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Figure S1. Map of the study domain of greater London, U.K. and GSH OP and PM10 monitoring 

locations; lines are the London borough boundaries; shaded region is the area shown in Figures 1 

and S3-S5.  

Table S1. Summary of model fit and key weekly cross-validation (CV) results from the 

covariate selection process for GSH OP and PM10 models.  

Pollutant Model
A
 GIS covariates Model 

R
2
 

Cross-validation 

R
2 B

 

GSH OP Referent 

model 

None 0.28 0.21 

Univariate 

models 

Urban volumetric density within 100 m 0.39 0.29 

Green coverage ratio within 250 m 0.30 0.21 

Cumulative traffic of heavy-goods 

vehicles within 50 m 

0.30 0.22 

Cumulative traffic of heavy-goods 0.30 0.21 



vehicles within 100 m 

Gridded NOX tailpipe emissions from 

buses, cars, motorcycles, and taxis 

0.31 0.22 

NOX tailpipe emissions from heavy-goods 

vehicles within 50 m 

0.30 0.20 

PM10 tailpipe emissions from buses, cars, 

motorcycles, and taxis within 50 m 

0.46 0.39 

Gridded PM10 brake and tire wear 

emissions from buses, cars, motorcycles, 

and taxis 

0.32 0.23 

PM10 brake and tire wear emissions from 

all vehicles within 50 m 

0.44 0.36 

Multivariable 

model
C
 

PM10 brake and tire wear emissions from 

all vehicles within 50 m and NOX tailpipe 

emissions from heavy-goods vehicles 

within 100 m
D
 

0.50 0.42 

Seasonal GIS 

effects 

As above, but seasonal slope for PM10 

brake and tire wear emissions from all 

vehicles within 50 m 

0.52 0.44 

PM10 Referent 

model 

None 0.74 0.74 

Univariate 

model 

Mean of 2003, 2004, and 2006 annual-

average PM10 predictions from hybrid 

emissions/dispersion model 

0.84 0.83 

A
: Each model included a smooth function for time trend, h(t). Also, as discussed in the main 

text, GSH OP models assumed a compound-symmetric covariance structure among the within-

site errors whereas PM10 models did not assume a non-zero covariance structure.  

B
: Across weekly averages (2,118 at 34 locations for GSH OP and 12,041 at 66 locations for 

PM10). For PM10, two high values at two sites were removed as outliers.  

C
: After removing non-significant terms and those that did not increase the CV R

2
.  

D
: 50 m buffer used initially though 100 m buffer performed slightly better in multivariable 

models. 

Table S2. Summary of prediction model parameters for GSH OP and PM10 (Equations 2 and 3 in 

the main text, respectively).  

Pollutant Model terms Mean (SE
A
) p-value

B
 

GSH OP  , intercept (autumn season is the reference category) 0.751 

(0.052) 

<2e-16 

 

  : slope for NOx tailpipe emissions within 100 m from 

heavy-goods vehicles
C
 

-0.123 

(0.030) 

4.8e-5 

  ; slope for        , an indicator for spring season -0.227 2.5e-5 



(0.054) 

  ; slope for        , an indicator for summer season -0.194 

(0.048) 

4.9e-5 

  ; slope for        , an indicator for winter season -0.122 

(0.050) 

0.0146 

  ; slope for    : PM10 brake and tire wear emissions 

within 50 m from all vehicles
C
 (autumn season is the 

reference category) 

5.55 (1.549) 3.5e-4 

 

  ; slope for           ;     and         as above 5.45 (0.701) 1.2e-14 

  ; slope for           ;     and         as above 5.75 (0.732) 6.5e-15 

  ; slope for           ;     and         as above 1.70 (0.716) 0.0178 

 ( ); smooth function for time trend (40.5 estimated df) See Figure 

S2A 

<2e-16 

   ; errors 21.4% of total variance 

is within-site 

PM10  ; intercept 1.77 (0.323) 4.5e-08 

  ; slope for    : Mean of 2003, 2004, and 2006 predicted 

annual-average PM10
D
 

1.01 (0.012) <2e-16 

 ( ); smooth function for time trend (220.0 estimated df) See Figure 

S2B 

<2e-16 

A
: SE is standard error; these values are model-based and do not include uncertainty from 

model specification.  

B
: p-values are approximate due to estimation of smoothing parameter

1
.  

C
: Units are tonnes year

-1
.  

D
: From hybrid emissions-dispersion/regression model

2-3
; units are  g m

-3
. 

Calculation of mean fractional bias and mean fractional error 

We calculated mean fractional bias (MFB; %) and mean fractional error (MFE; %) for 

the   pairs of model predictions ( ̂ ) and measurements (  ) using the following formulas: 
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Residual correlation and diagnostics 

We evaluated assumptions about model residuals using the untransformed, original-scale data, 

as well as those using natural log and square root transformations. Because none of these 



transformations markedly improved residual diagnostics or improved predictive accuracy in 

preliminary models, we modeled GSH OP without transformation. Despite our use of a 

compound symmetric covariance structure for the within-site errors (chosen based on the cross-

validation (CV) R
2
), we found evidence of low to moderate temporal autocorrelation in residuals 

from the final GSH OP prediction model, though little (Pearson’s r <0.2) remained for lags 

greater than two weeks. The temporal alignment of the OP data resulted in several weekly values 

being repeated (those for which the monitoring period was longer than one week): these are 

displayed as successive horizontal points in Figure S2A. Though counterintuitive, temporal 

autocorrelation increased slightly when an AR(1) covariance structure was evaluated. Residual 

diagnostics showed that other modeling assumptions were reasonable, with little to no spatial 

correlation or spatio-temporal interaction remaining (see below). 

Spatio-temporal interaction and kriging 

The model in Equation 1 includes a smooth spatial trend  (  ) that is assumed constant over 

time. We provided this function the greatest flexibility possible by using a basis dimension of 

      . The complexity of this function was determined during model fitting using bivariate 

penalized thin-plate splines. To evaluate whether any spatio-temporal interaction remained in the 

data and to potentially explain additional variability in the outcome, we added seasonal spatial 

terms,        (  ), and weekly spatial terms,   (  ), separately, to the GSH OP and PM10 

models. Time-varying spatial terms were also specified using bivariate penalized thin-plate 

splines. Weekly spatial models were fit in a back-fitting arrangement
4
 in which weekly smooth 

spatial terms were fit to the model residuals, iterating between the non-spatial and spatial model 

components until convergence
5
. We also examined seasonal and weekly semivariograms of the 

model residuals to assess the extent of any remaining spatial variability, and examined the level 



of serial autocorrelation in model residuals by creating autocorrelation plots for each monitoring 

site and summarizing these across sites.  

To evaluate the sensitivity of model performance to different spatial modeling approaches, we 

evaluated ordinary and simple kriging models in which residual spatial variation was modeled as 

a mean-zero Gaussian stochastic process. These spatial models were embedded within the GAM 

structure, with the covariance of this process modeled as the sum of a nugget parameter (  ) plus 

a Matern covariance, parameterized by the partial sill (  ), range ( , limited to 0-1000), and 

differentiability parameter ( , fixed at 1). Ordinary and simple kriging models were fit using the 

krige.conv() function in the geoR package
6
 for R, with variogram parameters estimated 

using maximum likelihood via the likfit() function. In the event that likfit() failed to 

converge, we used variofit() instead. To fit these models, we again iterated between the 

non-spatial and spatial model components until convergence. In addition to kriging models with 

a single spatial term, we evaluated kriging models that used seasonal and weekly spatial terms, 

as for the spatial smoothing spline models. For the single and seasonal kriging models, the 

intercept   was removed from the non-spatial component and so was estimated as the mean 

parameter using ordinary kriging. In weekly kriging models, the intercept   was included in the 

non-spatial component of the model, so simple kriging, with the beta parameter set to zero, was 

used to model residual weekly spatial variability.  

Modeling residual spatial variability, either using smoothing splines or ordinary/simple 

kriging, at either the seasonal or weekly level (though insufficient data were available to fit 

weekly models before August 2004), decreased rather than increased the predictive accuracy of 

GSH OP models as assessed by the weekly CV R
2
 (data not shown), even though the model R

2
 

increased in some cases. This decrease in predictive accuracy indicates that spatial variation in 



GSH OP levels occurred on a spatial scale smaller than that able to be described by smoothing 

splines or kriging, given the density of available monitoring. Results for PM10, similar to those 

for GSH OP, showed that weekly or seasonal spatial modeling, using either smoothing splines or 

kriging, decreased rather than increased predictive accuracy (data not shown).  

A) 

 

B) 



 

Figure S2. Plots of fitted smooth functions of time trend in prediction models for A) GSH OP 

and B) PM10. The shaded regions and points display point-wise standard errors (including 

uncertainty about the overall mean) and partial residuals, respectively. 
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Figure S3. Maps of predicted GSH OP levels in OP  g
-1

 in a selected area of central London, 

U.K.; lines show the borough boundaries. A) Lowest week (beginning July 3, 2006, 

corresponding to Summer 2006 in Figure S3A; values ranged from -0.24 to 1.05 OP  g
-1

); B) 

Mean across 2002-2006 (values ranged from 0.11 to 1.21 OP  g
-1

); C) Highest week (beginning 

November 8, 2004, corresponding to Autumn 2004 in Figure S3A; values ranged from 0.71 to 

1.51 OP  g
-1

).  

Predictive accuracy by site descriptors/categories 

The GSH OP model performed well across years and in highly urban of greater London, 

though slightly less well in less urban areas. Predictive accuracy was also comparable across 

seasons, though performance in the summer season was slightly better than in other seasons. 



Predictive accuracy was lower at kerbside sites (those a few meters from the roadway) for 

weekly data (Table 1; CV R
2
=0.13), though data were only available at only four sites. Thus, 

limited spatial variability was present and the model did not represent temporal variability well at 

these sites, perhaps because of the strong effects of very near traffic which may have varied in 

intensity during the week, or because of micro-scale (0-100 m) meteorological impacts such as 

changes in wind direction or effects of street canyons. This suggests that there is substantial 

spatio-temporal interaction occurring at kerbside locations, but that this variability is occurring 

on too small a spatial scale to be captured by the density of the monitors. However, predictive 

accuracy increased markedly among kerbside sites when comparing only spatial variability 

(spatial CV R
2
=0.71). In addition, predictive accuracy for weekly levels was higher at roadside 

sites (those more than a few meters from the road) (Table 1; CV R
2
=0.36) also highly influenced 

by nearby traffic. Model predictions of weekly GSH OP levels were also slightly less precise at 

kerbside and roadside sites compared to urban background sites (Table 1; RMSPE=0.31 and 0.32 

vs. 0.25, respectively).  

For the PM10 model, predictive accuracy increased slightly for the year 2003 (Table 1; CV 

R
2
=0.92) due to the higher levels (and therefore larger range) of PM10 in late March 2003 (Figure 

S2B, in Spring 2003). Model predictions were less precise at kerbside locations (Table 1; 

RMSPE=5.74  g m
-3

 at kerbside sites vs. 4.99 at roadside, 3.43 at suburban, and 3.64 at urban 

background sites).  

Our results also demonstrate the ability of CV to select appropriate predictor variables and 

model forms without leading to over-fitting of the data (i.e., modeling noise in the measurements 

rather than signal). Though intuitive, we found that spatial modeling using smooth spatial terms 

or kriging (see below) decreased predictive accuracy and led to increased model over-fitting for 



GSH OP and PM10, even as it generally improved model R
2
 values. Thus, our results highlight 

the importance of using CV for model selection in predictive models rather than the model R
2
, 

AIC, or other model-fit based measures.  

Seasonal spatial variation in GSH OP 

A) 

 

B) 



 

C) 



 

D) 



 

Figure S4. Maps showing spatial variation in seasonal mean predicted GSH OP levels in OP  g
-

1
 in a selected area of central London; lines show the borough boundaries. A) winter, B) spring, 

C) summer, D) autumn.  

We observed different slopes for PM10 brake and tire wear emissions from all vehicles within 

50 m among the seasons. These result in different near-road gradients of predicted GSH OP in 

different seasons. In the autumn season, the slope is lowest and therefore the elevation in near-

road GSH OP levels is less pronounced compared to the surrounding area. In contrast, in the 

summer the slope is highest and the increase in GSH OP in areas near roads is more evident. 

Also note the negative slope for NOX tailpipe emissions from heavy-goods vehicles within 50 m 

remains constant across seasons, and therefore the areas between 50 and 100 m from roadways 

exhibit slightly lower predicted GSH OP levels than those further than 100 m.  



A) 

 

B) 



 

C) 



 

Figure S5. Maps of predicted PM10 levels in  g m
-3

 in a selected area of central London, U.K.; 

lines show the borough boundaries. A) Lowest week (beginning May 22, 2006, corresponding to 

Spring 2006 in Figure S2B; values ranged from 11.3 to 27.7  g m
-3

); B) Mean across 2002-2006 

(values ranged from 25.4 to 41.9  g m
-3

); C) Highest week (beginning March 24, 2003, 

corresponding to Spring 2003 in Figure S2B; values ranged from 84.4 to 100.8  g m
-3

). 
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