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SUMMARY

Cancer evolves dynamically as clonal expansions
supersede one another driven by shifting selective
pressures, mutational processes, and disrupted
cancer genes. These processes mark the genome,
such that a cancer’s life history is encrypted in the
somatic mutations present. We developed algo-
rithms to decipher this narrative and applied them
to 21 breast cancers. Mutational processes evolve
across a cancer’s lifespan, with many emerging late
but contributing extensive genetic variation. Subclo-
nal diversification is prominent, and most mutations
are found in just a fraction of tumor cells. Every tumor
has a dominant subclonal lineage, representingmore
than 50% of tumor cells. Minimal expansion of these
subclones occurs until many hundreds to thousands
of mutations have accumulated, implying the exis-
tence of long-lived, quiescent cell lineages capable
of substantial proliferation upon acquisition of en-
abling genomic changes. Expansion of the dominant
994 Cell 149, 994–1007, May 25, 2012 ª2012 Elsevier Inc.
subclone to an appreciable mass may therefore
represent the final rate-limiting step in a breast
cancer’s development, triggering diagnosis.
INTRODUCTION

Age-incidence curves of most common epithelial cancers show

rapidly increasing rates after the 4th–5th decades of life. Classic

mathematical models of tumor development developed by

Armitage and Doll (Armitage and Doll, 1954; Hornsby et al.,

2007) suggested that 5–8 rate-limiting events are required to

generate such incidence patterns. Since these studies were

performed in the 1950s, we have learnt much about the biolog-

ical and genetic basis of cancer. In particular, evolution toward

cancer often occurs on a phenotypic spectrum of increasingly

disordered premalignant stages, as ‘‘hallmark’’ cellular pro-

cesses are cumulatively co-opted or ablated in the cancer cells

(Hanahan and Weinberg, 2011). Somatic mutation is the funda-

mental mechanism by which cancer cells suborn these path-

ways (Stratton et al., 2009), notwithstanding the contributions

of epigenetic changes, cues from the local microenvironment

and germline genetic variation.
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Whole-cancer genomes sequenced to date carry thousands

to tens of thousands of somatic mutations (Chapman et al.,

2011; Ding et al., 2010; Ley et al., 2010; Pleasance et al.,

2010a, 2010b; Puente et al., 2011; Shah et al., 2009), the vast

majority of which probably have no biological relevance. The

accumulation of mutations in cancerous and precancerous cells

over time is increasingly recognized as a complex, dynamic

process. Carcinogenic exposures and DNA repair defects can

lead to sustained elevations in mutation rate; telomere attrition

and chromothripsis can drive massive genomic rearrangement

in catastrophic bursts (Bignell et al., 2007; Campbell et al.,

2010; O’Hagan et al., 2002; Stephens et al., 2011).

In the classic view of cancer development, those somatic

mutations conferring a selective advantage on the cell drive

successive waves of clonal expansion, with the fittest clone

coming to dominate the cellular compartment. Increasingly,

however, cancers are recognized to be mixtures of competing

subclones, based on analyses of cancers sampled within

a patient at different times (Ding et al., 2012; Shah et al., 2009),

from different sites (Campbell et al., 2010; Ding et al., 2010;

Yachida et al., 2010), at hypermutable genomic loci (Campbell

et al., 2008), or through single-cell isolation (Anderson et al.,

2011; Navin et al., 2011; Notta et al., 2011). Although these

studies imply the existence of genetic heterogeneity within

a tumor, fundamental questions remain about the dynamics of

Darwinian evolution in cancer, the biological relevance of sub-

clonal genetic variation and the relationship between mutational

processes and clonal expansion.

Here, we use newly developed bioinformatic algorithms

(Greenman et al., 2012) to reconstruct the genomic history of

21 breast cancers. Borrowing the concept of a ‘‘most-recent

common ancestor’’ from population genetics, we can divide

somatic mutations into those acquired before the last complete

selective sweep (and thus shared by all cancer cells within the

sample) and those subclonal variants that occurred after

the emergence of the common ancestor. We study the early

genomic evolution of the eventual cancer clone, quantify the

extent and dynamics of subclonal variation within the cancer

sample sequenced and explore changes in mutation signatures

over time. These findings have important implications for

our understanding of how breast cancers develop over the

decades between breast organogenesis and diagnosis in the

adult.

RESULTS

Inference of Cancer Genome Evolution
We sequenced 20 primary breast cancer samples to an average

30–40 coverage across each base in the genome. The sample

series includes four cases each of estrogen-receptor (ER)-

positive, HER2-positive, and BRCA2-positive breast cancer;

three cases of triple negative; and five cases of BRCA1-positive

breast cancer. In addition, we sequenced to 188-fold depth one

other ER-positive tumor with a distinctive mutator phenotype,

consisting of C>A, C>G and C>T mutations specifically in a

TpC context. As described in the companion paper to this

(Nik-Zainal et al., 2012, this issue of Cell), we identified a high-

confidence, validated set of base substitutions, insertions, and
deletions (indels); genomic rearrangements; and copy number

changes in the 21 cancers.

To develop the reasoning that underpins this paper, we start

with the tumor sequenced to 188-fold depth, PD4120a. At the

chromosomal scale, the cancer genome is hypodiploid, with

relatively few copy number changes (Figure 1A). To exploit

the considerable sequencing depth available for this tumor,

we modified the parameters of our somatic substitution algo-

rithm in order to identify subclonal mutations; those found in

only a fraction of tumor cells. In total, we identified 70,690

somatic substitutions genome-wide, including many in which

fewer than 5% of the reads across the base reported the variant

allele. That these are bona fide mutations is evidenced by the

dominance of the C>* mutations in a TpC context at all levels

of subclonality (Figures S1A and S1B, available online) and

a high rate of verification in a subset by targeted PCR and

pyrosequencing.

The mutations fall into well-circumscribed clusters when

displayed by the fraction of reads reporting the variant (Figure 1B

and Figure S1C). The major cluster of points occurs at a read

depth around 210, with about 35% of reads reporting each

variant. Because an estimated 70% of cells in the sample derive

from the cancer clone, this cluster represents those point muta-

tions found in all tumor cells on one copy of a diploid chromo-

some. By comparison, mutations from regions of copy number 1

show a lower overall read depth (because the copy number is

lower) but higher variant allele fraction (because there are no

reads from the deleted chromosome).

The genome has one triploid chromosomal region, 1q, which is

most likely to have arisen as a single gain of one whole chromo-

some arm, although we cannot formally exclude duplication of

both alleles with subsequent loss of one. Mutations occurring

on the relevant chromosomal arm before duplication would be

present on two of three copies (with an expected variant allele

fraction of �55%), whereas mutations occurring after the dupli-

cation would be present on only one copy. In fact, we find only

seven mutations on 1q predicted to have occurred before the

chromosome arm was duplicated, not one of which has the

signature of C>* mutations in a TpC context (Figure S1C). In

contrast, 1,250 mutations are found on 1q at single copy

number, of which 1,130 have this mutation signature, with the

spectrum of early (ploidy 2) and late (ploidy 1) mutations being

significantly different (p < 0.0001, chi-square test). Trisomy 1q

is one of the commonest copy number alterations seen in breast

cancer (Beroukhim et al., 2010; Bignell et al., 2010). Our data

indicate that, relative to point mutations, this driver cytogenetic

change occurred very early during the evolution of this particular

tumor. Furthermore, albeit with small numbers of informative

early mutations, the mutator phenotype was not evident before

the occurrence of trisomy 1q.

Modeling Clonal and Subclonal Mutation Clusters
Many of the mutations we identify are present at a lower propor-

tion of reads than we would expect for the ploidy and level of

normal cell contamination in the sample (Figure 1B). These are

subclonal mutations, found in only a fraction of the tumor cells.

A particularly striking feature of these mutations is that they

seemingly fall into distinct clusters.
Cell 149, 994–1007, May 25, 2012 ª2012 Elsevier Inc. 995



Figure 1. Genomic Architecture of

PD4120a, a Breast Cancer Genome

Sequenced to 188-Fold Coverage

(A) Copy number profile of the sample, with the

upper panel showing the logR of intensity and the

middle panel showing the B allele fraction (BAF) of

germline heterozygous SNPs. Genomic segments

of constant logR and BAF value were identified by

the ASCAT algorithm (green lines). These were

interpreted to give estimated overall copy number

(purple lines) and copy number of the minor allele

(blue lines) across the genome (lower panel).

(B) Distribution of 70,690 somatically acquired

base substitutions according to the total number

of reads across that base (x axis) and the fraction

of those reads reporting the variant (y axis). Points

are colored according to the chromosome the

mutation derives from.

(C) Statistical modeling of the distribution of clonal

and subclonal mutations by a Bayesian Dirichlet

process. The empiric histogram of mutations is

shown in pale blue, with the fitted distribution as a

dark green line. Also shown are the 95% posterior

confidence intervals for the fitted distribution (pale

green area). Four separate clusters of mutations,

named A–D, are identified.

(D) Estimated number of mutations found in

clusters A–D, with the error bars representing the

95% posterior confidence intervals.
These data imply that the population of tumor cells within this

breast cancer sample contains several discrete subclones, each

of which represents a certain fraction of tumor cells and contains

a certain number of substitutions (namely the size of the cluster).

To enable formal development of this concept, we explicitly

modeled the observed patterns of clonal and subclonal muta-

tions with a hierarchical Bayesian Dirichlet process (Dunson,

2010). Using this flexible approach, we model the mutations as

deriving from an unknown number of subclones, each of which

is present at an unknown fraction of tumor cells and contributes

an unknown proportion of all somatic mutations, with all the
996 Cell 149, 994–1007, May 25, 2012 ª2012 Elsevier Inc.
unknown parameters to be jointly esti-

mated in the model (Extended Experi-

mental Procedures).

The model performs well on simulated

data sets, recapturing the ‘‘true’’ under-

lying distribution of subclones accurately,

across variable numbers and sizes

of subclonal populations (Figures S2A–

S2C). We therefore applied this model to

mutations found in PD4120a (Figure 1C

and Figure S2D). This clearly shows four

distinct clusters of mutations, one set

found in all tumor cells (which we call

cluster D henceforth) and three clusters

of subclonal mutations, centered on

variant allele fractions of 5% (cluster A),

11% (cluster B), and 19% (cluster C).

From the model, we can generate esti-

mates of the number of mutations found
in each of these clusters together with 95% posterior confidence

intervals for the estimates (Figure 1D).

The model predicts that some 26,762 mutations (95% poste-

rior interval, 22,378–31,160) are found in all tumor cells in

PD4120a. The implication is that during the evolution of this

cancer, there was some ancestral cell that carried this comple-

ment of somatic mutations. Borrowing the term from population

genetics, we term this cell the ‘‘most-recent common ancestor’’

of the tumor, and its emergence demarcates the split between

mutations that are fully clonal and those that are subclonal.

Among the mutations acquired before the emergence of the
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Figure 2. Subclonal Genetic Variation in PD4120a

(A) Battenberg plots of allele fractions for phased parental

haplotypes for four chromosomes. Germline SNPs are

phased by imputation, with observed allele fraction for one

phased chromosomal copy plotted in blue and the other

in red.

(B) Phasing of mutations (stars) with adjacent germline

heterozygous SNPs (vertical lines) allows determination of

whether a mutation is on the retained or subclonally

deleted parental copy of a chromosome.

(C) Distribution of somatically acquired base substitutions

on chromosome 13 according to the total number of reads

across that base (x axis) and the fraction of those reads

reporting the variant (y axis). Points are colored according

to whether the mutation derives from the retained copy of

chromosome 13 (green points), the subclonally deleted

copy of chromosome 13 (brown points) or whether it could

not be phased with a nearby heterozygous SNP (black

points).
most-recent common ancestor are several in cancer genes,

including TP53, PIK3CA, GATA3, MLL3, SMAD4, and NCOR1.

In addition, the trisomy 1q described above had occurred, as

well as an unbalanced t(1;22) translocation and a cluster of

chromothripsis rearrangements involving chromosomes 2, 4,

18, and 21 (Figure S2E).

Subclonal Loss of Multiple Chromosomes in PD4120a
The copy number profile for chromosome 13 in PD4120a reveals

that it is deleted in some, but not all, tumor cells (Figure 1A). The

logR values, whichmeasure total copy number, show decreased

intensity compared to diploid chromosomes but higher than

monosomic chromosomes. The allele fraction plot, which

reports the relative proportions of the two alleles for heterozy-

gous SNPs, shows similarly intermediate levels for chromosome

13. From these variables, we estimate that 68% of tumor cells

have one copy of chromosome 13 deleted (95% confidence

interval, 67%–69%). The same pattern is seen for 22q, indicating
Cell 149,
that the t(1;22) derivative chromosome has been

deleted in a similar fraction of cells.

Allele frequency plots for chromosome 7 also

appear slightly more widely distributed around

0.5 than other diploid chromosomes, associ-

ated with a concomitant small decrease in

logR levels overall for this chromosome (Fig-

ure 1A), suggesting that the chromosome is

lost in a minor fraction of tumor cells. With

data from the 1000 Genomes Project (1000

Genomes Project Consortium, 2010), it is now

possible to impute linkage of many germline

SNPs into parent-specific haplotype blocks.

We hypothesized that analysis of allele ratios

by haplotype rather than individual SNP would

draw out subtle deviations from the expected

fraction of 0.5 with substantially improved

statistical power anddeveloped abioinformatics

method to assess this (the ‘‘Battenberg’’ algo-

rithm; Extended Experimental Procedures).

Applying it to chromosome 3 demonstrates no
evidence for subclonal variation in copy number, as parent-

specific allelic fractions in red and blue are superimposed at

0.5, as expected (Figure 2A). In contrast, for chromosome 7,

red and blue patches marking parent-specific haplotypes show

clear separation, indicative of subclonal deletion of the chromo-

some in a small fraction of tumor cells. Remarkably, when we

apply this analysis genome-wide, we find that 14 chromosomes

overall show statistically significant evidence for subclonal copy

number variation (Figure 2A and Figure S3A). For these other

regions, which include chromosomes 6, 8, 9, 11, 12, 14, and

15, the extent of separation is similar and less than that observed

for chromosome 7.

Chromosome 2 shows an interesting pattern of changes. The

logR values for ‘‘diploid’’ regions of chromosome 2, measuring

overall copy number, are clearly lower than those for chromo-

some 5 (average logR, 0.020 versus 0.161; p < 10�308) but virtu-

ally the same as for chromosome 7 (average logR, 0.020 versus

0.017; Figure S3B), implying that chromosome 2 is subclonally
994–1007, May 25, 2012 ª2012 Elsevier Inc. 997



deleted in a similar proportion of cells to chromosome 7.

However, the haplotype-specific phasing analysis described

above confirms that the allele fraction at ‘‘diploid’’ regions of

the chromosome is exactly balanced at 0.5 (Figures S3A and

S3B). The implication therefore is that chromosome 2 is subclo-

nally deleted in PD4120a, but both parental copies have been

lost in an exactly balanced proportion of cells.

In summary, these analyses indicate subclonal deletion of

chromosome 13 in �68% of tumor cells. There is also evidence

for loss of chromosome 7 in a smaller fraction of cells, and for

losses of other chromosomes, including 6, 8, 9, 11, 12, 14, 15,

18, and 21 in an even smaller proportion. Finally, there is

convincing evidence that both parental copies of chromosome

2 have been lost in exactly equal proportions.

Integrating Subclonal PointMutations andCopyNumber
Changes
As discussed above, there is a cluster of �15,600 subclonal

point mutations found at a variant allele fraction of�19% (cluster

C). Because this variant allele fraction ismore than half that of the

fully clonal mutations, each of thesemutations is present in more

than 50% of tumor cells. Consider any two of these mutations.

By the so-called ‘‘pigeonhole principle,’’ there must be at least

one tumor cell that contains both mutations, because there is

no way to apportion two lots of > 50% to completely separate

subsets. Therefore, the two variants must be collinear on the

phylogenetic tree. If this reasoning applies for any two such

mutations at > 50%, then it applies to all such mutations en

bloc. Furthermore, if one such mutation is found in a strictly

greater fraction of cancer cells than another such mutation,

then it must have occurred earlier than the other. Applying these

deductions to PD4120a, it follows that the mutations found in

cluster C are all on the same branch of the phylogenetic tree,

together with the subclonal deletion of chromosome 13. Further-

more, because the deletion is found in a larger proportion of

cells, it must have occurred earlier during the cancer’s evolution

than cluster C mutations.

We can directly test the veracity of this reasoning. Because we

reason that the deletion of 13 occurred before subclonal muta-

tions in cluster C, we predict that those subclonal mutations

could only involve the retained copy of chromosome 13. Many

somatic mutations will be sufficiently close to heterozygous

germline SNPs that individual sequencing read pairs will span

both, thus allowing the mutation to be ‘‘phased’’ with the SNP

(Figure 2B). Of the 2,171 mutations on chromosome 13, we

were able to phase 756 (35%) with a nearby heterozygous

SNP, thus unambiguously determining whether the mutation

occurred on the parental copy of chromosome 13 that was sub-

clonally deleted or on the retained copy (Figure 2C). We find

a cluster of mutations on the retained copy of chromosome 13

at a variant allele frequency of �48% (green points, Fig-

ure 2C)—this represents fully clonal mutations (cluster D). We

also see a cluster of mutations from the deleted copy of chromo-

some 13 at �15% (brown points), denoting ancestral mutations

subsequently deleted in 68% of tumor cells. A third distinct

cluster of mutations is evident at �25% of reads, the equivalent

of cluster C. All of these, as predicted, are phased with the

retained copy of chromosome 13.
998 Cell 149, 994–1007, May 25, 2012 ª2012 Elsevier Inc.
This approach is also informative for the other subclonally

deleted chromosomes. For mutations on the retained copy of

chromosomes 6, 7, 8, and 11, we find clusters A–D as for non-

subclonal diploid chromosomes (Figure 3A and data not shown).

For mutations on the parental copies of chromosomes 6 and

7 that are subclonally deleted, cluster B is completely lost,

whereas the others remain unchanged. This demonstrates that

virtually all mutations in cluster B are on a separate phylogenetic

branch from mutations in cluster C. Furthermore, the subclonal

deletion of chromosome 6 and 7must be collinear with themuta-

tions in cluster B. The same patterns and reasoning apply to

chromosome 8, 11, 12, 14, 15, 18 and 21. For chromosome 2,

we find that cluster B is abolished on both parental copies of

the chromosome. This confirms the observation from the logR

values that both copies of chromosome 2 are subclonally

deleted (Figure S2B) and moreover places these deletions on

the same branch as the mutations in cluster B.

In summary, these data indicate that the subclonal deletion of

chromosome 13 and the mutations in cluster C are on the same

branch of the phylogenetic tree, with del13 occurring first. On

a separate branch of the tree from this dominant subclone, we

find all the mutations in cluster B, together with subsequent

subclonal deletion of chromosomes 2, 6, 7, 8, 9, 11, 12, 14, 15,

18, and 21.

Phasing Pairs of Subclonal Somatic Mutations
We can also attempt to phase any two somatic mutations that

are sufficiently close together to be spanned by single read pairs.

We recognize two informative scenarios. The two mutations

could arise in completely independent subclones, in which

case reads could report either variant alone but never the two

together (Figure S4A). Alternatively, one mutation could occur

as subclonal evolution in a cell that already contains the other

mutation, in which case we would see reads that report the

earlier variant only as well as reads that report both variants

together (Figure S4B). It is only valid to identifymutually exclusive

mutation pairs in chromosomes that are haploid in the tumor,

and we do indeed find 17 such pairs (Figure 3B and Figure S4C).

Genome-wide, we also identify 76 examples of sub-subclonal

evolution occurring on the same allele as a pre-existent subclo-

nal mutation (Figure 3C, and Figure S4D). Strikingly, there are no

examples of sub-subclonal evolution at 9%–12% variant allele

fraction (cluster B) occurring in conjunction with a mutation

at > 16% allele fraction (cluster C), confirming that mutations in

cluster B fall on a separate phylogenetic branch from those in

cluster C.

These data also indicate that cluster A, the set of mutations at

a variant allele fraction �5%, is likely to contain several discrete

subclones. Some of these variants are clearly subclonal to

cluster C and others subclonal to cluster B, as shown in Fig-

ure 3C. However, most are not derived from cluster B, because

the peak for cluster A is largely unchanged for the parental copy

of chromosome 7 that is subclonally deleted (Figure 3A). Muta-

tions in cluster A frequently fell in mutually exclusive subclones

(Figure 3B) and hence on different branches of the phylogenetic

tree. It is therefore probable that some or evenmost of the cluster

A mutations represent a third branch from the most-recent

common ancestor. In support of this is a pair of cluster A
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Figure 3. Reconstructing the Evolution of PD4120a

(A) Distribution of clonal and subclonal mutations phased onto specific chromosomes. The empiric histogram of mutations is shown in pale blue, with the fitted

distribution and posterior intervals as dark green lines.

(B) Allele fractions for pairs of subclonal mutations that are found on separate branches of the phylogenetic tree, by virtue of no sequencing read evincing both

mutations together. Error bars represent the 95% confidence intervals for the observed fractions.

(C) Allele fractions for pairs of subclonal mutations found in the same subclone, where one occurred temporally later than the other. Error bars represent the

95% confidence intervals for the observed fractions.

(D) Reconstruction of the phylogenetic tree for PD4120a. The thickness of the branches reflects the proportion of tumor cells comprising that lineage. The length

of the branches reflects the number of mutations specific to that lineage.
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mutations, both of which phase with the subclonally deleted

copy of chromosome 13, and hence cannot be placed on the

del13 branch, but are mutually exclusive with one another

(Figure S4E).

A Phylogenetic Tree for PD4120a
With these observations, we can integrate the subclonal chro-

mosome-scale losses with the subclonal point mutations to

reconstruct how the tumor has evolved (Figure 3D). In one

branch of the phylogenetic tree, there has been loss of chromo-

some 13 and subsequent acquisition of cluster C mutations. The

other branch of the phylogenetic tree contains the cluster B

mutations and sub-subclonal losses of multiple chromosomes,

including both parental copies of chromosome 2. Because

homozygous deletion of chromosome 2 in a diploid cell is frankly

implausible, the most likely model is that a sub-subclone of the

cluster B subclone has become tetraploid, presumably through

an endoreduplication event. It has subsequently lost one of the

four copies of chromosomes 6, 8, 9, 11, 12, 14, 15, 18, and 21.

In addition, both copies of the same parental chromosome 7

have been lost, and one of each parental copy of chromosome

2 has been lost. From this model, we estimate that the subclone

with mutations in cluster C represent 65% of tumor cells, cluster

B represents 18% of tumor cells, and the tetraploid subclone

represents 14% of tumor cells. Mutations in cluster A account

for 14% of tumor cells. If many of these do fall on a third branch

of the phylogenetic tree, the three branches would neatly

account for all descendants of the most-recent common

ancestor because the 14% of tumor cells in cluster A, the 68%

with deletion 13, and the 18% of tumor cells in cluster B together

add up to 100%. This phylogenetic tree explains all data

observed for PD4120a.

Timing Chromosomal Evolution in 20 Breast Cancer
Genomes
Chromosomal instability, the gains and losses of whole chromo-

somes or chromosome arms, is a well-recognized feature of

breast cancer cells probably caused by missegregation of chro-

mosomes during cell division (Burrell et al., 2010). As outlined

above, for genomic regions that have increased in copy number,

we can estimate the timing of the duplication event by comparing

the proportion of mutations at ploidy 1 and ploidy 2 (Greenman

et al., 2012). Among the 20 breast genomes sequenced to 30-

to 40-fold depth, 16 had informative genomes for timing chromo-

somal gains (Figure 4). Broadly, the data suggest that the onset

of large-scale chromosomal gains did not begin across these

genomes until after at least 15%–20% of point mutation time

had elapsed but thereafter continued steadily in many tumors.

The implication is that chromosomal instability is not usually

the earliest source of mutation in breast cancer evolution, but

is a common and on-going process in later stages.

A related phenomenon is that of whole-genome duplication,

caused by a single event of cytokinesis failure, endoreduplica-

tion, or fusion of two diploid cells. Ten of the tumors studied

here show evidence for such an event, inferred from the homo-

geneity of the distribution of early and late mutations across

the genome (Figure 4 and Figure S5A). In general, such endore-

duplication was a late event in this series, occurring after more
1000 Cell 149, 994–1007, May 25, 2012 ª2012 Elsevier Inc.
than 50% of point mutation time had elapsed and often following

many preceding single chromosome losses and gains.

Five informative tumors had genomic amplifications of known

cancer genes, three involving ERBB2 and one each involving

MYC and CCND1. In four of the five cases, no mutations were

present on all copies of the amplified segment, even allowing

for the one patient where both parental copies of the locus

contributed to the amplification (Figures S5B and S5C). There-

fore, the first rearrangement driving the genomic amplification

presumably occurred early in the evolution of these cancers.

Interestingly, however, all amplifications showed multiple muta-

tions at several discrete stages of ploidy intermediate between

all copies and only one copy of the amplified region (Figures

S5B and S5C). These mutations must have accumulated after

the amplification had begun, because they do not involve all

copies, but before the amplification was complete, because their

ploidy is more than 1. Coupled with the fact that such mutations

were observed at several discrete levels of ploidy, these data

suggest that the genomic rearrangements driving the amplifica-

tions in these patients were acquired over a relatively protracted

period of molecular time. This pattern is different to mechanisms

of genomic amplification such as breakage-fusion-bridge or

double minute chromosomes, where amplification can occur

rapidly and even exponentially over a few cell cycles (Bignell

et al., 2007; Campbell et al., 2010; Stephens et al., 2011).

Changing Spectrum of Mutations over Time
In addition to timing when chromosomal gains occur, we can

compare the spectrum of point mutations acquired early, before

the copy number gain (ploidy 2), and late, after the gain (ploidy 1)

(Pleasance et al., 2010a). Fourteen of the genomes had sufficient

numbers of early and late mutations to enable statistical com-

parison of the mutation spectrum over time (Figure 5A). Of these,

11 had statistically significant differences in spectrum between

mutations acquired early and late, with many patients showing

a strikingly different profile.

The most consistent pattern is that C>T transitions constitute

a higher proportion of early mutations than of latemutations, with

10/14 genomes showing a statistically significant decrease

in C>T ratios after chromosome gains. C>T transitions are

frequently caused by spontaneous deamination of methylated

cytosine to thymine. However, we find that, in general, the

decreased proportion of C>T mutations over time applies

equally to other contexts as to those at CpG dinucleotides

(Figure S6).

In the companion paper to this one (Nik-Zainal et al., 2012), we

show that many breast cancer genomes have distinctive muta-

tion processes, from which a nonnegative matrix factorization

algorithm identified five separate signatures. By classifying

whether mutations were early clonal (ploidy > 1), late clonal

(ploidy = 1) or subclonal (ploidy < 1) in regions of copy number

gains, we could assess the relative contributions of these five

processes at different times during a cancer’s evolution. In

8 patients, sufficient numbers of mutations were present in

such regions to generate a stable solution (Figure 5B). This

confirms that C>T mutations at CpG dinucleotides, termed

‘‘signature A,’’ contributes a large proportion of the early muta-

tions in these cancers, and relatively few late in the evolution of
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Figure 4. Timing of Copy Number Gains in 16 Informative Breast Cancer Genomes from the Ploidy of Mutations

The point estimates of timing for specific copy number gains are shown as arrows colored by the type of chromosomal aberration, with 95% confidence intervals

generated by bootstrapping shown as horizontal lines. Molecular time is shown as an arrow, with the timing estimated as a fraction of point mutation time.
the tumors. In contrast, ‘‘signature E,’’ denoting C>G mutations

at TpCpA, TpCpC and TpCpT trinucleotides, is a late onset

mutational signature, contributing a large fraction of subclonal
mutations in many patients. A similar pattern is seen for ‘‘signa-

ture B’’ comprising C>G or C>T mutations in a TpC context.

Although not shown in these figures, dinucleotide substitutions
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Figure 5. Comparison of Early and Late Point Mutation Signatures in 14 Informative Breast Cancer Genomes

(A) Stacked bar charts showing the fraction of early mutations (ploidy > 1) and latemutations (ploidy = 1) accounted for by eachmutation type. The p values refer to

the overall difference in distribution between early and late mutations (chi-square test). The numbers above each bar refer to the number of mutations in the early

or late fraction.

(B) Stacked bar charts showing comparison of mutational processes identified by nonnegative matrix factorization. The comparison is across early clonal

mutations (ploidy > 1), late fully clonalmutations (ploidy = 1) and subclonalmutations (ploidy < 1) for eight samples. SignatureAdescribesC>Tmutations at XpCpG

trinucleotides. SignatureBwascomposedpredominantly ofC>T,C>Gmutations, andC>Amutations in aTpCcontext. SignatureCandSignatureDwere relatively

uniform processes across all 96 possible mutated trinucleotides. Signature E specifically identifies C>Gmutations at TpCpA, TpCpC, and TpCpT trinucleotides.

(C) Timing of kataegis mutation clusters in PD4103a for the amplicon involving chromosome 12 (left) and a TP53 deletion (right). The top panel shows the copy

number profiles with genomic rearrangements. The lower panel shows the point mutations as filled black circles for C>* mutations in a TpC context (as for

kataegis) and open circles for other types of mutation. The y axis denotes the variant allele fraction, divided by the colored bars into the proportions of reads

derived from contaminating normal cells (gray bars) and the fraction coming from each copy of that segment in the tumor cells (multiple colored bars).
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were also significantly over-represented among late mutations

than early events (odds ratio, 1.9; p < 0.0001).

Taken together, these data indicate that the mutational forces

fashioning the breast cancer genome vary over time. C>T transi-

tions, both at CpG dinucleotides and in other sequence

contexts, play a significant role in the early acquisition of

mutations, accounting for up to 40% of mutations acquired

before chromosomal gains. To some extent, the profile of base

changes seen among many of the early breast cancer variants

is a default mutation spectrum, closely mirroring that seen in

tumor types such as blood, pancreatic, and brain cancers

(Greenman et al., 2007; Jones et al., 2008; Papaemmanuil

et al., 2011; Puente et al., 2011) and indeed in germline nucleo-

tide substitutions (Hwang and Green, 2004). The lower propor-

tional contribution of C>T transitions among late mutations is

most likely caused by an increase in the rate of other mutation

types because tumor-specific signatures account for much of

the variation between early and late mutations. Intriguingly, we

find that there are several mutation signatures at play in many

of these patients, contributing varying proportions of mutations

and with onset at different times during cancer evolution. The

implication therefore is that in most breast cancers, the mutation

rate increases in more advanced stages of tumor development,

driven by distinctive, cancer-specific mutational processes.

These processes continue past the emergence of the most-

recent common ancestor, driving subclonal diversification within

the tumor.

Timing Kataegis, Localized Clusters of Mutations
In the companion paper to this one (Nik-Zainal et al., 2012), we

describe localized clusters of C>T and C>Gmutations occurring

in a TpC context closely associated with genomic rearrange-

ments, which we termed kataegis. The presumption here is

that an individual cluster of mutations occurs in a single event

because of the close association with rearrangements and the

fact that there is a strong strand bias within a cluster. Although

the mutations within each cluster might occur simultaneously,

however, the relative timing of different clusters of kataegis is

not clear.

In PD4103a, there are many clusters of kataegis mutations

genome-wide. Interestingly, within the amplicon involving

regions of chromosomes 10, 11, and 12, we find that these clus-

ters occur at several different levels of ploidy (Figure 5C). For

example, on chromosome 12, there are several such events

found at variant allele fraction of 0.8 or higher in association

with rearrangements that demarcate large copy number

changes. These must have occurred early in the genesis of the

amplicon and then themselves been amplified by subsequent re-

arrangements. Interestingly, there is also a cluster at an allele

fraction of 0.4 and several at allele fractions < 0.1. These must

have occurred later in the genesis of the amplicon. In addition,

rearrangements in PD4103a outside this amplicon are also

associated with kataegis, such as a deletion of TP53 (Figure 5C).

The implication is that these clusters of mutations have not all

occurred in a single event.

The other patient with particularly high numbers of these clus-

ters, PD4107a, shows a somewhat different pattern. Here, the

kataegis mutations are found specifically in association with
a chromothripsis event on chromosome 6 and are all at the

same level of ploidy. Thus, it seems very likely that both the

chromothripsis and kataegis mutations did occur in the same

catastrophic event. Nonetheless, elsewhere in this patient, there

are other rearrangements with adjacent kataegis clusters, again

arguing that this process can occur recurrently during the evolu-

tion of a breast cancer.

Dominant Subclones Are Always Present in Breast
Cancers
In PD4120a, the high sequencing depth enables us to infer the

existence of several subclonal expansions. For the 20 genomes

sequenced at 30- to 40-fold coverage, there is a measurable

probability that a sufficient number of reads will report a subclo-

nal variant to allow our algorithm to call the mutation. We esti-

mated this probability by using a statistical resampling method

known as bootstrapping (Extended Experimental Procedures).

On average for the 20 genomes, we have an approximately

90% chance of detecting a fully clonal mutation, a 60% chance

of detecting a mutation found in 50% of tumor cells, and a 5%

chance of detecting a mutation in 25% of tumor cells (Fig-

ure S7A). For 19 of the genomes reported here, 150–300

somatic substitutions were independently verified by PCR and

deep pyrosequencing on the 454 platform, giving accurate esti-

mates of the variant allele fraction for these mutations. For four

samples in which exome pull-down and sequencing was also

performed, the empiric distributions of subclonal mutations

called in the original genome and subsequently validated by

deep pyrosequencing or exome pull-down are very similar

(Figure S7B).

We therefore applied the Bayesian Dirichlet process described

earlier to the deep sequencing data, adding correction for the

sample-specific sensitivity for detecting mutations at different

levels of subclonality (Figures 6A and 6B and Figure S7C). We

find subclonal point mutations in all samples studied and indeed

the estimated number of these genome-wide is, for most

samples studied, more than the number of fully clonal mutations

(Figure 6A). As for PD4120a, we always find evidence for a domi-

nant subclonal lineage, comprising mutations found in 50%–

95% of tumor cells, which the pigeonhole principle dictates

must all be on the same branch of the phylogenetic tree. The

patterns and distribution of this subclonal variation show diver-

sity across the genomes, with some samples composed of

a broad range of subclones at differing fractions of tumor cells

(PD4088a, PD3905a, and PD4199a) and others showing fewer,

more distinct subclonal expansions (PD4116a, PD4005a, and

PD4085a). Overall, however, by the arguments above, all show

a single dominant lineage of subclonal and sub-subclonal

expansions within the population of cancer cells.

We can also apply the ‘‘Battenberg’’ analysis used for

PD4120a, in which we phase haplotypes of germline heterozy-

gous SNPs, to investigate subclonal copy number gains and

losses in the other 20 genomes (Figure 6C). Again, we find

considerable diversity in the frequency and patterns of subclonal

regional variation. Some samples, such as PD4088a and

PD4248a, showed very little subclonal copy number varia-

tion, but in other genomes, such as PD3851a, PD4085a, and

PD4116a, the vast majority of the genome varies in copy number
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ages of cells, which passively accumulate manymutations

without expansion.
among different subclones within the cancer. Among these

genomes, there is also diversity in the number of distinct sub-

clones evident by this analysis. For example, PD4192a shows

strong evidence on the Battenberg analysis for a subclone of

40%–50% of tumor cells with regional differences in copy

number from other subclones across 10–12 chromosomes.

Interestingly, this is matched by a discrete peak of point muta-

tions in 40%–50% of tumor cells (Figure S7C). In contrast,

many other genomes, such as PD4086a and PD3890a, show

evidence for several distinct levels of subclonality across the

genome. For three of these samples, we can apply similar
(B) Distribution of clonal and subclonal mutations for three representative cancers. The empiric his

distribution and 95% posterior intervals as dark green lines.

(C) Subclonal copy number variation for the 20 breast cancer genomes, estimated by using the Batt

mated copy number, and segments are colored by whether they show no subclonal variation (gray) or

region (green to yellow to brown).
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reasoning as used for PD4120a to reconstruct

the phylogenetic tree of the cancer (Figure S8).

In summary, these data indicate that a con-

siderable proportion of somatic genetic varia-

tion in these 20 genomes is found in only

a fraction of tumor cells. There is heterogeneity

among different cases, but as a general rule,

there is always a dominant subclonal lineage

separated from the most-recent common

ancestor by several hundreds to thousands of

mutations.

DISCUSSION

A Model of Breast Cancer Development
From the analyses described here, we can begin

to understand the dynamics of breast cancer

development (Figure 7). A key landmark in this

evolution is the appearance of the most-recent

common ancestor—the cell that has the full

complement of somatic mutations found in all

tumor cells. All extant cancer cells in the sample

analyzed can trace a genealogy back to the

fertilized egg through this common ancestor,

and its emergence demarcates the split in the

phylogenetic tree from the shared trunk to the

branches of divergent subclones. Our data

consistently indicate that the most-recent

common ancestor appeared surprisingly early

in molecular time, or, expressed another way,

much of molecular time is spent driving subclo-

nal diversification and evolution among the
nascent cancer cells. This is different to what is observed for

acute myeloid leukemia, where the proportion of mutations

that are subclonal is relatively small (Ding et al., 2012).

Before the appearance of the most-recent common ancestor,

much oncogenic genetic change has accumulated in the lineage.

Many of the tumors studied here have several driver mutations

that are found in all tumor cells—all PIK3CA and TP53mutations,

all ERBB2, MYC, and CCND1 amplifications, all somatic loss

of the wild-type BRCA1 and BRCA2 alleles among these 21

cancers can be placed unequivocally on the shared trunk of

the phylogenetic tree. Chromosomal instability appears in
togram of mutations is shown in pale blue, with the fitted

enberg algorithm. The height of each bar reflects the esti-

the estimated frequency of the minor subclone at the given
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many of the tumors from about 15%–20% of the way through

molecular time and has an on-going impact thereafter, even

beyond the appearance of the most-recent common ancestor.

This results in the clonal acquisition of many recurrent abnor-

malities, such as gains of 1q and 8q and losses of 17p, and

considerable divergence among subclones of the cancer in their

large-scale chromosomal composition. Like chromosomal insta-

bility, other cancer-specific point mutational processes materi-

alize during the tumor’s development, having considerable

impact on the number and patterns of late mutations.

Several profound insights into the patterns and dynamics

of subclonal evolution, occurring after the appearance of the

most-recent common ancestor, can be drawn from these 21

breast cancers. All of the tumors contained a dominant subclonal

lineage, accounting for more than 50% of cancer cells in the

sample and carryingmany hundreds or thousands of point muta-

tions. There is no a priori reason why a cancer should have such

a dominant subclone, nor why the phylogenetic branch should

carry so many mutations. The one unifying factor for all these

tumors is, rather obviously, that they have been diagnosed: in

other words, they are sufficiently large to be palpable or seen

on amammogram. In a breast cancer of typical size, 10 cm3 say,

the expansion of a subclone that ultimately constitutes 60% of

tumor cells will contribute 6 cm3 to the tumor bulk, assuming

stromal contamination and cell size are proportionate. Such

a significant fraction of a tumor’smass is likely to have a substan-

tial impact on whether a lesion is clinically detectable or not.

The implication, therefore, is that expansion of a dominant

subclonal lineage is the final rate-limiting step in the develop-

ment of breast cancer, triggering diagnosis. Two important

observations underpin this logic. First, the dominant subclone

is separated from the most-recent common ancestor by many

hundreds to thousands of point mutations, often more than the

set of mutations shared by all cancer cells. Second, there is

minimal evidence of significant clonal expansion before the

accumulation of all mutations in the dominant subclone. This

is particularly clearly demonstrated with the high sequence

coverage for PD4120a. The dominant subclone here has some

�15,600 mutations found in 65% of tumor cells, with very few

subclonal mutations found in more than 65% of cells. The event

triggering the expansion of this subclone, presumably a somatic

mutation, must therefore be rate limiting in the sense that Armit-

age and Doll (1954) use, because so many mutations stack up

before the subclone begins proliferation.

Thus we glimpse amodel of long-lived, but sparse, lineages of

cells passively accumulating mutations until provoked into

a major quest for tumor dominance. It is only when this subclone

has grown sufficiently populous that the tumor mass becomes

clinically detectable. For the tumors studied here, the number

of mutations acquired after the split from the most-recent

common ancestor in the lineage that becomes the dominant

subclone is often similar to or more than the number acquired

before the split, a striking finding given that several driver muta-

tions are already present in the common ancestor. Our model

has an obvious similitude with the concept of cancer stem

cells—infrequent, self-renewing, metabolically quiescent cells

capable of reconstituting a tumor (Anderson et al., 2011; Notta

et al., 2011; Visvader and Lindeman, 2008).
1006 Cell 149, 994–1007, May 25, 2012 ª2012 Elsevier Inc.
The cancer genome is like a palimpsest, an ancient parchment

that was frequently reused, each time retaining traces of what

had previously been written. The interplay of point mutations,

chromosomal gains and losses, and clonal expansions, acquired

in a given temporal sequence, leave an analogous record of the

life history of a cancer inscribed in its genome.

EXPERIMENTAL PROCEDURES

The protocols for sequencing and bioinformatics analysis for identification of

somatic substitutions, indels, copy number changes and genomic rearrange-

ments are all described in the companion paper to this one (Nik-Zainal et al.,

2012). Estimates of normal cell contamination were derived by using the

ASCAT algorithm, based on analysis of the B allele fraction for heterozygous

germline SNPs for regions departing from diploidy in the tumor genome (Van

Loo et al., 2010). For PD4120a, this estimate includes a correction for the

fact that there is a tetraploid subclone.

For analyzing the subclonal structure of PD4120a and the other breast

cancer genomes, we developed several new bioinformatics algorithms. These

include methods for (1) phasing mutations with nearby heterozygous germline

SNPs; (2) phasing pairs of subclonal mutations in close proximity; (3) identi-

fying large-scale subclonal copy number variation (the Battenberg algorithm);

and (4) modeling the clusters of subclonal base substitutions from deep

coverage data by using Bayesian Dirichlet processes. These algorithms are

described in step-by-step detail in Extended Experimental Procedures.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Reconstructing the Evolution of Tumors
To reconstruct the genomic evolution of the 21 breast cancer genomes, we followed the approach we have described previously

(Greenman et al., 2012). In particular, timing the onset of chromosomal gains from the proportions of mutations at ploidy 1 versus

ploidy 2 followed the process outlined there. To estimate the 95%confidence intervals around the point estimates of timing, we boot-

strapped the mutations identified in the relevant chromosomal region. For example, suppose there were 100 mutations at ploidy 1

and 20mutations at ploidy 2 on a chromosome that is triploid with two copies of one parental chromosome and one copy of the other.

Then the point estimate of when the extra copy of the chromosomewas gained is 43%ofmolecular time (= 20/(20 + (100� 20)/3)).We

generate 10,000 bootstrap samples by resampling 120 mutations with replacement from the original 120. From the recalculated

timing for each bootstrap sample, we can estimate the 95% confidence interval for the original point estimate.

To compare the distribution of mutation signatures between early and late mutations, we only use genomic regions of uniparental

disomy, triploidy, and tetraploidy. Then, across such regions of the genome, all mutations at ploidy > 1 are aggregated as ‘‘early,’’ and

all ploidy 1mutations are aggregated as ‘‘late.’’ We compare the proportions of each by using standard chi-square tests for indepen-

dence. Note that this introduces two simplifications. First, not all chromosomal gains occurred at the same time in these tumors,

meaning that aggregation across different regions somewhat dilutes the differences observed. Second, in regions of triploidy as

2+1 parental copies, early mutations on the nonamplified parental copy will remain at ploidy 1 and thus be classified as ‘‘late.’’

However, the effects of both of these simplifications would be to obscure any true differences between early and late mutation signa-

tures, rather than make any artifactually appear. In practice, the effects of the simplifications are rather small, and outweighed by the

improvements gained in ease of interpretation. We also applied the nonnegative matrix factorization, as described in the companion

paper, to these timed mutations, including a category for subclonal mutations, where the variant allele fraction was < 75% of that

expected for a fully clonal mutation at ploidy 1.

Mutation Analysis in PD4120a
To facilitate the identification of subclonal mutations in PD4120a, for which the genome was sequenced to an average 188-fold

depth, we ran our substitution-calling algorithm by using a copy number of 10 throughout the tumor genome. Because the cancer

genome in this sample is actually hypodiploid, this effectively allows the identification of mutations found in only a fraction of the

tumor cells. The same post-processing filters as applied to cancer genomes sequenced with 30-fold coverage were applied to

the calls made. The high fidelity of the mutations identified by using this approach is confirmed by the high proportion of calls

with the C>* signature in a TpC context at all levels of allele fraction (Figure S1A).

Phasing Somatic Mutations with Heterozygous Germline SNPs
To determine the fraction of tumor cells carrying a given mutation, we use the following formula:

f =min

�
1;

r

R

rhT + ð1� rÞhN

r

�
;

where r is the fraction of cells in the sample that are tumor cells (derived here from the ASCAT package [Van Loo et al., 2010]); r is the

number of reads reporting the variant allele out ofR total reads across the base in question; and hT and hN are the copy number of the

genome at that base in the tumor and normal genomes respectively.

For chromosomes showing subclonal copy number variation, we identified and phased mutations linked to nearby heterozygous

germline SNPs. First, we identified heterozygous germline SNPs that were less than themaximum insert size away from a givenmuta-

tion on the relevant chromosome (700bp in this sample). We then screened the sequencing file for read pairs where sequence

covered both the SNP and the mutation, allowing us to determine which of the heterozygous SNP alleles was linked to the mutation.

We determined whether that particular allele was on the deleted or retained copy of the chromosome by evaluating the number of

reads from the tumor sample reporting either allele of the heterozygous SNP. If the observed fraction of reads reporting the germline

allele linked to the mutation was significantly less than the expected ratio for the baseline state (ie 0.5 in a near-diploid chromosome)

by a binomial test, we classified the mutation as being on the subclonally deleted chromosome. Where significantly greater than the

expected ratio, we classified it as being on the retained copy. Where the observed fraction was not significantly different from

the expected ratio, we identified the allele as part of the wider imputed haplotype (as discussed below) and determined whether

the mutation was on the subclonally deleted or retained parental copy accordingly.

Phasing Two Nearby Subclonal Somatic Mutations
To identify pairs of subclonal mutations that were either mutually exclusive or showed subclonal evolution, we compiled a list of

mutations present in < 100% of tumor cells and identified pairs of such mutations within an insert size of one another. In order

to characterize a pair of subclonal mutations as showing subclonal evolution, we needed to find at least one example of a read

pair reporting both variant alleles simultaneously AND one read pair reporting one variant allele but the wild-type allele for the other
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locus. In addition, we required that no reads were seen reporting the reverse situation (wild-type for the former locus and variant for

the latter locus).

To classify a mutation as ‘‘mutually exclusive,’’ we could only examine regions for which the copy number in the tumor is 1. This is

because for regions of higher copy number, mutations could be in the same subclone but on different parental copies of the chro-

mosome. Within a region of copy number 1, the requirement for a mutually exclusive pair of mutations was that at least one read pair

reported the variant allele at the 50 locus and the wild-type allele at the 30 locus AND one read pair reporting the wild-type allele at the

50 locus and the variant allele at the 30 locus. In addition, we required that no read pairs reported both variant alleles simultaneously.

Modeling Subclonal Structure Using Bayesian Dirichlet Processes
We model somatic mutations within the tumor as deriving from an unknown number of subclones, each of which is present at an

unknown fraction of tumor cells and contributes an unknown proportion of all somatic mutations, with all the unknown parameters

to be jointly estimated. We initially considered conventional mixture models, but found the requirement to specify the number of clus-

ters too restrictive. For this reason, we used a Bayesian Dirichlet process (Dunson, 2010) to model the data.

Essentially, for a set of observed somatic mutations, we know the total read-depth across the base and the number of those reads

reporting the variant allele for each mutation. We also know the expected fraction of reads that would report a mutation if present at

one copy in 100% of tumor cells given the copy number at that locus and the normal cell contamination (through the equation shown

above). Then,

yi � BinðNi; zipiÞ; with pi � DPðaP0Þ;

where yi is the number of reads reporting the ith mutation from Ni reads and zi is the expected fraction of reads that would report

amutation present in 100%of tumor cells at that locus. Here, pi˛(0, 1), the fraction of tumor cells carrying the ithmutation, ismodeled

as coming from a Dirichlet process.

We use the stick-breaking representation of the Dirichlet process:

P=
XN
h=1

uhdph
; with ph � P0;

where uh is the weight of the hth mutation cluster (that is, effectively the proportion of all somatic mutations specific to that cluster)

and dp is a point mass at p. To capture the stick-breaking formulation, we let

kh =Vh

Y
l<h

ð1� VlÞ; with Vh � Betað1; aÞ:

The complicating factor here is that for subclones representing a lower fraction of tumor cells (lower values of ph), we have a lower

sensitivity for identifying mutations in the original genome sequencing. We therefore correct the kh for the sensitivity Sp (probability of

calling a mutation found in a fraction, q, of tumor cells):

uh =
khSphP
i

kiSpi

:

We assume Sp is known and calculable for all values of p˛ (0, 1). For the genomes described here, we use a three-parameter

logistic curve where parameters are estimated from bootstrapped resamples by nonlinear least-squares (see below).

For the prior distributions, we let P0�U(0, 1) and a�G(0.01,0.01). We set a practical upper limit on h of 30.We find little difference in

the model output if we vary these priors, and in particular that on a, even to the extent of fixing it at 1 (data not shown).

We use Gibbs sampling to estimate the posterior distribution of the parameters of interest, implemented in OpenBUGS v3.2.1. The

code for this implementation is available with this paper (Supplemental Data). The Markov chain was run for 20,000 iterations, of

which the first 13,000 were discarded. The chains converged rapidly to a stable limiting distribution, as assessed by using standard

procedures. To generate the marginal distribution of subclonal mutations (such as those in Figure 1C and Figure 6B), both kh and ph

were monitored. The median and 95% posterior intervals of the density were estimated from ph, each weighted by the associated

value of kh, by using a Gaussian kernel (in R v2.13).

We first tested the Bayesian Dirichlet model on simulated data. To ensure the simulations replicated real data, the simulations used

parameter estimates and sequence coverage matched to the values generated for PD4109a. The sensitivity for detecting mutations

at different levels of subclonality in this sample is shown in Figure S6A—the parameter estimates for the logistic curve were then used

to generate the ‘‘observed’’ mutations in the simulation. For each mutation, the read depth used for simulating the 232 mutations for

the Dirichlet process was then based on the same read depth as for the 232 mutations confirmed by 454 sequencing in PD4109a. In

the first simulation (Figures S1D and S1E), we set the ‘‘true’’ underlying make-up of the cancer to have 20% of the somatic mutations

in all tumor cells and 80%mutations derived from three subclones (at 20%, 30%, and 60%of tumor cells; brown bars). Then, allowing

S2 Cell 149, 994–1007, May 25, 2012 ª2012 Elsevier Inc.



for variable sensitivity for detecting mutations at different fractions of tumor cells, we simulated a set of ‘‘observed’’ mutations from

the cancer (blue bars). From the simulated set of observedmutations, we run the Dirichlet processmodel, which returns a distribution

(green curves) very close to the ‘‘true’’ underlying distribution. In a second simulation, we assumed a completely different true under-

lying distribution: 40 subclones, each representing 2.5% of mutations and evenly spread through (0,1). Again, the Dirichlet process

accurately modeled the ‘‘true’’ distribution (Figure S1D).

Estimating Sensitivity of Sequencing for Finding Subclonal Mutations
Tomodel the sensitivity of the original genome sequencing for detecting mutations at different fractions of tumor cells, we undertook

bootstrapping. We sampled 10,000 random wild-type positions in the genome for each level of subclonality, qh. At each of these

random positions, we introduced a ‘‘subclonal mutation’’ in the following way. First, from the copy number of the locus, the normal

cell contamination and the current level of subclonality qh, we calculated ziqh, the fraction of reads expected to report the variant allele

(by using the first formula in Extended Experimental Procedures). We choose the variant allele from (A, C, G, T) \ (Reference allele).

Then, for each of the reads from the tumor genome across this base, we draw from the U(0,1) distribution. If the draw is greater than

ziqh, we leave the base call unchanged. If the draw is less than ziqh, and the base call = Reference allele, we change the base call to the

variant allele. If the draw is less than ziqh and the base call is not the reference allele or the variant allele (i.e., there was a sequencing

error), we leave it unchanged. If the draw is less than ziqh and the base call was the variant allele, we change it to one of the other three

(nonvariant allele) bases. The reads from the normal genome we leave unchanged.

Thus, we generate a set of simulated mutations at each level of subclonality that exactly match the sequence coverage,

sequencing error profiles, normal cell contamination and ploidy variation across the genome as seen in the original sequencing

data. On the simulated sets of mutations, we run our substitution caller, Caveman, and count the number of mutations called at

each level of subclonality.

From these bootstrapping estimates of sensitivity, we fit a three parameter logistic curve by using nonlinear least-squares

estimation:

Sq =
A

1+ expððc� log qÞ=sÞ:

Identifying Regions of Subclonal Copy Number Variation
Major andminor allele frequencies are estimated as the proportion of reads corresponding to each allele and therefore have binomial

distributions. The observed distributions of the minor and major allele frequencies are distinct when the underlying allele frequencies

are very different and when the read depth is high. In such regions, accurate estimates of the B-Allele Frequency (BAF) may be

obtained by assuming that the allele frequencies above and below 0.5 arise from the two different haplotypes. However, as the

BAF approaches 0.5 (as occurs in the case of subclonal aberrations) the two distributions increasingly overlap, resulting in wider

confidence intervals in the estimated BAF. In order to separate the two distributions, we phased the observed genotypes by using

Impute2 (Howie et al., 2009). Impute2 uses a set of polymorphic sites for which a reference panel of known genotypes is available. In

this work we used the interim release from phase 1 of the 1000 Genomes Project, released in June 2011, as a reference panel (1000

Genomes Project Consortium, 2010). In the first step, the observed genotype of the matched normal samples at each of the

polymorphic sites was identified. Impute2 was then run across these genotypes for the whole genome, in 5Mb segments, yielding

phased haplotypes. Using the phased haplotypes, minor andmajor allele frequencies may be assigned to the two haplotypes. Within

haplotype blocks of length �300 kb the resulting haplotype frequencies lie in two separate bands for regions with subclonal or fully

clonal copy number aberrations (CNAs). However, these blocks are separated by recombination hotspots which lead to ‘‘switching’’

of the blocks and hence the Battenberg pattern illustrated in Figure 2A (chromosome 7). For chromosomes or regions containing no

CNA, the two distributions lie on top of each other, as illustrated in Figure 2A (chromosome 3).

In regions with a separation of haplotype frequency bands, the ‘‘switch-points’’ between consecutive haplotype blocks are clearly

visible and can be straightforwardly detected by segmentation methods. We use segmentation by the Piecewise Constant Fitting

(PCF) algorithm (with a breakpoint penalty parameter of 3) (Baumbusch et al., 2008) to determine ‘‘switch-points’’ of haplotype

blocks. This approach allows haplotype phasing across large chromosomal distances (up to whole chromosomes, see Figure 2A)

in regions of copy number imbalance.

Building on these long-range phased haplotype frequencies, we can discern both clonal and subclonal copy-number imbalances.

The haplotype frequencies of clonal copy number changes must obey:

hf =
1� r+ rnB

2ð1� rÞ+ rðnA + nBÞ

where r is the fraction of tumor cells within the samples, and nA and nB are the (integer) allele-specific copy numbers of that locus.We

obtain initial estimates of r (and the tumor ploidyc) from the ASCAT package (Van Loo et al., 2010) applied to Affymetrix SNP 6.0 array

data, and further fine-tune these two-digit estimates to three-four digit estimates by applying the above equation to a large clonal
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reference region with constant allele-specific copy number. To obtain allele-specific copy number estimates, we combine LogR data

lR (derived from local NGS read depth) with the haplotype frequency equation above, and build upon the model for allele-specific

copy number derivation described previously (Van Loo et al., 2010):

nA =
r� 1+ ð1� hf Þj2lR

r

nB =
r� 1+ hfj2

lR

r
:

As our haplotype frequency data show very little systematic bias (Figure 2A), and a significant part of LogR data bias is removed by

GCwave correction, it is reasonable to assume that the error margin on these copy number estimates is significantly less than ± 1 for

most genomic segments (with perhaps the exception of some highly amplified regions). Hence, under a model of clonality of

a genomic segment under study, the haplotype frequencies of the germline heterozygous SNPs within that segment should be

distributed around one of the four following values: ð1� r+ rPnBRÞ=ð2ð1� rÞ+ rðPnAR+ PnBRÞÞ, ð1� r+ rPnBRÞ=ð2ð1� rÞ+
rðPnAR+ PnBRÞÞ, ð1� r+ rQnBSÞ=ð2ð1� rÞ+ rðPnAR+ QnBSÞÞ or ð1� r+ rQnBSÞ=ð2ð1� rÞ+ rðQnAS+ QnBSÞÞ. This framework provides the

means to determine statistically if a copy number aberration is clonal or subclonal by a simple t test. We employ a two-sided

t test with a = 0.05 and require a minimum deviation of 0.01 of segmented haplotype frequencies from their theoretical clonal states

to call a segment subclonal.

For subclonal copy number changes, we aim to call copy number states in each of the subclones, and to quantify the cell percent-

ages of each of these subclones. We base our approach on the assumption that any genomic aberration occurred only once during

tumor evolution. Under this assumption, the haplotype frequency and coverage depth/LogR data of this genomic segment are

shaped by three populations of cells: a fraction 1-r of admixed normal cells, a fraction rt of tumor cells with the subclonal aberration

and a fraction r(1-t) of tumor cells without the subclonal aberration (with t˛ [0,1]). Note that these populations of tumor cellsmay each

consist of one or multiple subclones.

To estimate t, the fraction of tumor cells with the specific subclonal copy number change, we further assume that the subclonal

copy number change resulted in a gain or a loss of exactly one copy of one allele. Given an error margin smaller than ± 1 on the allele-

specific copy number estimates nA and nB, this assumption restrains the allele-specific copy number states in both subclones to one

of four combinations: (i) PnAR + PnBR in one subclonal cell population and QnAS + PnBR in the other subclonal cell population, (ii) PnAR + PnBR
and PnAR + QnBS, (iii) QnAS + PnBR and QnAS + QnBS or (iv) PnAR + QnBS and QnAS + QnBS. For any specific haplotype frequency hf of a genomic

segment (that as detailed above shows very little bias), only two of these combinations are possible (i.e., a line with constant hf drawn

in allele-specific copy number space will intersect the square defined by vertices ðPnAR; PnBRÞ, ðQnAS; PnBRÞ, ðPnAR; QnBSÞ and ðQnAS; QnBSÞ
exactly twice in the case of a subclonal aberration). It can be shown that one of these combinations is always amix of states with total

copy number PnAR+ PnBR and PnAR+ PnBR+ 1, whereas the other is always amix of stateswith total copy number PnAR+ PnBR+ 1 and PnAR+
PnBR + 2 (i.e., the line with constant hf in allele-specific copy number space has a positive slope). Therefore, the total copy number nA +

nB, or the value of lR (as nA + nB = ð2r� 2+j2lR Þ=r) can be used to select the final combination of states. Given that combination of

allele-specific copy number states (nA,1, nB,1) in a fraction of tumor cells t and (nA,2, nB,2) in a fraction of tumor cells 1-t, the haplotype

fraction hf of the segment is given by:

hf =
1� r+ rtnB;1 + rð1� tÞnB;2

2� 2r+ rtðnA;1 + nB;1Þ+ rð1� tÞðnA;2 + nB;2Þ
Hence, t can be calculated as:

t =
1� r+ rnB;2 � 2hfð1� rÞ � hfrðnA;2 + nB;2Þ

hfrðnA;1 + nB;1Þ � hfrðnA;2 + nB;2Þ � rnB;1 + rnB;2

Finally, standard deviations and 95% confidence intervals can be calculated for this value by using a bootstrapping approach (for

each segment, allele frequencies are resampled 1,000 times, with replacement).
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Figure S1. Subclonal Mutations in PD4120a, Related to Figure 1

(A) Observed distribution of mutation signatures for different values of the variant allele fraction, showing that even with rare mutations, the C>* signature in a TpC

context is preserved.

(B) Observed fraction of mutation signatures for different values of the variant allele fraction. Those levels of variant allele fraction that show a significantly different

distribution from the distribution of fully clonal mutations are marked with an asterisk (*).

(C) Lattice plot showing the distribution of mutations separately for each copy number segment in the PD4120a genome. The x axis denotes the total number of

reads covering themutations and the y axis the variant allele fraction. Thepoints are colored according to the spectrumofmutations, by using the key shown for (A).
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Figure S2. Modeling Clusters of Subclonal Mutations, Related to Figure 1

(A) Mutations (blue histogram) from an in silico simulation of a tumor in which fully clonal mutations account for 20% of mutations, 40% mutations are found in

a subclone representing 60% of tumor cells, 10% mutations in a subclone at 30% and 20% mutations in a subclone at 20% of tumor cells (pink bars). The

simulated mutations have also been subject to correction for the sensitivity of detection at different fractions of tumor cells, hence there are fewer ‘‘observed’’

mutations at 20% of tumor cells than at 100% despite there being more ‘‘true’’ mutations at this level. Statistical modeling by a Bayesian Dirichlet process of the

simulated mutations is shown as a dark green line. Also shown are the 95% posterior confidence intervals for the fitted distribution (pale green area).

(B) Mutations (blue histogram) from an in silico simulation of a tumor in which there are 40 subclones, evenly spread from 0%–100% of tumor cells and each

contributing 2.5% of mutations (pink bars). The simulated mutations have been subject to correction for the sensitivity of detection at different fractions of tumor

cells, hence there are fewer ‘‘observed’’ mutations at 20% of tumor cells than at 100% despite there being the same number of ‘‘true’’ mutations at this level.

Statistical modeling by a Bayesian Dirichlet process of the simulated mutations is shown as a dark green line. Also shown are the 95% posterior confidence

intervals for the fitted distribution (pale green area).

(C) Box and whisker plots showing the posterior distributions for the weights of each of the 30 clusters, ordered from greatest to least, for the two simulations

shown in (D) and (E). The first simulation, based on four subclones, shows nonnegligible weights for the first 4–5 subclones, but rapidly tails to 0 thereafter. For the

second simulation, based on 40 subclones, all at constant weight, the distribution of weights is much flatter, and does not hit 0 until beyond 15–20 clusters.

(D) Box and whisker plots showing the posterior distributions for the weights of each of the 30 clusters, ordered from greatest to least, for PD4120a. The first 4–5

clusters show nonnegligible weights, but they tail rapidly to 0 thereafter.

(E) Circle plot showing the copy number (black points) and rearrangements for a chromothripsis event involving chromosomes 2, 4, 18, and 21.
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Figure S3. Subclonal copy number variation in PD4120a, Related to Figure 2

(A) Battenberg plots of allele fractions for phased parental haplotypes for various chromosomes. Each heterozygous germline SNP is phased into two possible

parental states by imputation. The observed allele fraction for one phased chromosomal copy is plotted in blue and the other in red. For a chromosome, such as

chromosome 5, showing no subclonal copy number variation, both parental copies are present at exactly equal proportions and the red and blue points are

superimposed around an allele fraction of 0.5. For chromosomes showing subclonal copy number variation, such as chromosome 8 and chromosome 13, the

parental copies are present at unequal ratios, leading to separation between the red and blue segments. The extent of separation is correlated with the fraction of

tumor cells showing the chromosomal gain or loss.

(B) Copy number profiles for logR and B allele fraction for chromosomes 2, 5, and 7 of PD4120a. Note that the logR value for chromosome 2 is virtually the same as

for chromosome 7 and substantially lower than that for chromosome 5, indicating that, like chromosome 7, chromosome 2 is deleted in a sizable subclone of cells.

However, the B allele fraction for chromosome 2 is exactly balanced at 0.5, implying that both parental copies are deleted in equal proportions.
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Figure S4. Phasing Pairs of Subclonal Point Mutations, Related to Figure 3
(A) Phasing of subclonal mutations (stars) with other nearby subclonal mutations allows determination of whether they are in separate phylogenetic lineages, in

which case no sequencing reads will report both variants together (mutually exclusive pair of mutations).

(B) Similar phasing analysis can identify cases where the later subclonal mutation has arisen on an allele linked with a previous subclonal mutation.

(C) Example of a mutually exclusive pair of mutations from PD4120a. Sequencing read pairs are shown as yellow and blue bars linked by a dotted line. Base calls

varying from the reference genome are shown as red squares. Two nearby mutations, indicated by arrows, are never found on the same read pair.

(D) Example of a pair of mutations showing subclonal evolution in PD4120a. The right-hand subclonal mutation occurred on an allele already carrying the left-hand

mutation, as evidenced by the existence of reads reporting both together, the left-hand but not the right-handmutation but never the right-hand mutation without

the left-hand one.

(E) A pair of mutations, both of which phase with the subclonally deleted copy of chromosome 13, but are mutually exclusive.
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Figure S5. Timing of Chromosomal Gains and Genomic Amplifications, Related to Figure 4

(A) Forest plots showing the point estimates (diamonds) and 95% confidence intervals estimated by bootstrapping of particular chromosomes for two breast

cancer genomes. The size of the diamond is proportional to the number of mutations considered, and the color by whether the chromosomal gain reflects

uniparental disomy (blue) or tetraploid chromosomes (green). The estimates show significant heterogeneity for PD4248a (p < 0.0001) but not for PD4116a (p =

0.3), with the latter indicating the possibility of all the gains occurring as a single endoreduplication event.

(B and C) Timing of ERBB2 genomic amplification for PD4199a (B) and PD4192a (C). Here, the top panel shows the copy number segments for the region of

chromosome 17 around ERBB2. The lower panel shows the point mutations as black points, with the x axis reflecting the genomic position and the y axis the

variant allele fraction. The 95% confidence intervals for the variant allele fraction are shown as vertical bars for each mutation. The allele fraction is divided by the

colored bars into the proportions of reads derived from contaminating normal cells (gray bars) and the fraction coming from each of the copies of that segment in

the tumor cells (themultiple bars from green to yellow to pink to white). Early mutations will be found relatively higher up these bars, whereas late ones will be seen

toward the bottom of the variant allele fraction.
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Figure S6. Comparison of Early and Late C>T Point Mutation Signatures in 14 Informative Breast Cancer Genomes, Related to Figure 5

Stacked bar charts showing the fraction of early mutations (ploidy > 1) and late mutations (ploidy = 1) accounted for by each mutation type. The p values refer to

the overall difference in distribution between early and late C>Tmutations (chi-square test). The numbers above each stacked bar denotes the number of early or

late mutations analyzed.
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Figure S7. Patterns of Subclonal Mutation in 20 Breast Cancer Genomes, Related to Figure 6

(A) Fitted three-parameter logistic curves to bootstrapped estimates of sensitivity for mutations at different levels of subclonality derived from each of the 20

breast cancer genomes. For the five samples colored blue the raw bootstrapped values are shown (as plus [+] symbols), to allow assessment of goodness-of-fit of

the logistic curve to the raw data.

(B) Comparison of the empiric distributions of subclonal mutations between PCR with deep pyrosequencing on the 454 platform and exome pull-down and

sequencing for four patients. For each histogram, point mutations called in the original whole-genome sequencing were identified for which there was inde-

pendent validation by either 454 sequencing or exome pull-down. The distributions of subclonality obtained from each validation method are then plotted in the

relevant histogram.

(C) Statistical modeling by a Bayesian Dirichlet process of the distribution of clonal and subclonal mutations for 16 breast cancers. The empiric histogram of

mutations is shown in pale blue, with the fitted distribution as a dark green line. Also shown are the 95% posterior confidence intervals for the fitted distribution

(pale green area).
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Figure S8. Phylogenetic Trees for Three Breast Cancer Patients, Linked to Figure 7

(A) Phylogenetic tree and supporting data for PD3890a. The Battenberg plot for chromosome 7 shows evidence that the q arm shows loss of heterozygosity (LOH;

1+0) in 90% of tumor cells, with normal diploidy (1+1) in 10%. Because LOH is a one-directional ‘‘valve’’ (once lost, heterozygosity cannot be regained), it follows

that diploidy is the ancestral state and LOH is the derived state. Hence, this is direct evidence of a subclone representing 90%of tumor cells, also carrying several

other copy number changes and approximately 100 point mutations. The centromeric portion of 4q shows evidence for a mix of 2+1 copies in 80% of tumor cells

and normal diploidy (1+1) in 20% of tumor cells. From the rearrangement data, this copy number gain is caused by a subclonal tandem duplication, implying that

the 2+1 copy number state found in 80% tumor cells is the derived state. This indicates the existence of an 80% subclone, matched by a small cluster of point

mutations seen on sequencing of the exome (inset). Finally, chromosome X, among others, shows evidence for a 62% subclone and 20% subclone. By repeated

application of the pigeonhole principle, each of these subclones must be collinear on the phylogenetic tree.

(B) Phylogenetic tree for PD4199a.

(C) Phylogenetic tree for PD4005a.
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