Supporting Information for

Aging Mechanism of Soman Inhibited Acetylcholinesterase

Gulseher Sarah Sirin^{1,2}, Yanzi Zhou^{2,3}, Lee Lior-Hoffmann², Shenglong Wang²,

and Yingkai Zhang*,2

¹ Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, 10016

² Department of Chemistry, New York University, New York, New York, 10003

³ Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China

* To whom correspondence should be addressed. E-mail: <u>yingkai.zhang@nyu.edu</u>

Figure S1-S6 and Table S1.

Figure S1. Illustration of the QM/MM sub-system partition for the (a) initial dealkylation and the (b) hydration of tertiary carbonium ion reaction steps of aging: Black, MM subsystem; Red, boundary carbon atoms in the QM subsystem described by improved pseudobond parameters; Blue (magenta), all other atoms in the QM sub-system.

Figure S2. Unprotonated Glu199 model (the attempt to examine the proposed protonation-deprotonation mechanism): (a) The chosen reaction coordinate; (b) potential energy profile; and (c) illustration of structures along the reaction coordinate for proton transfer from the doubly protonated His440⁺ NE2 nitrogen to soman O2 oxygen. Protonated soman is energetically unfavorable and collapses back to the reactant conformation during unrestrained geometry optimization.

Figure S3. Unprotonated Glu199 model (another attempt to examine the proposed protonation-deprotonation mechanism): (a) The chosen reaction coordinate; (b) calculated free energy profile; and (c) illustration of key structures along proton transfer and concerted cleavage of the alkyl chain reaction. The total length of ab initio QM/MM MD simulations for this reaction path is 460 ps (23 windows * 20 ps each).

Figure S4. Unprotonated Glu199 model (the attempt to examine the O-dealkylation *mechanism*): (a) The chosen reaction coordinate; (b) calculated free energy profile; and (c) illustration of key structures along the O-dealkylation mechanism of aging. The total length of ab initio QM/MM MD simulations for this reaction path is 540 ps (27 windows * 20 ps each).

Figure S5. Illustration of the chosen reaction coordinates used to characterize (a) the initial methyl-migration and (b) the secondary hydration steps of the aging/dealkylation mechanism.

Figure S6. (a) Scatter plot of His440⁺ χ_1 and χ_2 torsion angles measured for the reactant (red) and the rate determining transition state (blue) for the methyl migration step of aging. (b) Histograms of His440⁺ χ_1 and χ_2 torsion angles for the reactant (R) and transition state (TS): red, Glu199; blue, Glu199Gln; green; Glh199. Torsion angles χ_1 and χ_2 are measured along the last 15ps of QM/MM MD simulations and negative values were transposed by adding 360° in an effort to provide better visualization.

	Atom Name	Atom Type	Connectivity	Partial Charge
1	Ν	Ν	М	-0.4147
2	Н	Н	Е	0.2719
3	CA	СТ	М	-0.0420
4	HA	H1	Е	0.0962
5	CB	СТ	3	0.1929
6	HB1	H1	Ε	0.0622
7	HB2	H1	E	0.0622
8	OG	OS	S	-0.4692
9	Р	Р	3	1.1479
10	C1	СТ	3	-0.6429
11	HC11	HC	Е	0.1871
12	HC12	HC	Е	0.1871
13	HC13	HC	Е	0.1871
14	01	02	Е	-0.6749
15	02	OS	S	-0.4630
16	C2(α)	СТ	3	0.1855
17	HC21	H1	Е	0.0621
18	C3	СТ	3	-0.5486
19	HC31	НС	Е	0.1551
20	HC32	НС	Ε	0.1567
21	HC33	НС	Ε	0.1415
22	C4(β)	СТ	3	0.5255
23	C5	СТ	3	-0.2916
24	HC51	НС	Е	0.0617
25	HC52	НС	Е	0.0617
26	HC53	НС	Е	0.0617
27	С6	СТ	3	-0.4144
28	HC61	НС	Е	0.0888
29	HC62	НС	Е	0.0888
30	HC63	НС	Е	0.0888
31	C7	СТ	3	-0.3773
32	HC71	НС	Ε	0.0790
33	HC72	НС	E	0.0790
34	HC73	НС	E	0.0790
35	С	С	Μ	0.5973
36	0	0	Е	-0.5679

Table S1. RESP partial charges, atom types and connectivity for soman modified serineresidue.