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1 Proteomics and validation experiments

1.1 Reverse phase protein arrays

Reverse phase protein array (RPPA) assays were carried out as previously described [1, 2]. Breast

cancer cell line MDA-MB-468 was cultured in its optimal media to a logarithm growth phase. Time

courses were carried out at eight time points (5, 15, 30, 60, 90, 120, 180, 240 minutes) in triplicate,

under four growth conditions (0, 5, 10, 20ng/ml EGF). Cellular proteins were denatured by 1% SDS

(with beta-mercaptoethanol) and diluted in five 2-fold serial dilutions in dilution buffer (lysis buffer

containing 1% SDS). Serial diluted lysates were arrayed on nitrocellulose-coated FAST slides (What-

man, Inc) by Aushon 2470 Arrayer (Aushon BioSystems). Total 5808 array spots were arranged on

each slide including the spots corresponding to positive and negative controls prepared from mixed

cell lysates or dilution buffer, respectively.

Each slide was probed with a validated primary antibody (Table S1) plus a biotin-conjugated sec-

ondary antibody. Only antibodies with a Pearson correlation coefficient between RPPA and western

blotting of greater than 0.7 were used in reverse phase protein array study. Antibodies with a single

or dominant band on western blotting were further assessed by direct comparison to RPPA using cell

lines with differential protein expression or modulated with ligands/inhibitors or siRNA for phospho-

or structural proteins, respectively. Extensive validation data for the antibodies used are presented in

[2].

The signal obtained was amplified using a DakoCytomation-catalyzed system (Dako) and visu-

alized by DAB colorimetric reaction. The slides were scanned, analyzed, and quantified using a

customized-software Microvigene (VigeneTech Inc.) to generate spot intensity.

Each dilution curve was fitted with a logistic model (“Supercurve Fitting” developed by the De-

partment of Bioinfomatics and Computational Biology in MD Anderson Cancer Center,

http://bioinformatics.mdanderson.org/OOMPA). This fits a single curve using all the sam-

ples (i.e., dilution series) on a slide with the signal intensity as the response variable and the dilution

steps are independent variable. The fitted curve is plotted with the signal intensities both observed

and fitted - on the y-axis and the log2-concentration of proteins on the x-axis for diagnostic purposes.

The protein concentrations of each set of slides were then normalized by median polish, which was

corrected across samples by the linear expression values using the median expression levels of all

antibody experiments to calculate a loading correction factor for each sample. Logged averages over

RPPA triplicates (Figure S9) were used for all network analyses.
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1.2 Validation experiments

1.2.1 RPPA (Figure 4, Main Text)

The breast cancer cell line MDA-MB-468 was seeded at 90% confluency in 96-well plates at a density

of 10,000 cells per well with 8% FBS-RPMI medium and allowed to attach. Cells were depleted of

serum for 12 hours prior to treatment with the MEK inhibitor GSK1120212 (GlaxoSmithKline Inc.)

at 0uM, 0.625uM, 2.5uM and 10uM or AKT inhibitor GSK690693B (GlaxoSmithKline Inc.) at 0uM,

0.625uM, 2.5uM and 10uM for 4 hours in each case. Cells were stimulated (EGF 20 ng/mL) prior to

lysis in RPPA lysis buffer. Phosphoprotein profiling was carried out 0,5,15,30,60,90,120,180 minutes

after EGF stimulus using RPPA as described above.

2 Methods

Below we give further details of the model marginal likelihood, our exact approach for inference of

posterior edge probabilities, the ‘network prior’, empirical Bayes setting of prior strength parameter

λ and cross-validation. All computations were carried out in MATLAB R2009a using software that is

available at http://mukherjeelab.nki.nl/DBN.

2.1 Marginal Likelihood

Let p denote the number of components under study (signaling proteins in the present work) and

T denote number of time points sampled. DBNs associate a random variable with each of the p

components at each time point. Let these pT variables be denoted by Xt
i and Xt =

(

Xt
1, . . . , X

t
p

)

be

the corresponding random vector at time t. Thus, the full, “unrolled” graph, with each Xt
i explicitly

represented as a vertex (Figure S1b) contains pT vertices, at T time points. First-order Markov

and stationarity assumptions mean the unrolled DBN can be described by a smaller graph with two

vertices for each component under study, representing adjacent time points (the “collapsed DBN”;

see Figure S1c). This latter graph structure, which we denote by G in what follows, is the object of

inference.

The DBN graph G permits factorisation of the “global” joint probability distribution over all vari-

ables (the likelihood) into a product of “local” conditional distributions, with each variable depending

only on its parents at the previous time point. This sparse, time-invariant dependence leads to a model

with far fewer parameters than a model with a full, time-varying dependence structure. The factorisa-

tion is shown in Equation 1 in Main Text and below.

p(X |G,Θ) =

p
∏

i=1

p(X1
i | ψi)

T
∏

t=2

p(Xt
i |X

t−1
πG(i), θi) (1)

where X =
(

X1, . . . , XT
)

is all data, πG (i) ⊆ {1, . . . , p} is an index set for parents of protein i
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according to G, Xt
πG(i) =

{

Xt
j | j ∈ πG (i)

}

is data for the parents of protein i at time t, θi ⊆ Θ are

parameters for the conditional distribution of Xt
i and ψi ⊆ Θ are parameters for X1

i .

Since the marginal p(X1
i ) does not depend on graph G, it is omitted in what follows. In the

interests of notational simplicity, we introduce the vector X+
i =

(

X2
i , . . . , X

T
i

)T
to denote all data

for protein i in the “current” (second) time slice of the “collapsed DBN” (Figure S1c) and X−
i =

(

X1
i , . . . , X

T−1
i

)T

to denote corresponding data in the “previous” (first) time slice. This allows us to

remove the product over time above and express the likelihood in the following simple form :

p(X |G,Θ) ∝

p
∏

i=1

p(X+
i |X−

πG(i), θi) (2)

(up to a multiplicative constant that does not depend on graph G)

The conditionals p(Xt
i |X

t−1
πG(i), θi) constituting the likelihood are taken to be Gaussian. These de-

scribe the dependence of child nodes on their parents and can be thought of as regression models, with

parents and child corresponding to covariates and response respectively. The 2|πG(i)| − 1 regression

coefficients, forming vector βi, and variance σ2i , constitute parameters θi. Considering all n pairs of

adjacent time points (i.e. the “collapsed DBN”), we let Bi be a n× (2|πG(i)| − 1) local design matrix

with columns corresponding to parents and products of parents as described in Main Text. Then we

have

p(X+
i |X−

πG(i), θi) = Normal(Biβi, σ
2
i In) (3)

where In is the n × n identity matrix. We note that X+
i and each column of the design matrix Bi

are standardized to have zero mean and unit variance. Following [3, 4] we use the reference prior

p(σ2i ) ∝ σ−2
i for local variances and a Normal(0, nσ2i (Bi

T
Bi)

−1) prior for local coefficients βi.

The latter has variance proportional to the variance of the least squares estimate for βi. This prior is

related to Zellner’s g-prior [5] and has attractive invariance properties under rescaling of the data (see

[6] for details). We note that this formulation, unlike the widely-used “BGe” score [7], has no free,

user-set parameters. Assuming prior parameter independence [7] then yields the following integral

for the marginal likelihood,

p(X |G) =

∫

p(X |G,Θ)p(Θ |G) dΘ

∝

p
∏

i=1

∫∫

p(X+
i |X−

πG(i), βi, σ
2
i )p(βi |G, σ

2
i )p(σ

2
i ) dβidσ

2
i .

(4)

The coefficients βi can be integrated out as a normal integral and σ2i as an inverse-gamma integral.

This yields a closed-form marginal likelihood as shown in Main Text and reproduced below (multi-

plicative constants that do not depend on G are omitted) :

p(X |G) ∝

p
∏

i=1

(1 + n)−(2|πG(i)|−1)/2

(

X+
i
T
X+

i −
n

n+ 1
X+

i
T
Bi

(

Bi
T
Bi

)−1
Bi

TX+
i

)−n

2

. (5)
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Evaluating the above marginal likelihood for any given graph structure G requires the inversion

of a
(

2|πG(i)| − 1
)

×
(

2|πG(i)| − 1
)

matrix Bi
T
Bi, which may be ill-conditioned or even singular,

especially when n is small relative to in-degree |πG(i)|. In this work, an in-degree restriction of

|πG(i)| ≤ dmax with dmax = 4 (see below) helps to avoid these numerical issues and precludes

extreme ill-conditioning. In general we advise the selection of a dmax satisying 2|πG(i)| − 1 ≤ n

(or |πG(i)| ≤ n for a linear model without interaction terms). In addition to this restriction, and if

necessary, regularization can be performed to improve conditioning. Where necessary (see below)

we regularized through addition of a ridge term to the matrix Bi
T
Bi. That is, Bi

T
Bi is replaced by

Bi
T
Bi + αI in Equation 5, where I is the identity matrix and α > 0. This gives in effect a reduction

in the prior variance of regression parameters β. Regularization is performed if the condition number

of Bi
T
Bi is above a threshold τ (we set τ = 104). The tuning parameter α is set in an automated,

iterative fashion by incrementing its value (starting at zero) until the condition number of Bi
T
Bi+αI

is below threshold τ . We note that scale invariance of the g-prior formulation is lost if regularization

is used.

For the analyses presented in the Main Text, regularization was only invoked for the combination

of interaction terms with larger parent set sizes (|πG(i)|=3 or 4). No regularization was needed for

any of the models without interaction terms or for |πG(i)| < 3. When invoked, the magnitude of

reduction in prior variance was small; for the breast cancer cell line study we observed a 5% decrease

on average for |πG(i)|=4 and 2% decrease on average for |πG(i)|=3. Whilst the percentage decrease

is (unsurprisingly) larger for |πG(i)|=4, these parent sets have less influence on the posterior than

parents sets of size |πG(i)|=3 because they are more heavily penalized by the marginal likelihood

(due to their larger model complexity). Re-running the analysis on the breast cancer cell line data

without performing any regularization gave good agreement with the results reported in Figure 3a

(Main Text) with all subsequently validated edges retained.

We note that other prior formulations, for example a standard ridge prior or the “BGe” prior,

ameliorate or do not suffer from matrix conditioning problems and could be good choices in very

small n settings, or when it is desirable to relax the in-degree restriction. In this context, the “BGe”

prior has the attractive property that it does not require a matrix inversion, but it requires the setting

of more hyperparameters.

2.2 Exact inference

We are interested in calculating posterior probabilities of edges e = (a, b) in the graph G. Note

that a, b ∈ {1, . . . , p}, with a, b representing variables from the “previous” and “current” time slices

respectively (i.e. the first and second time slices of the “collapsed DBN”). For simplicity, we use

e = (a, b) in what follows and leave the time associated with the vertices implicit. The posterior

probability of the edge is calculated by averaging over the space of all possible graphs G [8],

P (e |X) =
∑

G∈G

✶{e∈G}P (G |X). (6)
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where P (G |X) is the posterior distribution over graphs.

However, for the DBNs used here, it is possible to utilize a variable selection approach to effi-

ciently calculate posterior edge probabilities exactly, thereby increasing confidence in results whilst

avoiding the need for expensive convergence diagnostics. Specifically, for each “response” variable

X+
i in the “current” time slice, we calculate posterior scores for subsets π(i) ⊆ {1, . . . , p} of potential

predictors from the previous time slice (“parent sets”),

P (π(i) |X−, X+
i ) ∝ p(X+

i |X−, π(i))P (π(i) |X−)

= p(X+
i |X−

π(i))P (π(i))
(7)

where X− =
(

X−
1 , . . . , X

−
p

)

denotes all data in the previous time slice and P (π(i)) is a prior distri-

bution over sets of predictor variables. The likelihood p(X+
i |X−

i , π (i) , θi) is as in Equation 3 above,

with parameter priors for βi and σ2i also as described above. Integrating out parameters θi then results

in the marginal likelihood p(X+
i |X−, π (i)),

p(X+
i |X−, π (i)) ∝ (1 + n)−(2|π(i)|−1)/2

(

X+
i
T
X+

i

−
n

n+ 1
X+

i
T
Bi

(

Bi
T
Bi

)−1
Bi

TX+
i

)−n

2

.

(8)

This is a marginal likelihood of the form that appears in Bayesian variable selection for regression

problems (see e.g. [9]). We now discuss how model averaging in the variable selection sense can be

used to make inference about DBN structure. We perform model averaging to calculate the posterior

probability of a specific predictor variable X−
a being in the model for response variable X+

b . In terms

of the DBN framework, we can think of this as an edge e = (a, b). Then we have,

P (e |X−, X+
b ) =

∑

π(b)

✶{a∈π(b)}P (π(b) |X
−, X+

b ) (9)

where the summation is over all possible sets of predictor variables for variable X+
b . If the network

prior P (G) factorizes into a product of local priors over parents sets πG(i) for each variable,

P (G) =

p
∏

i=1

P (πG(i)) (10)

(the network prior used here satisfies this property; see below) then posterior edge probabilities cal-

culated via Equation 6 are identical to those calculated via Equation 9. This is essentially due to the

modular form of the marginal likelihood in Equation 5 and the guaranteed acyclicity of the DBNs

employed here. Indeed, this equivalence holds for any modular scoring function and modular network

prior used with DBNs (with edges only allowed forwards in time), as we now demonstrate.

If the marginal likelihood P (X |G) has a modular form (as in Equation 5) and the network prior

P (G) satisfies Equation 10, then the posterior over graphs P (G |X) is simply a product of posteriors
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over subsets of predictors for each variable (Equation 7), as specified by the edge structure of G:

P (G |X) =
P (X |G)P (G)

∑

G P (X |G)P (G)
(11)

=

∏p
i=1 p(X

+
i |X−

πG(i))P (πG(i))
∑

πG(1) . . .
∑

πG(p)

∏p
i=1 p(X

+
i |X−

πG(i))P (πG(i))
(12)

=

p
∏

i=1

p(X+
i |X−

πG(i))P (πG(i))
∑

πG(i) p(X
+
i |X−

πG(i))P (πG(i))
(13)

=

p
∏

i=1

P (πG(i) |X
−, X+

i ). (14)

We can now observe that edge probabilities calculated via averaging over the full graph space (Equa-

tion 6) equal those calculated from a variable selection approach (Equation 9). In particular, for an

edge e = (a, b),

P (e |X) =
∑

G

✶{e∈G}P (G |X)

=
∑

G

✶{e∈G}

p
∏

i=1

P (πG(i) |X
−, X+

i )

=
∑

πG(1)

. . .
∑

πG(p)

✶{e∈G}

p
∏

i=1

P (πG(i) |X
−, X+

i )

=





∑

π(b)

✶{a∈π(b)}P (π(b) |X
−, X+

b )





∏

1<i<p
i 6=b





∑

π(i)

P (π(i) |X−, X+
i )





=
∑

π(b)

✶{a∈π(b)}P (π(b) |X
−, X+

b )

= P (e |X−, X+
b )

Note that, for each variable X+
i , the space of possible subsets of predictors is of size 2p (as op-

posed to 2p
2

for the full graph space). Hence it is much more efficient to calculate edge probabilities

via Equation 9 than Equation 6. However, the problem is still exponential in p. Motivated by the fact

that typically only a small number of key upstream kinases are critical for the activation of any given

network component (see e.g. [10]), and following previous work [11, 12], we enforce a maximum

in-degree constraint and only consider up to four proteins jointly influencing a target. Whilst, under

this restriction, the full graph space size still grows quicker than exponential in p, the space of sub-

sets of predictors becomes polynomial in p. This enables exact calculation of edge probabilities via

Equation 9.

We compared the results reported in the Main Text, obtained by exact calculation with maximum

in-degree of four, with results obtained by (i) exact calculation with maximum in-degree increased to
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five, and (ii) a MCMC-based analysis with no restriction on in-degree. We found very good agreement

between the regimes (Figure S2), showing that results were not dependent on the sparsity restriction.

The equivalence between posterior probabilities calculated via averaging over the full graph space

and those calculated via a variable selection approach does not merely hold for single edge probabili-

ties, but for any graph feature that can be fully specified at a local parent set level. That is, equivalence

holds if an indicator function I(G), specifying whether graph G has a feature of interest or not, can

be expressed as a product of local indicator functions over parent sets,

I(G) =

p
∏

j=1

Ij(πG(j)). (15)

For example, for single edge probailities (Equation 6), we have I(G) = ✶{e=(a,b)∈G}, Ib(πG(b)) =

✶{a∈πG(b)} and Ij(πG(j)) = 1 for j 6= b. Features satisfying this local factorisation include exis-

tence of sets of edges, non-existence of sets of edges and in-degree related features. However, the

equivalence does not extend to arbitrary graph features.

2.3 Network prior

Following [12, 13], we take prior distribution P (G) to be of the form

P (G) ∝ exp(λf(G)) (16)

where λ is a strength parameter, weighting the contribution of the prior and f(G) is a real-valued

function over graphs, scoring the degree to which graphs concord with our prior beliefs. We use

signaling maps, from online repositories (cellsignal.com, stke.sciencemag.org) and the lit-

erature [14, 15], to obtain a set of edges we may expect to see in an inferred network. The edge set

includes indirect edges via components not included in our study and edges between protein phos-

phoforms and isoforms. We denote this set of a priori expected edges by E∗. The same edge set is

used for both cell lines in our study. We let f(G) = − |E(G)\E∗| where E(G) is the set of edges

contained in G. That is, f(G) is the number of edges in G that are not included in our expected edge

set E∗. Thus, our prior does not actively promote any particular edge, but rather penalizes unusual

edges. The edge set E∗ is given in Figure S3 and includes links (i) from EGFR to AKTs, MEK, JNK,

p70, LKB1, p38, PI3K and STAT3/5; (ii) from MEK to ERK, and from ERK to p70, p90 and TSC2;

(iii) from mTOR, PDK1 and PI3K to AKTs, and from AKTs to GSK3, mTOR, p70 and TSC2 [16];

(iv) from PI3K to PDK1 and mTOR; (v) from LKB1 to AMPK [17], and from AMPK to mTOR [18]

and TSC2; (v) from mTOR, PDK1 and TSC2 [19] to p70, and from p70 to EGFR; (vi) from cJun to

JNK; (vii) from mTOR to STAT3/5 [20] and from TSC2 to mTOR [21]; (viii) from PDK1 to p90 [22],

and from p90 and GSK3 to TSC2.

The prior used here satisfies the modular form of Equation 10. The expected edge set E∗ can be

represented by p index sets π∗(i) ⊆ {1, . . . , p} for the parents of each “response” variable X+
i , as
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given by E∗. That is, π∗(i) = {j | (j, i) ∈ E∗}. Then, Equation 10 holds if we define the prior over

parent sets to be P (πG(i)) ∝ exp(λfi(πG(i))) where fi(πG(i)) = − |πG(i)\π
∗(i)|.

2.4 Empirical Bayes

The prior strength parameter λ is set objectively by an empirical Bayes approach, as discussed in Main

Text. We present here some further details. λ is set by maximising the following marginal likelihood,

p(X | λ) = ❊ [p(X |G)]P (G | λ)

=
∑

G

p(X |G)P (G | λ). (17)

Following similar arguments as in Section 2.2, Equation 17 above can be rewritten in terms of sum-

mations over subsets of predictors π(i) as follows,

p (X | λ) =
∏

i

∑

π(i)

p
(

X+
i |X−

π(i)

)

P (π (i) | λ) . (18)

This allows the marginal likelihood to be calculated efficiently within the exact inference framework

used here. The marginal likelihood score is calculated over a grid of hyperparameter values and those

resulting in the largest score are used in the analysis.

3 Results

3.1 Simulation study

We carried out a simulation study in which data were generated from known graphs and the results

of network inference were compared with the true data-generating graphs. Thus, the data-generating

graphs provided a “gold standard” against which to assess the analyses. Mirroring the protein sig-

naling study, we formed DBNs with 20 vertices (corresponding to proteins) in each time slice and

simulated 4 time courses of 8 time points each. We carried out inference as described above and in

Main Text, and used the network prior shown in Figure S3.

Data-generating graphs were created so as to agree only partially with the prior used. This

was done using a random, Erdös-Renyi-like approach. In particular, an edge set E(G) for a data-

generating graph G was created from the prior graph edge set E∗ using a two-step process. First,

edges contained in the prior edge set E∗ were removed at random, leaving only 20 of the original

74 edges. Second, 10 edges that were not originally in E∗ were added; these were chosen uniformly

at random. This process gave randomly generated graphs with 30 edges. For each such randomly

generated graph, 10 of the edges were not in the prior, while 54 of the edges in the prior were not in

the data-generating graph. This created a scenario in which a non-trivial proportion of the prior graph

used did not agree with the data-generating graph.
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Data were then generated from a given graph by ancestral sampling (through time), using a Gaus-

sian model with interaction terms (see Equation 3). The zero-order or bias term was always in-

cluded, and the remaining terms were independently included with probability 0.5 (subject to each

parent in the graph being represented by at least one term; this ensured that the data model was

faithful to the graph). Model regression coefficients were sampled from a uniform distribution over

[−1,−0.1]∪ [0.1, 1] and were independent of time. Root nodes (initial time point) were also sampled

from this uniform distribution and Gaussian noise was set at a variance of 0.5. This can be thought

of as simulating data from a sparse vector autoregressive (VAR) model. For example, if protein i has

two parents in the data-generating graph, proteins j1 and j2, then for the initial time point t = 1, we

take X1
i ∼ Uniform([−1,−0.1] ∪ [0.1, 1]) and for t ∈ {2, . . . , 8} we have

Xt
i = β0 + γ1β1X

t−1
j1

+ γ2β2X
t−1
j2

+ γ3β3X
t−1
j1

Xt−1
j2

+ ǫit (19)

where ǫit ∼ N (0, 0.5), regression coefficients βk ∼ Uniform([−1,−0.1] ∪ [0.1, 1]) and γk are

independent Bernoulli random variables taking value one with probability 0.5, thereby selecting which

terms are included. Sampled γ’s are rejected if they are not faithful to the graph: as an example, for

this three protein illustration, γ1 = 1 and γ2 = γ3 = 0 would be rejected as it would mean that

contrary to the graph protein j2 is not actually a parent of protein i.

We used network inference for DBNs, as described above, using a model with interaction terms

and an informative network prior with empirical Bayes, to calculate posterior edge probabiltiesP (e|X).

Thresholding these probabilities at level τ produces an edge set Eτ = {e | P (e |X) ≥ τ}, which can

be compared to the true data-generating graph edge set to calculate number of true positives (cor-

rect edges called at threshold τ ) and number of false positives (incorrect edges called at threshold

τ ). A receiver operating characteristic (ROC) curve is created by plotting number of true positives

against number of false positives for varying thresholds. Area under the ROC curve (AUC) provides

a measure of network inference accuracy with higher values indicating better performance.

We generated a total of 25 random graphs, as described above. Empirical Bayes setting of prior

strength parameter resulted in an average value of λ = 3.54± 0.34 over the 25 experiments. Figure 2

in Main Text shows average ROC curves and average AUC values obtained are shown in Figure S4.

We also show results using DBN inference without interaction terms and/or a flat prior over graph

space (i.e. P (G) = constant), a baseline correlational analysis (thresholded absolute correlation

coefficients between variables at adjacent time points), variable selection via an ℓ1-penalized (Lasso)

regression approach [23] (implemented using Matlab package glmnet [24]), and several previously

proposed network inference approaches for time course data. These approaches were: a Gaussian

graphical model approach using functional data analysis and shrinkage-based estimation [25] (imple-

mented using R package GeneNet), a non-Bayesian approach for inferring DBNs [26] (implemented

using R package G1DBN), and a non-parametric Bayesian approach using Gaussian processes [27]

(implemented using Matlab package gp4grn). (All Matlab and R packages were used with default

settings). All the above methods resulted in a set of edge scores (e.g. posterior edge probabilities,
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regression coefficients, partial correlations etc.) that were thresholded to produce ROC curves. Since

Gaussian graphical models are undirected graphs, the inferred networks from this approach were

compared with the data-generating graph without edge directions. We note the Lasso approach also

provides a single graph (i.e. a point estimate) by selecting all those edges with non-zero regression

coefficients.

Mean AUCs (± SD) for network inference with an informative prior and flat prior were 0.93±0.03

and 0.84±0.05 respectively. The baseline correlational analysis, Lasso and previously proposed net-

work inference approaches had mean AUC values ranging from 0.61 to 0.80. Hence, we see that

the network prior provides significant gains in sensitivity and specificity, even though a non-trivial

proportion of information in the prior is, by design of the simulation study, not in agreement with the

data-generating model. We also note that, due to its inability to model combinatorial interplay, the

proposed DBN method without interaction terms is outperformed by the method including interaction

terms.

3.2 Synthetic yeast network study

The objectivity of simulation studies depends on how biologically realistic the data-generating model

is. In our simulations above, the data generating model is not biologically realistic and also matches

the inference model. While conclusions can be made regarding, for example, the utility of incorporat-

ing prior information, performance on this data is not likely to reflect performance on real data, and

the comparisons between methods are biased in favour of those that are based on the data-generating

model. Due to these limitations, simulation strategies that are more realistic, for example based on

non-linear systems of ODEs, can improve objectivity of assessments and comparisons [11].

Recent work by [28] provides another approach for assessing structure learning performance us-

ing biologically realistic data and a known gold-standard network. A gene regulatory network was

synthetically constructed in the yeast Saccharomyces cerevisiae. This network, called the IRMA net-

work, is composed of five genes and six regulatory interactions (plus a protein-protein interaction).

These interactions include feedback mechanisms and the network was designed so that the five genes

are negligibly affected by genes not in the network. Since the network is known, gene expression

(mRNA) data obtained from the system can be used to assess performance of structure learning algo-

rithms; we apply this approach here.

We use data from the “switch-off’ experiments [28], which consists of 18 time points (every 10

minutes up to 3 hours) and is averaged over four replicates. As noted by [28], it is less likely that

the protein-protein interaction can be recovered from the mRNA level data, so we assess performance

based on the network with six edges. In order to investigate the effect of including prior information,

we formed prior networks that partially agree with the IRMA network as follows. First, the prior edge

set E∗ is taken to include the six edges in the IRMA network and all self-loop edges. Second, three

edges, chosen at random, are added to E∗. Third, two edges in the IRMA network, chosen at random,

are removed from E∗. This results in prior networks containing seven edges (plus self-loop edges),
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four of which are in the IRMA network, and the IRMA network contains two edges that are not in the

prior.

We applied exact network inference for DBNs as described above and in Main Text, using an

informative network prior (generated as just described) with strength parameter set by empirical Bayes

and linear model with interaction terms. Empirical Bayes resulted in an average value of λ = 4.72±

3.75 over 25 different randomly generated prior networks. As in the simulation study, posterior edge

probabilities were used to generate ROC curves and AUC scores. Table 1 in Main Text shows AUC

scores obtained for the same methods and regimes considered above in the simulation study. AUC

scores for DBN inference with an informative prior and flat prior (and with interaction terms) were

0.82±0.04 (mean±SD) and 0.75 respectively. As in the simulation study above, we observe gains in

accuracy through use of a network prior, even though the prior is only in partial agreement with the

true network. We also see that inclusion of interaction terms provides an improvement in performance.

The Gaussian processes method performs comparably to the DBN approach described in this Chapter,

but is significantly more computationally intensive (for the five gene network, 10 iterations of the

DBN approach takes approximately 1.5 seconds, compared to 160 seconds for the Gaussian processes

method). The baseline correlational analysis, Lasso, Gaussian graphical model and non-Bayesian

DBN inference approaches did not perform well, with AUC values ranging from 0.39 to 0.5 (i.e. no

improvement over a random classifier).

3.3 Network model for breast cancer cell line MDA-MB-468

3.3.1 Robustness to specification of network prior structure

Here we give a few extra details to those given in Main Text. We investigated robustness to changes in

the prior graph (Figure 3c in Main Text and Figure S7). This was done by perturbing the prior graph

and comparing inferred posterior edge probabilities to those reported above. Perturbations were made

by making a number of edge removals and additions, keeping the total number of edges constant

(changing one edge in the prior network consists of an edge removal and then an edge addition; the

total number of edge removals and additions made is called the ‘structural hamming distance’ or

SHD). Results are robust to changes in the prior graph: for example, changing one third of the edges

(25 out of 74 edges; SHD equal to 50), gave edge probabilities that showed a correlation of 0.88±0.03

with those reported (mean Pearson correlation ± SD; calculated from 25 perturbed prior graphs).

3.3.2 Robustness to data perturbation

In addition to investigating robustness of results reported to prior specification, we sought also to

investigate the robustness to perturbation of the data. We did so by removing parts of the data and

replacing with the average of adjacent time points. The data consists of four time series of eight

time points each. We removed data, for all 20 proteins simultaneously, from between 1 and 4 time-

point/condition combinations: this corresponded to removing between 1/32 and 1/8 of the data. These

11



deletions represent a non-trivial change to a small data set. Figure S8a shows Pearson correlation coef-

ficients between edge probabilties reported in Main Text (from unperturbed data; Figure 3a) and those

inferred from perturbed data. We observe good agreement between the edge probabilities, demon-

strating that results are not overly sensitive to changes to the data. For example, perturbing 1/8 of the

data resulted in a correlation coefficient of 0.83± 0.05 (calculated from 25 perturbed datasets).

We also considered the case of completely removing all data at one of the eight time points. This

reduces the amount of data by almost 15% and also changes the interval between sampled time points.

Removing each of the six intermediate time points in turn, we again compared results obtained to the

edge probabilities reported above. We found an average correlation coefficient of 0.81 ± 0.06. This

demonstrates that the results reported are robust, even when 1/8 of the data is removed and time

intervals are substantially changed. Indeed, even when deleting two complete time points (randomly

selected), i.e. 1/4 of the data, we found reasonable agreement with the results reported (correlation

coefficient of 0.71± 0.08).

For both analyses above, the prior strength parameter was fixed to the value used in the original

analysis (λ=3).

3.3.3 Predictive capability and model fit

As an empirical check of model fit and predictive capability, we carried out leave-one-out-cross-

validation (LOOCV) using inferred posterior parent set probabilties (Equation 7). We note that in the

present setting LOOCV cannot be expected to guide detailed model choice or design. This is due to

the fact that for small data sets LOOCV alone is limited in its ability to choose between models or

regimes. Rather, our aim in using LOOCV was simply to highlight any egregious mismatch between

data and model. In the time-course setting it is also difficult to interpret LOOCV results in terms of

absolute error: rather we compared LOOCV error against baseline analyses.

At each iteration, one of the n data samples was removed and the exact inference procedure de-

scribed above and in Main Text used to learn the posterior distribution over parent setsP (π(i)|X−, X+
i )

from the remaining n− 1 training samples. We denote the training data for variable i by X− and X+
i

and the corresponding held-out sample by Y − and Y +
i . Given the training data, we can predict the

expected value of Y +
i from Y − by model averaging (see e.g. [9]),

E
[

Y +
i | Y −, X−, X+

i

]

=
∑

π(i)

E
[

Y +
i | Y −, X−, X+

i , π(i)
]

P (π(i) |X−, X+
i ) (20)

with

E
[

Y +
i | Y −, X−, X+

i , π(i)
]

=
n

n+ 1
B̃i

(

Bi
T
Bi

)−1
Bi

TX+
i (21)

where Bi is the (n−1)×(2|π(i)|−1) design matrix for variable i, including products of parents, and B̃i

is the corresponding 1 × (2|π(i)| − 1) design matrix for the held-out sample. Full network inference,

including empirical Bayes learning of the hyperparamter, was carried out at each cross-validation
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iteration.

Figure S8b shows these predictions compared with those from (i) the single highest-scoring graph

under the posterior distribution over DBN structures (this is the maximum a posteriori or MAP coun-

terpart to the Bayesian model averaging approach we propose); (ii) the proposed DBN inference

method with a fully linear regression model without interaction terms; (iii) an ℓ1-penalized regression

(Lasso) approach in which parents are inferred via variable selection; (iv) a baseline autoregressive

model in which each variable depends only on itself at the previous time point; and (v) a baseline

non-sparse linear model in which each protein depends on all parents. For (i), (iii), (iv) and (v) predic-

tions are made using Equation 21 only. The proposed method shows lower LOOCV error relative to

the baseline models and to the MAP model, and performs comparably to DBN inference with a fully

linear model and to Lasso regression.
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Figure S1: Dynamic Bayesian networks. (a) A (static) graph structure containing a feedback loop. This graph

is not a Bayesian network (BN) because it does not satisfy the acyclicity condition. (b) The graph structure in (a)

can be ‘unrolled’ through time to give a dynamic Bayesian network (DBN) structure in which each component

is represented at multiple time points. DBNs are able to model feedback loops. (c) Due to the homogeneity of

the graph structure through time, the ‘unrolled’ DBN in (b) can be ‘collapsed’ into two time slices representing

adjacent time points.
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Figure S2: Effect of sparsity constraint - breast cancer cell line study. Results reported in Main Text (Figure 3a)

were obtained by exact inference with a maximum in-degree of dmax = 4. These results were compared with

results obtained by exact inference with maximum in-degree increased to dmax = 5 (top), and by Markov chain

Monte Carlo-based inference without any in-degree restriction (bottom).
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Figure S3: Network prior. Existing biology is captured and integrated during modeling using a prior probability

distribution on graphs P (G) ∝ exp(λf(G)), with f(G) = − |E(G)\E∗| where E(G) is the set of edges

contained in G and E∗ is a set of a priori expected edges. The graph shows edge set E∗. Edges represent

interactions through time. Each node also has a self-loop edge (i.e. an edge starting and finishing at the same

node, these are not displayed). The edge set includes expected indirect edges which operate via components

not included in our study.
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Figure S4: Simulation study. Area under the ROC curve (AUC; see Figure 2 in Main Text for average ROC

curves). AUC provides a measure of accuracy in network inference; higher values indicate better performance.

Simulated data, with dimensionality and sample size matching the cancer proteomic study (20 proteins, 8 time

points, 4 complete time series per protein), were generated from known graph structures by ancestral sampling.

Graph structures were created to be in only partial agreement with the network prior shown in Figure S3. For

each data-generating graph 10 out of a total of 30 edges were not in the prior graph, while the prior graph had

54 edges that were not in the data-generating graph (see Supplementary Text for full details of simulation).

Results shown are mean AUC±SD over 25 iterations. Legend - “DBN, network prior”: proposed DBN infer-

ence approach using a network prior, weighted objectively by empirical Bayes; “DBN, flat prior”: proposed

DBN inference approach using a flat prior over network space; “+int/-int”: with/without interaction terms;

“correlations”: absolute Pearson correlations between proteins at adjacent time points; “Lasso”: ℓ1-penalized

regression; “GGM”: a Gaussian graphical model approach for time series data; “DBN (non-Bayesian)”: a

non-Bayesian method for DBN inference; “Gaussian Processes”: a non-parametric Bayesian approach using

Gaussian processes. See Supplementary Text for further details of these methods.
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Figure S5: Objective weighting of informative network prior - breast cancer cell line study. Empirical

Bayes marginal likelihood vs. prior strength λ. An informative prior on networks was used to integrate pro-

teomic data with existing knowledge of signaling topology (derived from available signaling maps, see Main

Text and Supplementary Text for details). Prior strength λ was set by an empirical Bayes approach. This was

done by empirically maximizing marginal likelihood p(data | λ) as shown (in increments of 0.5); this gave

λ = 3, the value used in all analyses.
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Figure S6: Posterior edge probabilities - breast cancer cell line study. Heatmap showing all 400 edge

probabilities for the inferred network in Figure 3a, Main Text.
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was used to integrate proteomic data with existing knowledge of signaling topology. The prior graph was

perturbed and results obtained compared to those reported in Figure 3a (see Supplementary Text for details).

Pearson correlation coefficients (between posterior edge probabilities) are shown as a function of number of

edge changes in the prior graph (‘Structural Hamming Distance’; larger values indicate a greater change to the

prior graph). Dashed red line and dotted green line show the correlation between reported results (with λ = 3)

and those obtained with a flat prior and prior only respectively. See also Figure 3c in Main Text.
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Figure S8: (a) Sensitivity to data perturbation and (b) cross-validation - breast cancer cell line study. (a)

Data were removed, for each of the 20 proteins under study, from between 1 and 4 randomly selected time-

point/condition combinations: this corresponded to removing between 1/32 and 1/8 of the data. Deleted data

were replaced with the average of adjacent time ponts. Pearson correlation coefficients are shown between edge

probabilities inferred from perturbed data and those obtained from the original, unperturbed data (Figure 3a in

Main Text). Results shown are over 25 iterations (except for “1”, in which all possible deletions were carried

out). (b) Predictive capability was empirically assessed by leave-one-out-cross-validation. Results shown are

mean absolute predictive errors ±SEM for DBN network inference with interaction terms in the linear model

and either exact model averaging (‘DBN, +int, MA’) or using the highest scoring graph (‘DBN, +int, MAP);

DBN network inference without interaction terms using exact model averaging (‘DBN, -int’); variable selection

via ℓ1-penalized regression (‘Lasso’); a baseline auto-correlative analysis (‘self-edges only’); and a baseline,

non-sparse linear model, with each variable predicted from all others (‘all edges, -int’).
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Figure S9: Time courses for MDA-MB-468. Colored lines are raw triplicates; black lines are averages. Time

courses are standardized to have zero mean, unit variance across all conditions for each protein.
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Figure S9: Time courses for MDA-MB-468.
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Short Name
Antibody Name Company Catalogue

(as used in Main Text)

AKTp(S) AKT pS473 Cell Signaling 9271

AKTp(T) AKT pT308 Cell Signaling 9275

AMPKp AMPK pT172 Cell Signaling 2535

cJUNp c-Jun pS73 Cell Signaling 9164

EGFRp EGFR pY1173 Millipore 05-483

GSK3p GSK3 pS21/9 Cell Signaling 9331

JNKp JNK pT183 Y185 Cell Signaling 9251

LKB1p LKB1 pS428 Cell Signaling 3051

MAPKp MAPK pT202 Y204 Cell Signaling 9101

MEK1/2p MEK 1/2 pS217 Cell Signaling 9121

mTORp mTOR pS2448 Cell Signaling 2971

p38p p38 pT180 Cell Signaling 9211

p70S6Kp p70S6K pT389 Cell Signaling 9205

p90RSKp p90RSK pT359 Cell Signaling 9344

PDK1p PDK1 pS241 Cell Signaling 3061

PI3K PI3K Epitomics 1683

STAT3p(S) STAT3 pS727 Cell Signaling 9134

STAT3p(Y) STAT3 pY705 Cell Signaling 9131

STAT5p STAT5 pY964 Cell Signaling 9351

TSC2p TSC2 pT1462 Cell Signaling 3611

Table S1: Validated primary antibodies used in the cancer cell line study.
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