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The modeling of complex systems typically involves reducing the number
of free parameters in a model of the system, to a tractable quantity, while
keeping the essential features of the phenomena under study (1). Ecolog-
ical models frequently start with an assumption of functional forms such
as the logistic term in Eq. 4 or the saturating function in Eq. 1 as these
functional forms can arise in many ways. Here we present our derivation of
these functional forms using more detailed models of the T cell, pathogen
dynamics, and innate immunity, and derive the equations presented in the
main text from them. The T cell subsection considers the integration of
a within cell model for PD-1 expression in T cells, and the population dy-
namics of T cells, dendritic cells, and pathogen. The pathogen subsection
considers a common model of free pathogen, uninfected target cell, and in-
fected target cell and reduces it to the logistic equation used in the main text.
The innate immunity model considers an alternate derivation of the logistic
equation starting from an explicit innate immunity model, underscoring the
ability of the logistic term to describe either resource limitations or innate
immunity. These reductions are performed using quasi-static approxima-
tions. The quasi-static approximations become exact in the behavior of the
steady states of the model, which much of the main text is focused on. The
quasi-static approximations also yield a model in qualitative agreement with
experimental results (2–4).

T cell Dynamics

Here we derive Eq. 1 from a mechanistic, population expression model, which
combines within cell dynamics of chemical expression with population dy-
namics. In the full model, T cells are described by two variables, a binary
variable denoting stimulated or unstimulated, and a continuous variable de-
noting PD-1 expression. We do not consider differentiation of T cells to
memory cells as this plays an insignificant role in the dynamics of chronic
infections.

In the unstimulated state, the within cell dynamics of PD-1 expression
(A) are given by production rate α1 and decay rate δ giving:

dA

dt
= α1 − δA. (1)
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Once stimulated the production rate of PD-1 increases to α2 > α1, giving
the within cell model:

dA

dt
= α2 − δA. (2)

Here production has increased instantaneously, but δ is slow, and reaching
the equilibrium PD-1 expression level is gradual.

We model unstimulated T cells as not dividing. Stimulated T cells divide
with rate G(A), which is dependent on PD-1 expression, into two cells that
are also in the stimulated state and the daughter cells inherit the PD-1
expression level of the parent. T cells in the full model transition from
unstimulated to stimulated upon encounter with activated dendritic cellsD∗.
Dendritic cells transition from inactivated D, to activated D∗, by encounter
with pathogen.

Thymic influx generates diversity. Unstimulated naive cells with low PD-
1 expression enter the system while other cells may already be expressing
high levels of PD-1. This diversity requires partial differential equation to
model the continuum of PD-1 expression levels. This can be performed using
standard techniques to integrate the within cell model equations above, with
the population dynamics. This extension to a partial differential equation
is typically performed using tools from structured population dynamics (5)
which consist of constructing a non-conservative advection equation. This
generates the following set of equations:

∂ρ1(A, t)

∂t
= − ∂

∂A
[(α1 − δA)ρ1(A, t)] − dρ1(A, t)

− k1D
∗ρ1(A, t) + k2ρ2(A, t) (3)

∂ρ2(A, t)

∂t
= − ∂

∂A
[(α2 − δA)ρ2(A, t)]

+ (G(A) − d) ρ2(A, t)

+ k1D
∗ρ1(A, t) − k2ρ2(A, t) (4)

dD

dt
= −k3PD + k4D

∗ (5)

dD∗

dt
= +k3PD − k4D

∗, (6)

where there is additionally an influx of cells at ρ2(0, t) (not shown), and the
dynamics of the pathogen are presented separately below. This advection
equation is analogous to the density of cells acting like a fluid, with flow
rates given by Eq. 1 and 2. When pathogen P is introduced to the system,
dendritic cells become activated and present antigen. T cells that are pre-
sented with antigen become stimulated, increasing production of PD-1, and

2



begin to divide. When pathogen is cleared from the system, T cells transi-
tion back to the unstimulated state and PD-1 expression decays back to the
initial level. This relaxation of PD-1 expression is based on data showing
that after an acute LCMV infection is cleared, PD-1 expression returns to
the naive expression level (3).

We reduce this model, removing the binary variable, by considering the
fractions of cells in the stimulated and unstimulated states. We further re-
duce it by a substitution of variables, considering PD-1 expression (A) as
a measure of “exhaustion” (a) ranging from a = 0 for non-exhausted (low
PD-1 expression) to a = 1 for completely exhausted (high PD-1 expression).
The reduction from PD-1 expression to exhaustion removes two model pa-
rameters.

Dendritic cell activation is assumed rapid compared to the other pro-
cesses in the system (T cell exhaustion evolves over 1-2 weeks for example).
A quasi-static approximation for the dendritic cell dynamics, with total den-
dritic cells D0 = D +D∗, yields:

D∗ =
k3D0P

k4 + k3P
. (7)

We make a second quasi-static approximation noting that stimulation
of T cells is rapid compared to the chemical expression dynamics of PD-1.
This is inferred from the fact that the PD-1 expression profile in a persistent
LCMV infection evolves slowly as a unimodal distribution (3). The opposite
case, gradual activation with rapid PD-1 shifts, would give a shifting bimodal
distribution. This quasi-static approximation coupled with the dendritic cell
approximation gives us:

ρ2(A, t) ≈ k1
k2

k3D0P

k4 + k3P
ρ1(A, t) (8)

=
µP

φ+ P
ρ(A, t) (9)

ρ1(A, t) ≈
(

1 − µP

φ+ P

)
ρ(A, t) (10)

where we have introduced the total density of T cells ρ(A, t) = ρ1(A, t) +
ρ2(A, t) and defined the parameters:

µ =
k1D0

k2 + k1D0
(11)

φ =
k2k4

k3(k2 + k1D0)
. (12)
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Eq. 9 and 10 describe the fraction of time T cells spend stimulated or un-
stimulated. In the model, the PD-1 timescale δ is much slower than the rates
of T cells binding and unbinding antigen presenting cells. PD-1 expression
therefore reflects the average amount of time spent in the stimulated state.

We now obtain a partial differential equation for the total T cell density
ρ(A, t) by summing Eq. 3 and 4 and using the approximations in Eq. 9 and
10:

∂ρ(A, t)

∂t
= − ∂

∂A
[α1ρ1(A, t) + α2ρ2(A, t) − δAρ(A, t)]

− dρ(A, t) +G(A)ρ2(A, t) (13)

= − ∂

∂A

[{
α1 − δA+ (α2 − α1)

µP

φ+ P

}
ρ(A, t)

]
+

[
G(A)

µP

φ+ P
− d

]
ρ(A, t). (14)

This relationship is further simplified by the substitution of variables:

a =
α1 − δA

µ(α1 − α2)
. (15)

and the replacement of the density ρ(A, t) a function of PD-1 expression,
with the density U(a, t) a function of exhaustion level. These replacements
yield the equation:

∂U(a, t)

∂t
= − ∂

∂a

[
δ

(
P

φ+ P
− a

)
U(a, t)

]
+

[
g(a)

P

φ+ P
− d

]
U(a, t), (16)

where we have also defined g(a) = µG(A). This equation implicitly contains
the dynamics of pathogen uptake, activation of dendritic cells, and PD-1 ex-
pression. It illustrates why the proliferation term and the exhaustion term
are expected to have similar functional dependence, both arising from stim-
ulation of T cells by activated dendritic cells. While we have derived the
saturating function for proliferation rate from a simple mechanistic model,
the functional form has been empirically observed (4). The exhaustion dy-
namics of this model, i.e.:

da

dt
= δ

(
P

φ+ P
− a

)
, (17)
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are mathematically equivalent to the dynamics of exhaustion in previous
models (6).

For division rate we choose a functional form which is simple yet captures
observed T cell behavior for total numbers (2). The functional form g(a) =
s(1 − a) satisfies this requirement yielding Eq. 1:

∂U(a, t)

∂t
= − ∂

∂a

[
δ

(
P

φ+ P
− a

)
U(a, t)

]
+

[
s(1 − a)

P

φ+ P
− d

]
U(a, t). (18)

Below we discuss the implications of this choice of g(a) for T cells under a
high pathogen load.

No Influx and Constant Pathogen

To explore the functional form g(a) = s(1 − a), we study the behavior of
the model for T cells under high pathogen load (i.e. P � φ,) and no thymic
influx. The condition that P � φ is satisfied when T cells have a constant
proliferation rate while pathogen density changes over many orders of mag-
nitude. This is observed for example in LCMV infection where peak viral
density is two orders of magnitude larger than when T cells reach maximal
growth rate (4). The lack of thymic influx may represent a thymectomized
animal or distinct transplanted cells.

Without thymic influx there is no diversity. In this case the initial popu-
lation, tightly peaked around a = 0, remains tightly peaked while changing
in a. In this case we can rewrite 18 with an ODE for cells having internal
variable a(t), and a separate ODE for da/dt. In Eq. 18 exhaustion a was
conceptually similar to a spatial variable where cells flowed toward higher
values of a as they became exhausted. We now have a as a function of
time a(t). This approach was used in modeling persistent infections without
thymic influx (6). In the absence of thymic influx and with high pathogen
density, our T cell model is reduced to:

dX

dt
= s(1 − a)X − dX (19)

da

dt
= δ − δa. (20)

The solution to the a equation with initial condition a(0) = 0 is:

a(t) = 1 − e−δt. (21)
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Which, when substituted into the equation for total T cell number, yields:

dX

dt
= se−δtX − dX. (22)

This illustrates that high pathogen load yields an exponentially declining T
cell proliferation rate in our model.

Pathogen Dynamics

The use of a logistic growth term is common in ecological models with
resource limitations and models are often presented with these terms without
derivation. Here we show how a common, more detailed model of viral
dynamics, can be reduced to the equation used in the text.

We take as a starting point the most common form for an explicit target
cell model (7–11):

dT

dt
= λ− dV T − kV PT (23)

dI

dt
= kV PT − δV I (24)

dP

dt
= pV I − cV P (25)

Where T is uninfected target cells, I is infected target cells, and P is free
virus. This model does not include adaptive or innate immunity explicitly.
This model assumes that innate immunity sets these values rapidly; decreas-
ing kV , increasing δV , reducing pV , and/or increasing cV . We incorporate
adaptive immunity with an additional term introduced below.

To reduce the model from three equations to one equation we need to
identify the relative rates of all the terms in these equations. It has been
found that the kV PT terms are orders of magnitude slower than the other
terms in these equations (7). While this term is present in two of the equa-
tions, taking linear combinations of the equations allows us to obtain one
slow equation and one fast equation. We introduceM = I−T andN = I+T ,
giving us the new system:

dM

dt
= kV P (N −M) − δV

2
(N +M) − λ

− dV
2

(N −M) (26)

dN

dt
= λ− dV

2
(N −M) − δV

2
(N +M) (27)

dP

dt
=

pV
2

(N +M) − cV P. (28)
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Now we can use a quasi-static approximation, as Eq. 26 is the only equation
with the slow term kV PT = kV P (N +M). Setting Eq. 27 and 28 equal to
zero and solving for N and M in terms of V we obtain:

N =
dV − δV
dV pV

cV P +
λ

dV
(29)

M =
dV + δV
dV pV

cV P − λ

dV
. (30)

Substituting these two expressions for N and M , and the derivative of the
M term:

dM

dt
=
dV + δV
dV pV

cV
dP

dt
, (31)

into Eq. 26 we obtain:

dP

dt
=

2(kV pV λ− dV δV cV )

(dV + δV )cV
P

(
1 − kV δV cV P

kV pV λ− dV δV cV

)
, (32)

or:
dP

dt
= rP

(
1 − P

C

)
, (33)

where we have set:

r =
2(kV pV λ− dV δV cV )

(dV + δV )cV
(34)

C =
kV pV λ− dV δV cV

kV δV cV
. (35)

We see that C corresponds to the equilibrium value of P in the full system of
equations. These values can also be written in terms of R0, the approximate
number of cells a single infected cell will infect in an otherwise uninfected
host. We find from the full system that R0 is well approximated by:

R0 =
λkV pV
cV dV δV

, (36)

yielding:

r =
2dV δV
dV + δV

(R0 − 1) (37)

C =
dV
kV

(R0 − 1). (38)
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T cell killing is modeled with a mass action term for T cells interacting
with infected target cells:

k′IX = k′
pV
cV
PX = kPX, (39)

where we have used the relationship I = (cV /pV )P from the quasi-static
approximation and rescaled the killing rate to relate killing to free pathogen
concentration, rather than infected cell concentration. Incorporating this
killing term we obtain the functional form found in Eq. 4 of the main text:

dP

dt
= rP

(
1 − P

C

)
− kPX. (40)

We have reduced the three equations for uninfected target cell, infected
target cell, and free virus to the single equation presented in the main body
of the paper. Though we started with an explicit equation for pathogen
density (Eq. 25), because the cell infection rate is by far the slowest rate in
the system, the pathogen dynamics are best described by the difference of
the infected and target cell rate equations.

Alternate Innate Immunity Model

Above, we have considered that innate immunity rapidly sets the values of
the parameters for virus infecting cells, viral proliferation rates, and free
virus survival rates. There are many ways of modeling innate immunity
which could include activated cells, cytokines and other factors. Here we
consider a previously used alternate model of innate immunity (12) and
show that while the functional form differs, the qualitative behavior and the
conclusions of this paper are preserved.

The model considers innate immunity described by a single variable Y
with a negative feedback regulating the total magnitude of the innate re-
sponse (12). The equations are given by:

dY

dt
= σY P (j − Y ) − dY Y, (41)

dP

dt
= rP − hPY − kPX, (42)

where X is the antigen specific response having the same dynamics as is
described in the main text, and j represents complete activation of the
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innate immune system. As the innate response is rapid we have a quasi-
static equilibrium (i.e. dY/dt ≈ 0) for the pathogen dynamics giving:

dP

dt
= rP

(
1 − P

r
hj (

dY
σY

+ P )

)
− kPX. (43)

Here we see instead of a logistic equation, we have a first degree hill function.
For comparing with other models we define:

C =
dY
σY

r

hj − r
, (44)

which is the pathogen density expected in the absence of an antigen specific
immune response. The product hj gives the maximum clearance (not the
peak clearance of an acute infection, but a theoretical maximum if the to-
tality of the innate immune system is activated) and we see that if innate
immunity is to control the infection that hj > r. We can rewrite Eq. 43
using C obtaining:

dP

dt
= rP

(
1 − P

C − r
hj (C − P )

)
− kPX. (45)

Since we know that for innate immunity to control the pathogen that hj > r,
and that C > P , we can accurately approximate this equation with the
logistic function used above:

dP

dt
= rP

(
1 − P

C

)
− kPX. (46)

The fact that the two very different models from resource limitation and
innate immunity yield the same approximate functional form underscores
the difficulty of discriminating between them with experimental data (12).
In general the carrying capacity C can be assumed to be a combination of
innate immunity (Eq. 43) and resource limitation (Eq. 35).
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