Molecular dynamics of class A β -lactamases – Effects of substrate binding

Supporting Material

Olivier Fisette^{*}, Stéphane Gagné, Patrick Lagüe Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, Canada and PROTEO and IBIS

September 7, 2012

Abstract

The effects of substrate binding on class A β -lactamase dynamics were studied using molecular dynamics simulations of two model enzymes; forty 100-ns trajectories of the free and substrate-bound forms of TEM-1 (with benzylpenicillin) and PSE-4 (with carbenicillin) were recorded (totalling $4.0 \ \mu s$). Substrates were parameterized with CGenFF. In both enzymes, the Ω loop exhibits a marked flexibility increase upon substrate binding, supporting the hypothesis of substrate-gating. However, specific interactions that are formed or broken in the Ω loop upon binding differ between the two enzymes: dynamics are conserved, but not specific interactions. Substrate binding also has a global structuring effect on TEM-1, but not on PSE-4. Changes in TEM-1's normal modes show long-range effects of substrate binding on enzyme dynamics. Hydrogen bonds observed in the active site are mostly preserved upon substrate binding, and new, transient interactions are also formed. Agreement between NMR relaxation parameters and our theoretical results highlights the dynamic duality of class A β -lactamases: enzymes that are highly structured on the ps-ns timescale, with important flexibility on the μ s-ms timescale in regions such as the Ω loop.

This supporting material document contains the detailed parameterization protocol for penicillin and carbenicillin β -lactam antibiotics, supporting results and figures for β -lactamase backbone dynamics, and a list of supporting movies (essential dynamics normal modes). Tabular data and force field files are available in plain text format upon request.

^{*}To whom correspondence should be addressed: Olivier Fisette, Charles-Eugènes-Marchand building, office 4252, Université Laval, Québec (QC), Canada, G1V0A6; olivier.fisette.1@ulaval.ca

Figure S1: Structure of parameterization target compounds. Benzylpenicillin (BZP) is β -lactamase TEM-1's prefered substrate, while carbenicillin (CBC) is hydrolyzed efficiently by β -lactamase PSE-4.

β -lactam parameterization

Summary

Benzylpenicillin and carbenicillin (Figure S1) [1, 2] were parameterized within the context of the CGenFF forcefield [3], version 2b5. The four-member ring was the first and principal fragment considered. The substituted four member ring was then fused to the five-atom cycle to form the basic antibiotics scaffold. The C-S bond at the rings junction needed parameterization since it is currently missing from CGenFF. Afterwards, the other substituants were added to create benzylpenicillin. Finally, an additional carboxyl was added to form carbenicillin. At all steps, the suggested CGenFF parameterization protocol and philosophy were followed to obtain transferable parameters that could be used to construct a wide variety of penicillin-like β -lactams.

β -Lactam ring

Since β -lactam antibiotics are mimetic dipeptides, a first attempt was made at parameterizing a minimal β -lactam by analogy with existing amino acid parameters, chiefly proline (due to the disubstituted amide in the lactam cycle). However, MM geometry minimization showed that the cycle conformation differed from that suggested by quantum mechanics calculations (Figure S2): the cycle has a pronounced pucker, whilst the QM-geometry is nearly flat. All MM calculations in this work were carried out with CHARMM c35b1 [4]. All QM calculations in this work were carried out with Gaussian 03 [5].

MM-geometry being inadequate, the β -lactam ring was reparameterized. To avoid modifying existing CGenFF parameters, and considering that the chemical environment in a four-member ring is substantially different from anything else in CGenFF, we introduced new atom types for the four-member cycle. Initial parameters and partial charges were guessed by analogy with amino acids. Atom types are:

- CG315: Aliphatic C for CH in β -lactam ring, analog to CG311
- NG2S4: N,N-Disubstituted amide N in β -lactam ring, analog to NG2S0
- CG2O8: A mide carbonyl C in β -lactam ring, analog to CG2O1

Figure S2: Comparison of QM and MM geometry optimization (two different orientations) for a minimal substituted β -lactam. QM-optimized structure in orange; MD-optimized structure is CPK-colored, with green carbons.

The previously shown β -lactam ring (Figure S2) was used for parameter optimization; atom numbering is shown in Figure S3.

Non-bonded terms

The non-bonded terms taken from existing atom types (CG311, NG2S0, CG2O1) were not reoptimized, in keeping with the recommended CGenFF strategy.

Geometry

Atom equilibrium distances, Urey-Bradley distances and angles involving the new atom types were set according to the QM-optimized geometry at the MP2 level of theory in the 6-31G(d) ensemble.

Partial charges

Merz-Kollman charges were computed at the MP2 level and used as initial guesses for partial atomic charges in the β -lactam ring, except for aliphatic protons, whose charge was set to 0.09 and not optimized. Substituent (CH3, SH and NH2) charges were set by analogy with existing CGenFF compounds and were not optimized. The equilibrium distances and energies of four water molecules were computed at the HF level (Figure S4).

Figure S3: Substituted β -lactam used as parameterization starting point. Atom numbering is shown.

Figure S4: Solvation distances and orientations for β -lactam parameterization.

Table 51: Fartiar atomic charges on minimal substituted p -factam							A 1	
Atom	Type	Charge	$\Delta E QM$	$\Delta E MM$	$\Delta \Delta E$	d QM	d MM	Δd
		e	m kcal/mol	$\rm kcal/mol$	m kcal/mol	A	A	Å
C1	CG2O8	0.475						
01	OG2D1	-0.475	-5.51	-5.52	0.01	2.06	1.79	0.27
N2	NG2S4	-0.410	0.21	0.29	-0.08	2.61	2.36	0.25
C3	CG315	0.195						
H3	HGA1	0.090	-2.52	-2.57	0.04	2.51	2.60	-0.09
C4	CG315	0.175						
H4	HGA1	0.090	-2.56	-2.63	0.07	2.54	2.60	-0.06
C5	CG331	-0.060						
H51	HGA3	0.090						
H52	HGA3	0.090						
S6	SG311	-0.230						
H6	HGP3	0.160						
N7	NG321	-0.960						
H71	HGPAM2	0.340						
H72	HGPAM2	0.340						

Table S1: Partial atomic charges on minimal substituted β -lactam

The same solvation was performed using the MM forcefield. Charges were adjusted manually to reproduce QM distances and interaction energies. Final partial charges are given in Table S1.

Bonded terms

Bond, angle and improper angle force constants involving new atom types were optimized by minimizing divergence between the QM and MM vibrational spectra. QM frequencies were computed at the MP2 level and compared to CHARMM-generated values (scaled by 94 %). The average difference between the two spectra was 8.5 % prior to optimization.

An automated optimization algorithm was used, which assumes a global minimum and slowly modifies all force constants to move towards that minimum. Different starting points and algorithms were used, and all converged to the same point. After optimization, vibrational frequencies differed on average by 4.8 %. Optimized parameters are given in Tables S2 (bonds) and S3 (angles). Angles that contain only one new atom in a non central position were not reoptimized (Table S4). Improper angles were optimized (Table S5).

Optimizing dihedral angle and Urey-Bradley constants through vibrational spectra yeilded no measurable improvement compared to the values taken from CGenFF by analogy, so the initial values were kept unchanged. Since the β -lactam ring is very rigid, potential energy scans for dihedral constants (using *fit_dihedral* [6], for instance) were deemed unnecessary. Dihedral and Urey-Bradley parameters are given in Tables S6 and S7, respectively.

Iteration

Partial charges were checked again since modifying the bonded terms could have an impact on solvation energies. However, no significant change was observed. A second round of optimization was therefore not necessary. (Solvation energies reported above are the final results after bonded

Bo	ond	K	d
		$\rm kcal/mol$	Å
CG2O8	OG2D1	725.0	1.22188
CG2O8	NG2S4	267.0	1.36713
CG2O8	CG315	297.5	1.53754
CG315	NG2S4	298.0	1.46504
CG315	HGA1	341.0	1.09676
CG315	CG315	270.0	1.57285
NG2S4	CG331	405.5	1.44255
CG315	SG311	283.5	1.80608
CG315	NG321	342.5	1.44688

Table S2: Optimized bond constants for minimal substituted β -lactam

Table S3: Optimized angle constants for minimal substituted β -lactam

	Angle		k	heta
			$\rm kcal/mol$	0
CG2O8	NG2S4	CG315	10.0	95.724
CG315	CG315	NG2S4	52.0	87.034
CG2O8	CG315	CG315	10.0	84.983
CG315	CG2O8	NG2S4	67.0	92.027
NG2S4	CG2O8	OG2D1	77.0	133.609
CG315	CG2O8	OG2D1	15.0	134.322
CG2O8	NG2S4	CG331	55.5	131.522
CG315	NG2S4	CG331	139.0	131.828
SG311	CG315	NG2S4	72.0	117.164
CG315	CG315	SG311	89.4	117.004
CG2O8	CG315	NG321	14.5	111.267
CG315	CG315	NG321	79.2	116.893
NG2S4	CG315	HGA1	45.5	112.900
CG315	CG315	HGA1	37.0	113.254
CG2O8	CG315	HGA1	40.0	113.556
SG311	CG315	HGA1	31.0	107.086
NG321	CG315	HGA1	13.0	115.059

Table S4: Angle constants not subjected to optimization for minimal substituted β -lactam

	Angle		k	heta
			$\rm kcal/mol$	0
NG2S4	CG331	HGA3	48.0	112.000
CG315	SG311	HGP3	38.8	95.000
CG315	NG321	HGPAM2	41.0	112.100

Table S5: Improper angle constants for minimal substituted $\beta\text{-lactam}$

	Imprope	er angle		k	\mathbf{m}	р
				$\rm kcal/mol$	-	0
CG2O8	Х	Х	OG2D1	161.5	0	0.00
NG2S4	CG2O8	CG315	CG331	0.0	0	0.00

	Dihedi	al angle		k	m	\mathbf{p}
				$\rm kcal/mol$	-	0
HGA1	CG315	NG2S4	CG2O8	0.8000	3	0.00
CG315	CG315	NG2S4	CG2O8	0.8000	3	0.00
SG311	CG315	NG2S4	CG2O8	0.8000	3	0.00
HGA3	CG331	NG2S4	CG2O8	0.0000	3	0.00
CG2O8	CG315	CG315	NG2S4	0.2000	3	0.00
CG2O8	CG315	CG315	HGA1	0.2000	3	0.00
CG2O8	CG315	CG315	SG311	0.2000	3	0.00
CG2O8	CG315	NG321	HGPAM2	0.3000	3	180.00
OG2D1	CG2O8	NG2S4	CG315	2.7500	2	180.00
OG2D1	CG2O8	NG2S4	CG315	0.3000	4	0.00
OG2D1	CG2O8	NG2S4	CG331	2.7500	2	180.00
OG2D1	CG2O8	NG2S4	CG331	0.3000	4	0.00
OG2D1	CG2O8	CG315	CG315	0.4000	1	180.00
OG2D1	CG2O8	CG315	CG315	0.6000	2	0.00
OG2D1	CG2O8	CG315	HGA1	0.4000	1	0.00
OG2D1	CG2O8	CG315	HGA1	0.6000	2	0.00
OG2D1	CG2O8	CG315	NG321	0.0000	1	0.00
NG2S4	CG2O8	CG315	CG315	0.4000	1	0.00
NG2S4	CG2O8	CG315	CG315	0.6000	2	0.00
NG2S4	CG2O8	CG315	HGA1	0.4000	1	180.00
NG2S4	CG2O8	CG315	HGA1	0.6000	2	0.00
NG2S4	CG2O8	CG315	NG321	0.3000	1	0.00
NG2S4	CG2O8	CG315	NG321	-0.3000	4	0.00
NG2S4	CG315	CG315	HGA1	0.2000	3	0.00
NG2S4	CG315	CG315	NG321	0.3000	3	180.00
NG2S4	CG315	SG311	HGP3	0.2000	3	0.00
CG315	CG2O8	NG2S4	CG315	2.7500	2	180.00
CG315	CG2O8	NG2S4	CG315	0.3000	4	0.00
CG315	NG2S4	CG331	HGA3	0.0000	3	0.00
CG315	CG315	NG321	$\mathrm{HGPAM2}$	0.3000	3	180.00
HGA1	CG315	NG2S4	CG331	0.1000	3	0.00
HGA1	CG315	CG315	HGA1	0.1950	3	0.00
NG321	CG315	CG315	HGA1	0.1950	3	0.00
HGA1	CG315	SG311	HGP3	0.1950	3	0.00
CG315	CG2O8	NG2S4	CG331	2.7500	2	180.00
CG315	CG2O8	NG2S4	CG331	0.3000	4	0.00
CG315	CG315	NG2S4	CG331	0.1000	3	0.00
CG315	CG315	SG311	HGP3	0.1950	3	0.00
SG311	CG315	CG315	HGA1	0.1950	3	0.00
HGA1	CG315	NG321	HGPAM2	0.0100	3	0.00
SG311	CG315	NG2S4	CG331	0.1000	3	0.00
SG311	CG315	CG315	NG321	0.3000	3	180.00

Table S6: Dihedral angle constants for minimal substituted $\beta\text{-lactam}$

•	•			
U	rey-Bradle	ey	k	d
			$\rm kcal/mol$	Å
CG315	CG315	HGA1	22.53	2.2445
NG321	CG315	HGA1	50.00	2.1554
∕_s⊦	4		s	/
A: Methan	ethiol		B: Dimethy	ylsulfide
\checkmark	SH		\checkmark	.s
C: Ethane	thiol		D: Methylth	ioethane
\mathbf{i}	SH		\searrow	.s
E: 2-Propar	nethiol		F: 2-Methylth	iopropane
\times	SH		\times	s

Table S7: Urey-Bradley constants for minimal substituted $\beta\text{-lactam}$

G: 2-Methyl-2-propane-thiol H: 2-Methyl-2-(methylthio)-propane

Figure S5: Sulfur-containing compounds used for SG311–GC301 bond parameterization.

parameters optimization.)

Sulfur-carbon bonds

Since the SG311–CG301 bond is not parameterized in CGenFF but is required to build the penicillin scaffold, it became the second parameterization step. Eight molecules were used to optimise carbon-sulfur bond and angle parameters (Figure S5).

Compounds A and B were used as controls for the CG331–SG311 bond already present in CGenFF. Compounds C and D were used as controls for the CG321–SG311 bond already present in CGenFF. Compounds E and F were used to parameterize the CG311–SG311 bond. Compounds G and H were used to parameterize the CG301–SG311 bond.

Partial charges for all atoms in these compounds were assigned using the systematic values seen in CGenFF: 0.09 for hydrogens, but 0.16 for sulfur-linked hydrogens. Sulfur atoms were given a charge of -0.23 if linked to only one carbon (compounds A, C, E, G) or -0.10 if linked to two carbons (compounds B, D, F and H). Carbons were given charges of -0.27, -0.18, -0.09 or 0.00 when linked to 3, 2, 1 or 0 hydrogen, respectively. Carbon charges were adjusted by +0.07 when linked to an -SH function, and

Bo	nd	k	d
		$\rm kcal/mol$	Å
CG301	SG311	162.5	1.8387
CG311	SG311	197.0	1.8271

Table S8: Optimized bond constants for sulfur-containing compounds

	Angle		k	θ
			$\rm kcal/mol$	0
CG331	CG301	SG311	56.5	108.74
CG301	SG311	CG331	56.0	102.98
CG301	SG311	HGP3	54.5	96.22
CG331	CG311	SG311	51.5	109.77
SG311	CG311	HGA1	40.0	107.37
CG311	SG311	HGP3	51.0	96.59
CG311	SG311	CG331	93.5	100.48

Table S9: Optimized angle constants for sulfur-containing compounds

by +0.05 when linked to an -S- function.

QM-geometry at MP2/6-31G(d) were used to determine equilibrium distances and angles. Values measured in compounds E and F were averaged to describe the CG311–SG311 bond and related angles. Values from compounds G and H were averaged to describe CG301–SG311.

Vibrational spectra were used to adjust bond and angle force constants as described previously. Final values are shown in Tables S8 (bonds) and S9 (angles). Values for existing parameters (controls, data not shown) were similar to CGenFF values (within 5 %). Dihedral angle optimization yielded no improvement over the values taken by analogy from existing CGenFF parameters (Table S10).

Penicillin scaffold

The β -lactam ring was then fused to the five-member cycle, and substituents added to form penicillin (Figure S6). Charges on removed hydrogen atoms were summed into the adjacent heavy atom. Charges on substituants were set according to the systematic values from existing CGenFF compounds. Missing dihedral angles were filled in by simple analogies with existing CGenFF parameters.

Figure S6: Penicillin scaffold allowing the generation of a variety of β -lactam antibiotics.

	Dihedra	al angle		k	m	р
				$\rm kcal/mol$	-	0
CG331	CG311	SG311	HGP3	1.3300	1	0.00
CG331	CG311	SG311	HPG3	0.1800	2	0.00
CG331	CG311	SG311	HGP3	0.3200	3	0.00
SG311	CG311	CG331	HGA3	0.1600	3	0.00
HGA1	CG311	SG311	HGP3	0.0000	3	0.00
CG331	CG311	SG311	CG331	0.4000	1	0.00
CG331	CG311	SG311	CG331	0.4900	3	0.00
HGA3	CG331	SG311	CG311	0.2840	3	0.00
HGA1	CG311	SG311	CG331	0.2840	3	0.00
CG331	CG301	SG311	CG331	0.4000	1	0.00
CG331	CG301	SG311	CG331	0.4900	3	0.00
SG311	CG301	CG331	HGA3	0.1600	3	0.00
HGA3	CG331	SG311	CG301	0.2840	3	0.00
CG331	CG301	SG311	HGP3	1.1300	1	0.00
CG331	CG301	SG311	HGP3	0.1400	2	0.00
CG331	CG301	SG311	HGP3	0.2400	3	0.00

Table S10: Dihedral angle constants for sulfur-containing compounds

Table S11: Bond lengths in final β -lactam compounds

Bo	ond	Ben	zylpeni	cillin	Ca	rbenici	illin
		QM	MM	Δ	QM	MM	Δ
		Å	Å	Å	Å	Å	Å
C1	N2	1.36	1.38	0.02	1.39	1.39	0.00
N2	C3	1.44	1.44	0.00	1.46	1.45	-0.01
C3	C4	1.55	1.57	0.02	1.57	1.57	0.00
C1	C4	1.54	1.55	0.01	1.55	1.55	0.00
C1	O1	1.19	1.22	0.03	1.22	1.22	0.00
N2	C5	1.45	1.45	0.00	1.46	1.45	-0.01
C3	S7	1.83	1.81	-0.02	1.84	1.81	-0.03
C4	N11	1.43	1.46	0.03	1.43	1.47	0.04

Final compounds

Toluene was then fused to penicillin to generate the classic benzylpenicillin antibiotics. Finally, a carboxyl function was fused to benzylpenicillin to generate carbenicillin. Charges on removed hydrogen atoms were summed into the adjacent heavy atom and charges on substituants were set according to the systematic values from existing CGenFF compounds. Missing dihedral angles were filled in by simple analogies with existing CGenFF parameters. Optimized geometry and dipole moment for the two compounds were compared to QM-derived values and shown to be similar (Figure S7 and Tables S11, S12 and S13).

Usage instructions

The atom nomenclature for benzylpenicillin (BZP) and carbenicillin (CBC) are given in Figure S8.

Figure S7: QM and MM Geometry and dipole comparison for benzylpenicillin and carbenicillin. QM-optimized structure in orange. MM-optimized structure is CPK-colored, with carbon in green. Arrows show dipole moment orientation (in orange and green for QM and MM, respectively).

	Table	e S12:	Angles in final β -lacts			am compounds			
	Angle		Benzylpenicillin			Ca	Carbenicillin		
			QM	MM	Δ	QM	MM	Δ	
			0	0	0	0	0	0	
C1	N2	С3	94.7	90.8	-3.9	93.8	90.1	-3.7	
N2	C3	C4	88.0	90.6	2.6	88.3	90.5	2.2	
C3	C4	C1	83.7	80.5	-3.2	83.9	79.9	-4.0	
C4	C1	N2	91.5	93.6	2.1	91.1	93.8	2.7	
O1	C1	N2	133.6	133.4	-0.2	133.4	132.6	-0.8	
O1	C1	C4	134.9	132.9	-2.0	135.4	133.7	-1.7	
C5	N2	C1	130.5	128.1	-2.4	130.5	127.4	-3.1	
C5	N2	C3	117.1	121.8	4.7	115.3	122.1	5.8	
S7	C3	N2	104.4	102.9	-1.5	104.3	102.7	-1.6	
S7	C3	C4	117.9	121.2	3.3	115.9	122.8	6.9	
N11	C4	C1	117.7	119.6	1.9	116.8	123.8	7.0	
N11	C4	C3	119.5	115.5	-4.0	118.5	117.6	-0.9	

Table S13: Dipoles in final β -lactam compounds

Dipole	В	ZP	CBC		
Debye	QM	MM	QM	MM	
X	-8.4	-13.0	9.6	9.2	
Υ	5.2	8.4	1.4	-3.4	
\mathbf{Z}	8.6	11.8	1.4	4.8	
Т	13.1	19.5	9.8	11.0	

Figure S8: Atom names used in topology and parameter files for β -lactam antibiotics.

The stream file containing topology and parameters is copied here:

```
* CHARMM Generalized Force Field beta-lactam stream file
*
read rtf card append
* CHARMM Generalized Force Field beta-lactams
*
36 1
RESI BZP
          -1.0
               CG208
                         0.475
ATOM
          C1
ATOM
          01
               OG2D1
                         -0.475
ATOM
          N2
               NG2S4
                         -0.410
ATOM
          CЗ
               CG315
                         0.195
ATOM
          HЗ
                         0.090
               HGA1
ATOM
          C4
               CG315
                         0.235
ATOM
                         0.090
          H4
               HGA1
ATOM
          C5
               CG3C51
                         0.030
ATOM
          H5
               HGA1
                         0.090
ATOM
          C6
               CG3C50
                         0.070
          S7
ATOM
               SG311
                         -0.230
          C8
ATOM
               CG203
                         0.340
          081
               OG2D2
                         -0.670
ATOM
          082
ATOM
               OG2D2
                         -0.670
ATOM
          C9
               CG331
                         -0.270
ATOM
          H91
               HGA3
                         0.090
ATOM
          H92
               HGA3
                         0.090
ATOM
          H93
               HGA3
                         0.090
ATOM
          C10
               CG331
                         -0.270
ATOM
          H101 HGA3
                         0.090
ATOM
          H102 HGA3
                         0.090
          H103 HGA3
ATOM
                         0.090
ATOM
          N11 NG2S1
                         -0.470
          H11 HGP1
                         0.310
ATOM
ATOM
          C12 CG201
                         0.510
ATOM
          012
               OG2D1
                         -0.510
ATOM
          C13 CG321
                         -0.180
                         0.090
ATOM
          H131 HGA2
          H132 HGA2
                         0.090
ATOM
ATOM
          C14 CG2R61
                         0.000
ATOM
          C15
               CG2R61
                        -0.115
               HGR61
ATOM
          H15
                         0.115
ATOM
          C16
               CG2R61
                         -0.115
ATOM
          H16
               HGR61
                         0.115
          C17
               CG2R61
ATOM
                         -0.115
ATOM
          H17
               HGR61
                         0.115
ATOM
          C18
               CG2R61
                         -0.115
ATOM
          H18
               HGR61
                         0.115
ATOM
          C19
               CG2R61
                         -0.115
ATOM
          H19
               HGR61
                         0.115
```

BON	D	C1	01		C1	N2	C1	C4		
BON	D	N2	CЗ		N2	C5				
BON	D	C3	HЗ		C3	C4	C3	S7		
BON	D	C4	H4		C4	N11				
BON	D	C5	H5		C5	C6	C5	C8		
BON	D	C6	S7		C6	C9	C6	C10		
BON	D	C8	081		C8	082				
BON	D	C9	H91		C9	H92	C9	Н9З		
BON	D	C10	H101		C10	H102	C10) H103		
BON	D	N11	H11		N11	C12				
BON	D	C12	012		C12	C13				
BON	D	C13	H131		C13	H132	C13	3 C14		
BON	– D	C14	C15		C14	C19				
BON	D	C15	H15		C15	C16				
BON	D	C16	H16		C16	C17				
BON	D	C17	H17		C17	C18				
BON	ם	C18	H18		C18	C19				
BON	ם	C19	H19		010	010				
TMD	B	C1	MO	CA	01					
TMD	D	NO NO	01	C3	CE					
TMD	D	00	CE	00 no1	00					
	n D	00 M11	C3	001	UOZ					
	n D		04 N44	012						
	n OD	U11	NII NII	015	UIZ					
	UR									
ACC	EPIUR		C1 0							
ACC	EFIUR	012	012							
TC	N2	C4	*C1	01	1	3828	93 69	176 35	132 62	1 2226
TC	C4	C1	N2	C5	1	5486	93 60	0 140.00	128 45	1 4499
TC	C5	C1	*N2	C3	1	4499	128 4	5 _133 13	90.99	1 4415
TC	C4	N2	*C3	S7	1	5678	90 64	1 122 09	102 90	1 8104
TC	04 C4	M2	*03	н3 11	1	5678	90.6	1 - 120 21	114 47	1 0073
TC	C3	C1	*C4	N1	1 1	5678	80.5	5 _113 92	118 48	1 4619
TC	00 C3	C1	*04	НΛ	 1	5678	80.50	5 100.02	100.30	1 0058
TC	C1	NO NO		C8	1	3878	128 /1	5 156 55	100.04	1 5200
	C2	MO	* 65	00 C6	1	5200	100 /	7 11270	103.47	1.5200
	00 C6	NZ M	*00 *05	U0 115	1	5561	102.4	5 110.72	110.00	1 0000
	NO NO	CE IN	*00 //0	00	1 1	1/00	100.0	7 20 51	112.02	1 2625
	NZ 001	CD CD	*00	00	1 1 1	0625	117 0	7 170 20	115 21	1 2000
	001	CD CE	*00 *06	00	L ک ۱	0001	107 10	119.00	110.01	1 5/10
IC TC	07	C5 CE	*00 *06	C9	1 0	0004	107.10) 110.09	111.14	1.5412
10	or CE	05	*00 CO	10	1 U	0094	107.10	7 - 119.45	110.09	1.5401
10		CO		п9	1 I 0 1	1001	110.0	± -50.02	100.00	1 11091
10	H91 H01	00	*09	П Э. 110	2 1	1.1091	110.00	5 119.25 0 101 01	109.28	1.1103
IC	H91 ac	06	*09	H9	3 1		110.83	3 -121.21	110.67	1.1091
IC	C5	C6	C10	H1		.5561	115.69	9 -1/4.81	110.87	1.1078
1C	H101	C6	*C10	H1	02 1	1078	110.8	120.70	109.69	1.1106
TC	H101	C6	*C10	H1	03 1 0	. 1078	110.8	-120.57	110.47	1.1116
1C	C1	C4	N11	C1	2 1	.5486	118.48	3 -123.92	123.18	1.3318
TC	C12	C4	*N11	H1	1 1	.3318	123.18	3 1/9.00	116.07	0.9946
TC	C4	N11	C12	C1	з 1 -	.4619	123.18	3 178.84	117.69	1.5018
IC	C13	N11	*C12	01	2 1	.5018	117.69	9 -178.26	121.59	1.2230

IC	N11	C12	C13	C14	1.3318	117.69	32.50	126.90	1.5173
IC	C14	C12	*C13	H131	1.5173	126.90	123.38	105.57	1.1146
IC	H131	C12	*C13	H132	1.1146	105.57	112.32	105.23	1.1149
IC	C12	C13	C14	C19	1.5018	126.90	-169.20	117.43	1.4060
IC	C19	C13	*C14	C15	1.4060	117.43	-178.27	123.70	1.4095
IC	C13	C14	C15	C16	1.5173	123.70	179.82	120.44	1.4012
IC	C16	C14	*C15	H15	1.4012	120.44	-178.52	121.21	1.0788
IC	C14	C15	C16	C17	1.4095	120.44	-0.56	120.08	1.3998
IC	C17	C15	*C16	H16	1.3998	120.08	-179.84	119.80	1.0811
IC	C15	C16	C17	C18	1.4012	120.08	-0.45	119.98	1.4001
IC	C18	C16	*C17	H17	1.4001	119.98	-179.62	119.93	1.0804
IC	C19	C17	*C18	H18	1.4006	119.92	179.97	120.02	1.0803
IC	C18	C14	*C19	H19	1.4006	120.70	-179.26	119.58	1.0800

PATCH FIRST NONE LAST NONE

RESI	CBC	-2.0		
ATOM		C1	CG208	0.475
ATOM		01	OG2D1	-0.475
ATOM		N2	NG2S4	-0.410
ATOM		C3	CG315	0.195
ATOM		НЗ	HGA1	0.090
ATOM		C4	CG315	0.235
ATOM		H4	HGA1	0.090
ATOM		C5	CG3C51	0.030
ATOM		H5	HGA1	0.090
ATOM		C6	CG3C50	0.070
ATOM		S7	SG311	-0.230
ATOM		C8	CG203	0.340
ATOM		081	OG2D2	-0.670
ATOM		082	OG2D2	-0.670
ATOM		C9	CG331	-0.270
ATOM		H91	HGA3	0.090
ATOM		H92	HGA3	0.090
ATOM		H93	HGA3	0.090
ATOM		C10	CG331	-0.270
ATOM		H101	HGA3	0.090
ATOM		H102	HGA3	0.090
ATOM		H103	HGA3	0.090
ATOM		N11	NG2S1	-0.470
ATOM		H11	HGP1	0.310
ATOM		C12	CG201	0.510
ATOM		012	OG2D1	-0.510
ATOM		C13	CG311	-0.190
ATOM		H13	HGA1	0.090
ATOM		C14	CG2R61	0.000
ATOM		C15	CG2R61	-0.115
ATOM		H15	HGR61	0.115
ATOM		C16	CG2R61	-0.115
ATOM		H16	HGR61	0.115
ATOM		C17	CG2R61	-0.115
ATOM		H17	HGR61	0.115

ATOM	1	C18	CG2R	61	-0.11	5						
ATOM	1	H18	HGR6	1	0.11	5						
ATOM	1	C19	CG2R	61	-0.11	5						
ATOM	1	H19	HGR6	1	0.11	5						
АТОМ	1	C20	CG20	3	0.62	0						
	1	0201		2	-0.76	0						
	1	0202		2	-0.76	0						
	1	0202	. 0020.	2	0.10	0						
BOND)	C1	01		C1	N2		C1		C4		
ROND)	N2	C3		N2	C5		01		01		
ROND))	C3	00 НЗ		C3	C4		C3		S 7		
RUNE	, ,	C4	нл		C4	N11		00		51		
RUNE	, ,	04 C5	нд		04 (75	C6		Съ		CS		
BUNE))	CG	97		00 C6	CO		00 C6		C10		
DONL	, ,	C0 C0	ло1		00	09		00		010		
DONL	, ,	CO	UO1		00	U02		co		1102		
DONE) >	C9	ПЭТ 1101		C9	П92 U100	h	09	^	ПЭЗ U102		
DONL	, ,	N11	птот 1111		N11	C10	2	01	0	п103		
DUINL) >					012						
BUNL) >	012			012	013		01	^	000		
BUNL) >	013	П13 01Г		013	014		C1	3	020		
BOND)				014	019						
BONT)	C15	H15		015	016						
BONT)	C16	H16		016	017						
BONT)	C17	H17		C17	C18						
BOND)	C18	H18		C18	C19						
BOND)	C19	H19			0000	_					
BOND)	C20	0201	~ .	C20	0202	2					
IMPH	ł	C1	N2	C4	01							
IMPF	2	N2	C1	C3	C5							
IMPF	1	C8	C5	081	082							
IMPF	1	N11	C4	C12	H11							
IMPR	2	C12	N11	C13	012							
IMPR	2	C20	C13	0201	0202							
DONC	JR	H11	N11									
ACCE	EPTOR	01	C1									
ACCE	EPTOR	012	C12									
та	NC	a 4		0.4		070	~~	70		0 00	400.00	4 0000
10	N2	C4	*C1	U1	1.3	8/3	93.	19	17	8.23	133.62	1.2233
IC	C4	C1	N2	C5	1.5	494	93.	79	15	51.08	127.54	1.4521
IC	C5	C1	*N2	C3	1.4	521	127.	54	-13	32.20	90.11	1.4454
IC	C4	N2	*C3	S7	1.5	743	90.	53	12	23.81	102.68	1.8118
IC	C4	N2	*C3	HЗ	1.5	743	90.	53	-11	.9.38	114.68	1.0969
IC	C3	C1	*C4	N11	1.5	743	79.	88	-11	.6.51	123.77	1.4664
IC	C3	C1	*C4	H4	1.5	743	79.	88	10	8.93	107.73	1.0994
IC	C1	N2	C5	C8	1.3	873	127.	54	15	5.85	110.86	1.5215
IC	C8	N2	*C5	C6	1.5	215	110.	86	11	9.89	103.74	1.5571
IC	C6	N2	*C5	H5	1.5	571	103.	74	11	8.42	111.84	1.0990
IC	N2	C5	C8	081	1.4	521	110.	86	З	8.99	118.26	1.2628
IC	081	C5	*C8	082	1.2	628	118.	26	17	9.22	115.30	1.2651
IC	S7	C5	*C6	C9	1.8	882	107.	32	11	5.45	111.15	1.5411
IC	S7	C5	*C6	C10	1.8	882	107.	32	-11	9.42	115.76	1.5405
IC	C5	C6	C9	H91	1.5	571	111.	15	-5	50.98	110.55	1.1099

IC	H91	C6	*C9	H92	1.1099	110.55	119.47	109.53	1.1095
IC	H91	C6	*C9	H93	1.1099	110.55	-120.52	110.60	1.1091
IC	C5	C6	C10	H101	1.5571	115.76	-175.73	110.69	1.1078
IC	H10	C6	*C10	H102	1.1078	110.69	120.75	109.70	1.1102
IC	H10	C6	*C10	H103	1.1078	110.69	-120.38	110.29	1.1115
IC	C1	C4	N11	C12	1.5494	123.77	-179.13	120.68	1.3383
IC	C12	C4	*N11	H11	1.3383	120.68	175.64	120.55	0.9995
IC	C4	N11	C12	C13	1.4664	120.68	-178.30	118.14	1.4903
IC	C13	N11	*C12	012	1.4903	118.14	177.35	120.45	1.2280
IC	N11	C12	C13	C14	1.3383	118.14	73.23	112.86	1.5482
IC	C14	C12	*C13	C20	1.5482	112.86	-125.80	103.04	1.5281
IC	C14	C12	*C13	H13	1.5482	112.86	121.17	107.77	1.1058
IC	C12	C13	C14	C19	1.4903	112.86	-166.20	118.46	1.4108
IC	C19	C13	*C14	C15	1.4108	118.46	-173.62	124.04	1.4168
IC	C13	C14	C15	C16	1.5482	124.04	176.56	121.38	1.3997
IC	C16	C14	*C15	H15	1.3997	121.38	179.52	120.15	1.0795
IC	C14	C15	C16	C17	1.4168	121.38	-1.37	119.99	1.3986
IC	C17	C15	*C16	H16	1.3986	119.99	179.86	119.58	1.0801
IC	C15	C16	C17	C18	1.3997	119.99	-0.27	119.83	1.3988
IC	C18	C16	*C17	H17	1.3988	119.83	179.86	120.03	1.0793
IC	C19	C17	*C18	H18	1.3996	119.89	179.57	120.40	1.0793
IC	C18	C14	*C19	H19	1.3996	121.63	-177.67	118.65	1.0808
IC	C12	C13	C20	0201	1.4903	103.04	102.23	117.85	1.2582
IC	020	C13	*C20	0202	1.2582	117.85	-179.13	115.41	1.2598

PATCH FIRST NONE LAST NONE

end

read param card flex append
* CHARMM Generalized Force Field beta-lactams *

BONDS			
CG208	OG2D1	725.0	1.22188
CG208	NG2S4	267.0	1.36713
CG208	CG315	297.5	1.53754
CG315	NG2S4	298.0	1.46504
CG315	HGA1	341.0	1.09676
CG315	CG315	270.0	1.57285
NG2S4	CG3C51	405.5	1.44255
CG315	SG311	283.5	1.80608
CG315	NG2S1	342.5	1.44688
CG3C50	SG311	162.5	1.8387
CG3C50	CG3C51	222.50	1.5000
CG3C50	CG331	222.50	1.5380
ANGLES			
NG2S4	CG208	OG2D1	77.0 133

NG2S4	CG208	OG2D1	77.0	133.609
CG315	CG208	OG2D1	15.0	134.322
CG315	CG208	NG2S4	67.0	92.027
CG208	NG2S4	CG315	10.0	95.724

NG2S4	CG315	HGA1	45.5	11	12.9	900				
CG315	CG315	NG2S4	52.0	8	37.0)34				
CG315	CG315	HGA1	37.0	113	3.25	54 2	2.5	53 2	. 244	5
CG208	CG315	CG315	10.0	ξ	34.9	983				
CG208	CG315	HGA1	40.0	11	13.5	556				
CG208	NG2S4	CG3C51	55.5	131	1.52	22				
CG315	NG2S4	CG3C51	139.0	131	1.82	28				
SC311	CG315	NG2S4	72 0	117	164	1				
SC311	CC315	HGA1	31 0	107	086	3				
CC315	CC315	SC311	80 A	117	000	1				
CC208	CC315	NC2S1	1/ 5	111	267	т 7				
CC215	CC215	NG251	70.0	116	001 001	2				
MCOG1	CC215		12.0	115	090 050	ך ה	:0 (NO 0	155	10
NG2DI			13.0	110.	.008		, ,	JU 2	. 155	940
NG254		NGOG4	40.0		11		,			
063050	063051	NG254	70.0	00	11	10.80)			
CG2U3	CG3C51	NG2S4	50.0	00	10)7.00)	00 50		470
CG3C50	CG3C51	HGA1	34.6	50	11	10.10)	22.53	2	2.179
CG2U3	CG3C51	CG3C50	52.0	- 00	10	18.00)			
CG3C51	CG3C50	SG311	56.5)	1()8.74	-			
CG3C51	CG3C50	CG331	58.3	35	11	13.50)	11.16	2	2.561
CG331	CG3C50	SG311	56.5	5	10	08.74	Ŀ			
CG331	CG3C50	CG331	58.3	35	11	13.50)	11.16	2	2.561
CG315	SG311	CG3C50	93.5	5	10	0.48	3			
CG3C50	CG331	HGA3	33.4	13	11	10.10)	22.53	2	2.17900
CG315	NG2S1	HGP1	35.0	00	11	17.00)			
CG201	NG2S1	CG315	50.0	00	12	20.00)			
CG201	CG311	CG2R61	52.0	00	10	08.00)			
CG201	CG311	CG203	52.0	00	10	08.00)			
CG201	CG321	CG2R61	52.0	00	10	08.00)			
DIHEDRA	ALS									
HGA1	CG315	NG2S4	CG208		0.8	3000	3	0	.00	
CG315	CG315	NG2S4	CG208		0.8	3000	3	0	.00	
SG311	CG315	NG2S4	CG208		0.8	3000	3	0	.00	
CG208	CG315	CG315	NG2S4		0.2	2000	3	0	.00	
CG208	CG315	CG315	HGA1		0.2	2000	3	0	.00	
CG208	CG315	CG315	SG311		0.2	2000	3	0	.00	
OG2D1	CG208	NG2S4	CG315		2.7	7500	2	180	. 00	
OG2D1	CG208	NG2S4	CG315		0.3	3000	4	0	.00	
OG2D1	CG208	CG315	CG315		0.4	1000	1	180	.00	
OG2D1	CG208	CG315	CG315		0.6	5000	2	0	.00	
OG2D1	CG208	CG315	HGA1		0.4	1000	1	0	.00	
OG2D1	CG208	CG315	HGA1		0.6	3000	2	0	.00	
NG2S4	CG208	CG315	CG315		0.4	1000	1	0	.00	
NG2S4	CG208	CG315	CG315		0.6	5000	2	0	.00	
NG2S4	CG208	CG315	HGA1		0.4	1000	1	180	.00	
NG2S4	CG208	CG315	HGA1		0.6	5000	2	0	.00	
NG2S4	CG315	CG315	HGA1		0.2	2000	3	0	.00	
CG315	CG208	NG2S4	CG315		2.7	7500	2	180	.00	
CG315	CG208	NG2S4	CG315		0.3	3000	4	0	.00	
HGA1	CG315	CG315	HGA1		0.1	1950	3	0	.00	
SG311	CG315	CG315	HGA1		0.1	1950	3	0	.00	

HGA1	CG3C51	NG2S4	CG208	0.8000	3	0.00
CG3C50	CG3C51	NG2S4	CG208	0.8000	3	0.00
CG203	CG3C51	NG2S4	CG208	0.8000	3	0.00
CG208	CG315	NG2S1	HGP1	0.0000	1	0.00
CG208	CG315	NG2S1	CG201	0.2000	1	180.00
OG2D1	CG208	NG2S4	CG3C51	2.7500	2	180.00
OG2D1	CG208	NG2S4	CG3C51	0.3000	4	0.00
OG2D1	CG208	CG315	NG2S1	0.0000	1	0.00
NG2S4	CG208	CG315	NG2S1	0.4000	1	0.00
NG2S4	CG315	CG315	NG2S1	0.2000	3	0.00
NG2S4	CG315	SG311	CG3C50	0.1400	3	0.00
NG2S4	CG3C51	CG3C50	SG311	0.0500	3	0.00
NG2S4	CG3C51	CG3C50	CG331	0.0500	3	0.00
OG2D2	CG203	CG3C51	NG2S4	0.0000	6	180.00
HGA1	CG3C51	NG2S4	CG315	0.1000	3	0.00
CG3C50	CG3C51	NG2S4	CG315	0.1000	3	0.00
CG203	CG3C51	NG2S4	CG315	0.1000	3	0.00
CG315	CG315	NG2S1	HGP1	0.0000	1	0.00
CG315	CG315	NG2S1	CG201	1.8000	1	0.00
CG3C51	CG3C50	SG311	CG315	0.1580	3	0.00
CG331	CG3C50	SG311	CG315	0.2000	3	0.00
HGA1	CG315	NG2S4	CG3C51	0.1000	3	0.00
NG2S1	CG315	CG315	HGA1	0.2000	3	0.00
HGA1	CG315	SG311	CG3C50	0.1950	3	0.00
CG311	CG201	NG2SO	CG3C51	2,7500	2	180.00
CG315	CG208	NG2S4	CG3C51	0.3000	4	0.00
CG315	CG315	NG2S4	CG3C51	0.1000	3	0.00
CG315	CG315	SG311	CG3C50	0 2000	3	0.00
	CG201	NG2S1	CG315	2 5000	2	180 00
CG321	CG201	NG2S1	CG315	1 6000	1	0.00
CG321	CG201	NG2S1	CG315	2 5000	2	180 00
HGA1	CC315	NG2S1	HGP1	0.0000	1	0 00
HCA1	CC315	NG2S1	CC201	0.0000	1	0.00
SC311	CC315	NG2S1	CG3C51	0.1000	૧	0.00
CG3C51	CG3C50	CC331	HGAS	0.1500	२ २	180.00
90311	CC3C50	CC3C51	HGA1	0.1000	3	0.00
CC331	CG3C50	CG3C51	HGA1	0.0500	3 3	0.00
00001	000000	CC3C51	CC3CEO	0.0500	6	180.00
GC311	CC315	CC315	NC2S1	0.0000	3	0.00
CC211	00313	00315	00201	0.2000	2	0.00
CC211	003050	003031		0.0500	2	0.00
00221	CG3C50	00301	CC2O2	0.1600	с С	0.00
00331	CG3C50	003031		0.1500	ა ა	0.00
00331	003050	NCOC1	DGAS CC21E	1 6000	3 1	0.00
00311	06201	NG251	00315	1.6000	1	0.00
NGOGI	CG2UI	NG2SI	06315	2.5000	2	180.00
NG2S1	CG2UI	06311	CG2R61	0.0000	T	0.00
NG2S1	CG2U1	CG311	CG2U3	0.0000	1	0.00
CG2R61	CG2R61	06311		0.2300	2	180.00
UG2D2	CG2U3	CG311	CG2U1	0.0500	6	180.00
UG2D1	CG2U1	06311	CG2R61	1.4000	1	0.00
UG2D1	CG2U1	CG311	CG2U3	1.4000	1	0.00
NG2S1	CG201	CG321	CG2R61	0.0000	1	0.00

CG2R61 CG2R61 CG321 CG201 0.2300 2 180.00 OG2D1 CG2O1 CG321 CG2R61 0.0500 6 180.00 IMPROPERS CG208 Х Х OG2D1 161.5 0 0.00 CG208 CG315 NG2S4 CG3C51 0.0 0 0.00

end

return

To use this file, the CGenFF forcefield must be patched to add the new atom types. Here are the relevant lines which must be added to the appropriate sections in the forcefield files:

ATOMS MASS 92 12.01100 ! Carboxyl C in beta-lactam ring CG208 12.01100 ! Aliphatic C for CH in beta-lactam ring MASS 93 CG315 MASS NG2S4 14.00700 ! N,N-Disubstituted amide N in beta-lactam ring 126 NONBONDED NG2S4 0.0 -0.2000 1.8500 0.0 -0.20 1.55 CG208 0.0 -0.1100 2.0000 CG315 0.0 -0.0320 2.0000 0.0 -0.01 1.90

Backbone dynamics

Simulation stability was assessed from global RMSD for main chain heavy atoms, as shown in Figure S9 and discussed in the main text. Example of correlation functions used to compute synthetic S^2 are given in Figure S10. These show that the vast majority of residues display converging functions; the averaging over ten trajectories further improve S^2 estimate, yielding parameters that are in agreement with NMR relaxation results, as discussed in the main text.

Figure S9: Global RMSD for all simulations. Only main chain heavy atoms were considered. For each of the four systems (TEM-1, PSE-4, TEM-1/BZP and PSE-4/CBC), ten 100 ns production trajectories were recorded and are shown together in the respective panels. Data points are 10 ps apart and averaged over that time period (10 values).

Figure S10: Example $C_I(t)$ autocorrelation functions for all residues in one free form TEM-1 trajectory. Functions that are unconverged at t = 10 ns are shown in orange. Convergence criteria is $\Delta C_I < 0.05$ between t = 10 ns and t = 50 ns. There are five unconverged residues: R43, H158, K288, H289 and W290. Similar results are observed for the other trajectories, but unconverged residues vary.

Essential dynamics movie list

Movie S1: PCA for TEM-1 (free form) – Modes 1 to 5
Movie S2: PCA for PSE-4 (free form) – Modes 1 to 5
Movie S3: PCA for TEM-1 / BZP – Modes 1 to 5
Movie S4: PCA for PSE-4 / CBC – Modes 1 to 5

Eigenvectors are displayed consecutively in each movie. System and vector number are shown in upper-left corner. Residues are colored on a scale from blue to red according to their amplitude of motion within the eigenvector; blue means little amplitude; red high amplitude.

References

- [1] Girija S. Singh. β -lactams in the new millennium. part i: monobactams and carbapenems. Mini-Reviews in Medicinal Chemistry, 4(1):69–92, Jan 2004.
- [2] Girija S. Singh. β-lactams in the new millennium. part ii: cephems, oxacephems, penams and sulbactam. *Mini-Reviews in Medicinal Chemistry*, 4(1):93–109, Jan 2004.
- [3] K Vanommeslaeghe, E Hatcher, C Acharya, S Kundu, S Zhong, J Shim, E Darian, O Guvench, P Lopes, I Vorobyov, and A D Mackerell. CHARMM general force field: A force field for drug-like molecules compatible with the charmm all-atom additive biological force fields. J Comput Chem, July 2009.
- [4] B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus. CHARMM: the biomolecular simulation program. J Comput Chem, 30(10):1545–1614, Jul 2009.
- [5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. *Gaussian 03*. Gaussian inc., Wallingford, CT, 2003.
- [6] Olgun Guvench and Alexander D MacKerell. Automated conformational energy fitting for force-field development. J Mol Model, 14(8):667–79, August 2008.