that contain the base pair of i to j.




Table of sequences, native structures, and structures predicted
by RNAsc

Table 1. Sequence, native structure, and structure predicted by RNAsc.

Sequence / Structure

RNA length sequence, native structure, and predicted structure
seq. GCCGUGAUAGUUUAAUGGUCAGAAUGGGCGCUUGUCGCGUGCCAGAUCGGGGUUCAAUUCCCCG
asp-tRNA™* | 75 UCGCGGCGCCA
nat. CCCCCCC . CCCCaennnn )DLt I G I))
DI ...
pred. | C(CCCCCC . CCCCannnnt DDDD I C (¢ G DDDDD N (€ (¢ GUN I
D). ..
seq. CCAUGAAUCACUCCCCUGUGAGGAACUACUGUCUUCACGCAGAAAGCGUCUAGCCAUGGCGUUA
HCV IRES | 95 GUAUGAGUGUCGUGCAGCCUCCAGGACCCCC
nat. | .............. CCCC .. CCCCC . CCC Qe CCCCCCaeenn I .
22)))) )N .
pred. | ... .. L. CCCC. ... CCCC o CCC Qe e ).

2.2).))...000))))))) ...

seq. UGCUGAAAUAUCUUCAUUUGAAUAAUAAAUUACUAUAUUAUUCAAUUAAUUAUUUAUAAUAAUA

P546 155 UAAUUUGAAAUAAAAAUAAUAUAGUUAAAAUAUUUAUUAUAAGAAGAAAAUUAGCAGUAAUUAA
UAUAUAUAUAUAUAUAAAAUUAAUUAU

nat. CCCCC . et CCCCCCCCC. (. ceceeceecc. ... ))))).

DDDDD I 23)3)3))))) ... 23333333)..33333)..3))))) (CCCCC((
GO .23993)-9999900))

pred. | . CCCCC. .. CCCCC. .. CCCCCCCCC. cecceccccccccccccccccc. ... ))))).

)DDDDEDD IS D) 3)32)2)).99)))...9)))) . (CCCCC((

G OO 2999 -99090900))

seq. GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACA

phe-tRNA | 76 GAAUUCGCACCA
nat. | (CCCCCC . CCCCanet )G N (O )
DN ...
pred. | CCCCCCC.CCCC.onnnn 1)) et DDDDD IS G 2)))
DN ...
seq. | UGCCUGGCGGCCGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCG
55 TRNA 120 UAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU
nat. | . (CCCCCCCC ... CCCCCCCCe o OOl 23)).9))...9000)
). (Gl CCCCCCCC. . 3009000) ..o . 2)...2)))))))..
pred. | C(CCCCCCCCCCC CCCCCCCCC o CCCCCCCannnnii et 23)).9))...9000)
) (CC L)) (N .- 2:))..9))2))000).
seq. | GAUAUGAGGAGAGAUUUCAUUUUAAUGAAACACCGAAGAAGUAAAUCUUUCAGGUAAAAAGGAC
glycine 162 UCAUAUUGGACGAACCUCUGGAGAGCUUAUCUAAGAGAUAACACCGAAGGAGCAAAGCUAAUUU
UAGCCUAAACUCUCAGGUAAAAGGACGGAGAAAA
nat. | C(CCCCCCC ... CCCCCC oI . (G (e )DDINDDD NN )
)DDDDDD R et CCCCC. ... DPDDD I (I (G G
NN 0D DI
pred. | (CCCCCCC ... CCCCCC 22322220 . (Ll e )DDPDEEDDD RN )
)DDDDDD R et CCCCC. ... 22200 (G (OO (e

)))).0))) D)) ) ...
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