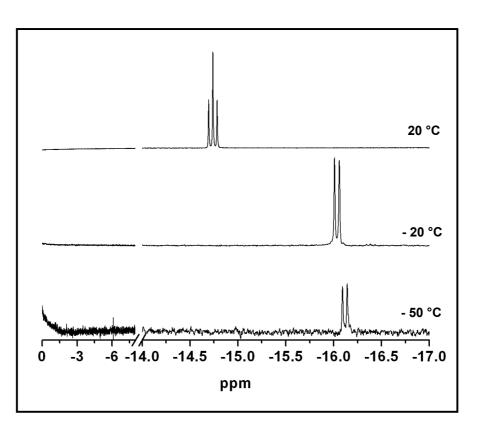
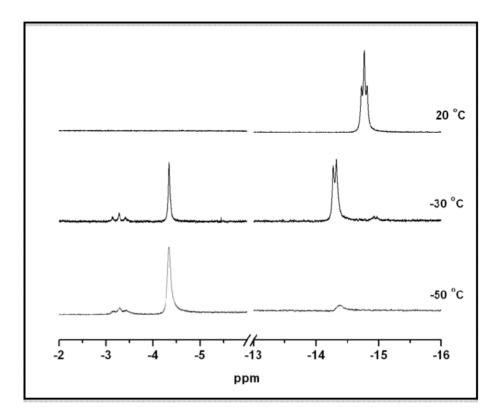
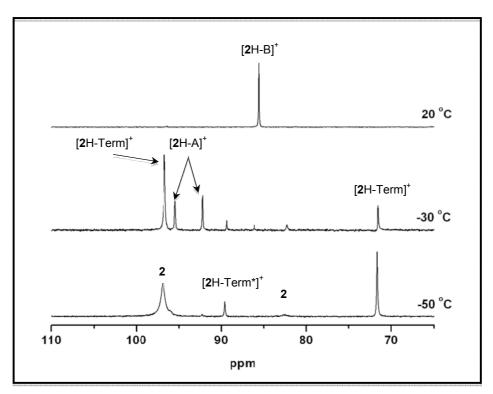
Isomerization of the Hydride Complexes $[HFe_2(SR)_2(PR_3)_x(CO)_{6-x}]^+$ (x = 2, 3, 4) Relevant to the Active Site Models for the [FeFe]-Hydrogenases

Bryan E. Barton, Giuseppe Zampella, Aaron K. Justice, Luca De Gioia*, Thomas B. Rauchfuss*, Scott R. Wilson

Supporting Information


Figure S1. ¹H NMR (500 MHz) spectra of a CD₂Cl₂ solution of 1,

 $Fe_2(edt)(CO)_4(dppv)$, after protonation with 3 equiv HBF₄•Et₂O at -80 °C, then warmed to recorded temperatures. Spectrum recorded at 20 °C is after 48 h at room temperature.

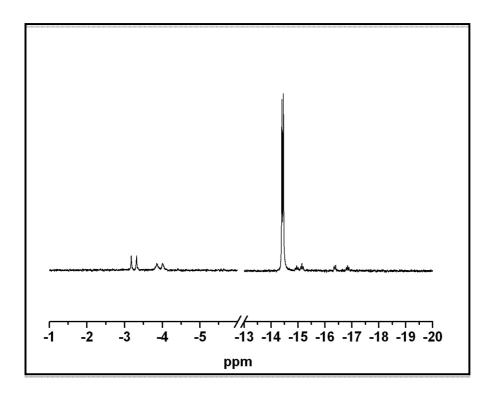


Figure S2. ¹H NMR (500 MHz) spectra of a CD_2CI_2 solution of **2**, Fe₂(pdt)(CO)₄(dppv), after protonation with 3 equiv HBF₄•Et₂O at -80 °C, then

warmed to recorded temperatures. Spectrum recorded at 20 °C is after 16 h at room temperature.

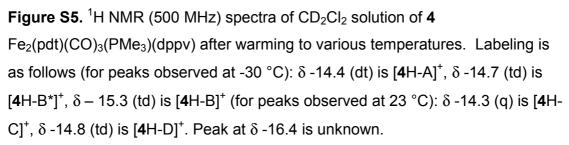


Figure S3. Protonation of **2**, $Fe_2(pdt)(CO)_4(dppv)$, with 3 equiv HBF₄•Et₂O at -80 °C, then warmed to recorded temperatures. ³¹P{¹H} NMR (202 MHz) acquired with -50 °C ¹H NMR above shows the growth of signals at 97 and 72 ppm ([**2**H-Term]⁺, for terminal hydride derivative wherein dppv is apical, basal) and a signal at 89 ppm ([**2**H-Term*]⁺, terminal hydride with hydride on dibasal-dppv side). When sample is warmed to – 30 °C, new signals are observed at 92 and 95 ppm ([**2**H-A]⁺ - is bridging hydride of apical,basal-dppv). When sample is warmed to room temperature, only one signal is observed at 86 ppm ([**2**H-B]⁺- thermodynamic product with dppv as dibasal (triplet in high-field ¹H NMR). At low temperature, signals at 96 and 82 ppm are due to remaining starting material.

Figure S4. ¹H NMR (500 MHz) spectrum of a CD_2Cl_2 solution of **4**, Fe₂(pdt)(CO)₃(PMe₃)(dppv), after protonation with HBF₄•Et₂O at -90 °C. Signals at -3, -4 ppm are assigned to isomers of the terminal hydride and appear as doublets with J_{PH} ~ 75 Hz. The intense signal at -14.3 ppm with J_{PH} ~ 30 Hz is assigned to [**4**H-A]⁺. For spectra at higher temperature, see Figure S5.

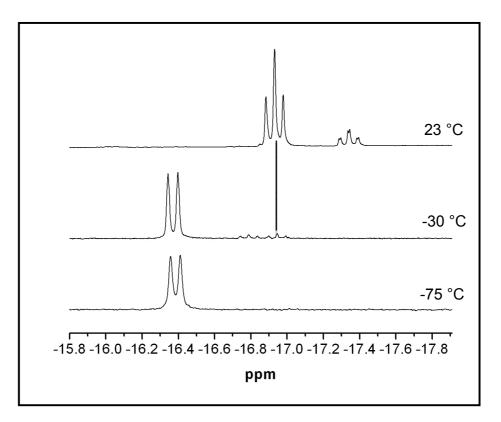


Figure S6. ¹H NMR (500 MHz) spectra of CD₂Cl₂ solution of 3,

Fe₂(edt)(CO)₃(PMe₃)(dppv), after protonation with [H(Et₂O)₂]BAr^F₄ at -90 °C and recorded at various temperatures. At -75 °C, a doublet is the sole species present in the ¹H NMR spectrum, J_{PH} ~30 Hz (indicating a single P atom *cis* to the hydride). Upon warming to -30 °C, two new triplets are observed in the ¹H NMR, J_{PH} ~25 Hz (indicating two P atoms *cis* to the hydride). Upon equilibration of [**3**H]⁺ at room temperature for several months, the ¹H NMR displays a triplet and a triplet of doublets, and possibly one more signal with unresolved coupling under the major resonance at δ -16.8. As seen for [**4**H]⁺, the unstable rotamer [**3**H-B^{*}]⁺ is observed at δ -16.8.

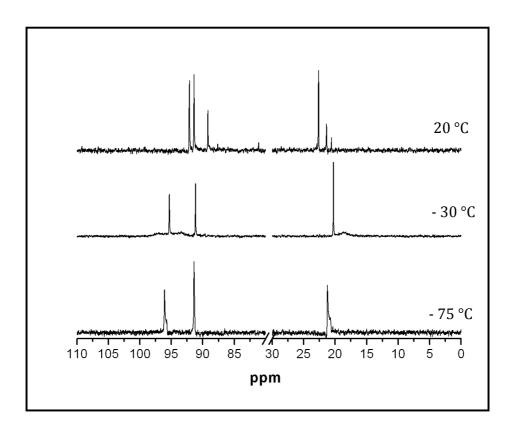
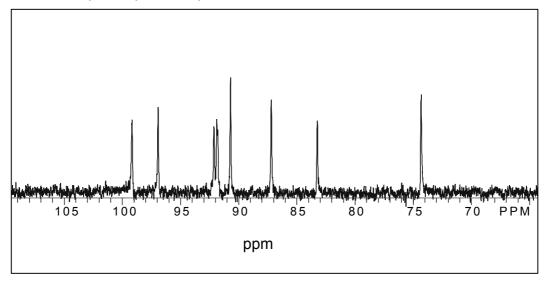
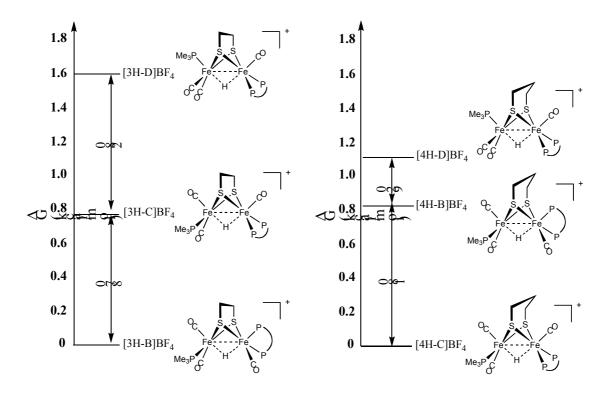
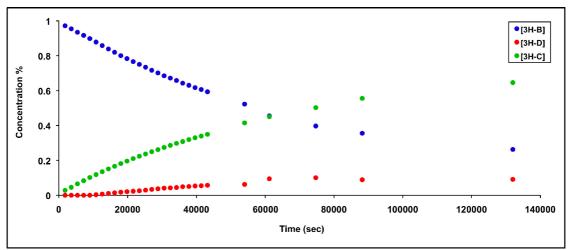



Figure S7. ³¹P{¹H} NMR spectra of CD₂Cl₂ solution of 3,


 $Fe_2(edt)(CO)_3(PMe_3)(dppv)$, after protonation with $[H(Et_2O)_2]BAr^{F_4}$ at -90 °C and recorded at various temperatures. At –75 °C, the ³¹P{¹H} spectrum shows mostly one isomer, with two signals in the dppv region (apical-basal) and one signal in the PMe₃ region. At -30 °C, the same peaks remain, smaller broad peaks are due to slight remainder of starting material. Upon equilibration of $[3H]^+$ at room temperature for several months, the ³¹P{¹H} NMR spectrum displays in the dppv region a set of equally intense peaks at 92, 93 ppm (apical-basal, major isomer), a single resonance at 89 ppm (dibasal, minor isomer), and in the PMe₃ region three peaks. The missing dppv signal for the third isomer wherein the dppv is possibly dibasal is not observed.


Figure S8. High-field ¹H NMR spectra of a d⁷-DMF solution of [**4**H]PF₆, **a**) recorded at 20 °C on 500 MHz instrument and **b**) after heating to 80 °C. The spectrum recorded at 120 °C (600 MHz) was after three days at room temperature, decomposition species are labeled: Fe₂(pdt)(CO)₂(dppv)₂ (-----) and unknown poly-phosphine species (-----). At 80°C the peaks at -13.8 ppm [**4**H-C] are labeled with (-----).

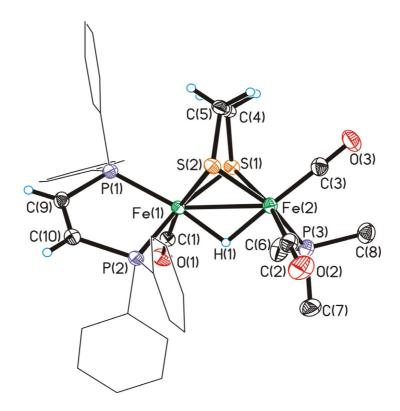

Figure S9. ³¹P{¹H} NMR (600 MHz, CD₂Cl₂) spectrum of [HFe₂(edt)(CO)₂(dppv)₂]⁺ recorded at –35° C. Peaks corresponding to [**5**H-Term]⁺ are at 99, 91, 84, 74 ppm. Remaining signals are due to [**5**H-A]⁺ (97, 87 ppm) and **5** (92, 93 ppm).

Figure S10. Difference in energy for isomers for $[3H]^+$ and $[4H]^+$, $[HFe_2(xdt)(CO)_3(PMe_3)(dppv)]BF_4$, as calculated experimentally.

Figure S11. Plot monitoring the concentration of [**4**H-B]⁺, [**4**H-C]⁺ and [**4**H-D]⁺ as a function of time. Data was collected using ¹H NMR spectroscopy.

Table S1. Crystallographic data for $[\mathbf{3}H-B]^+$, $[HFe_2(edt)(CO)_3(dppv)(PMe_3)]PF_6$, including selected lengths (Å) and angles (°).

Fe(1) – Fe(2)	2.5744 (5)	Fe(1) – S(1) – Fe(2)	69.355 (17)
Fe(1) – S(1)	2.2581 (7)	Fe(1) – Fe(2) – S(1)	55.164 (17)
Fe(1) – S(2)	2.2794 (6)	Fe(2) – Fe(1) – P(1)	148.911 (18)
Fe(2) – S(1)	2.2668 (7)	Fe(2) – Fe(1) – P(2)	113.20 (2)
Fe(2) – S(2)	2.2760 (6)	Fe(2) – Fe(1) – C(1)	111.37 (6)
Fe(1) – P(1)	2.2137 (6)	P(1) – Fe(1) – P(2)	86.80 (2)
Fe(1) – P(2)	2.2282 (6)	P(1) – Fe(1) – C(1)	90.78 (6)
Fe(1) – C(1)	1.765 (2)	P(2) – Fe(1) – C(1)	91.10 (6)
Fe(2) – P(3)	2.2549 (7)	Fe(1) – Fe(2) – C(2)	112.44 (7)
Fe(2) – C(2)	1.790 (2)	Fe(1) – Fe(2) – C(3)	141.78 (7)
Fe(2) – C(3)	1.771 (2)	Fe(1) – Fe(2) –	109.54 (2)

		P(3)	
Fe(1) – H(1)	1.69 (2)	C(3) – Fe(2) – C(2)	95.45 (10)
Fe(2) – H(1)	1.64 (2)	C(3) – Fe(2) – P(3)	94.15 (7)
C(1) - O(1)	1.142 (2)	C(2) – Fe(2) – P(3)	92.44 (7)
C(2) – O(2)	1.140 (3)	Fe(1) – H(1) –	99.99
		Fe(2)	
C(3) – O(3)	1.148 (3)		

Complex	$[Fe_2(edt)(\mu-H)(CO)_3(PMe_3)(dppv)]PF_6$		
Chemical formula	$C_{34}H_{36}F_6Fe_2O_3P_4S_2$		
Temperature (K)	193 (2)		
Crystal size (mm ³)	0.40 x 0.24 x 0.16		
Crystal system	Triclinic		
Space group	P-1		
a (Å)	10.818 (2)		
b (Å)	11.253 (2)		
c (Å)	16.208 (3)		
α (°)	78.473 (3)		
β (°)	86.415 (3)		
γ(°)	81.525 (3)		
V (Å ³)	1911.1 (6)		
Ζ	2		
Density calcd (Mg m ⁻³)	1.575		
μ (Mo Kα, mm ⁻¹)	0.71073		
max./min. trans'n	0.8572 / 0.6869		
reflections meas'd/Indep.	23821 / 9184		
data/restraints/parameters	9184 / 0 / 467		
GOF on F ²	1.024		
Rint	0.0286		
R1 [I > 2σ] (all data) ^a	0.0322 (0.0485)		
wR2 [I > 2σ] (all data) ^b	0.0786 (0.0850)		
max. peak/hole (e ⁻ /Å ³)	0.392 / -0.374		