#### **Supplementary Online Material**

#### **Supplementary Methods**

The fractional release parameter f, was calculated from ln (F<sub>1</sub>/F<sub>2</sub>)/ $\Delta$ STIM (Bamford *et al.*, 2004b), where ln is the natural logarithm, F<sub>1</sub> and F<sub>2</sub> are the fluorescent intensities at t<sub>1</sub> and t<sub>2</sub> respectively, and  $\Delta$ STIM is the number of stimuli delivered during that period.

#### **Supplementary Figures**

## Figure S1. Amphetamine reduces in the fractional release of FM1-43 in WT mice at 20 Hz

The mean fractional destaining per cortical stimulus (*f*; see Supplementary Methods) represents another way to examine change in release kinetics from presynaptic terminals. Similar to previous reports (Bamford *et al.*, 2004b), the fractional release of FM1-43 declined with increases in the stimulus frequency (0.221%  $\pm$  0.018% at 1 Hz, *f* = 0.026%  $\pm$  0.002% at 10 Hz, and *f* = 0.017%  $\pm$  0.002% at 20 Hz; F <sub>(4,150)</sub> = 25; *P* < 0.001, ANOVA). As expected, there was little change in fractional destaining at stimulation frequencies above 20 Hz (*f* = 0.008%  $\pm$  0.001% at 30 Hz and *f* = 0.007%  $\pm$  0.001% at 40 Hz), as any further potential decrement in the fractional release of FM1-43, as a result of increased stimulation frequency, was offset by the corresponding depression in FM1-43 release. Amphetamine also caused a decline in the fractional release of FM1-43 with higher rates of stimulation (decreasing from *f* = 0.204%  $\pm$  0.002% at 1 Hz to *f* = 0.021%  $\pm$  0.003% at 10 Hz, *f* = 0.010%  $\pm$  0.001% at 20 Hz, *f* = 0.001, ANOVA), but compared to vehicle, produced a significant depression in fractional destaining of FM1-43 only at 20 Hz (F <sub>(2,90)</sub> = 25, \*\*\**P* < 0.001, ANOVA).

#### Figure S2. Amphetamine filters corticoaccumbal inputs

A, the normal probability plots show individual terminal halftimes, with and without amphetamine. At 1 Hz stimulation frequency, amphetamine had no effect on terminal release. B, at 10 Hz, the destaining kinetics following amphetamine revealed at least 2

terminal subpopulations arising at ~0.5 standard deviations above the median values, showing that dopamine decreased exocytosis and produced a low-pass frequency filter with filtering applied specifically to a subset of terminals with a low probability of release. C, at 20 Hz, amphetamine inhibited release from a greater proportion of slower-destaining terminals, with filtering specific to those terminals with a lower probability of release. D, amphetamine lost its capacity to filter presynaptic terminals at higher stimulation frequencies of 30 Hz and E, 40 Hz.

# Figure S3. D1 and D2 dopamine receptors create frequency-dependent subsets of corticoaccumbal terminals

*A*, normal probability plot comparing individual halftimes of release in slices from WT mice with and without SKF38393 at 1 Hz, *B*, 10 Hz, and *C*, 20 Hz. *D*, normal probability plot comparing individual halftimes of release in slices from WT mice with and without quinpirole (QUIN) at 1 Hz, *E*, 10 Hz, and *F*, 20 Hz.

# Figure S4. Endocannabinoids promote presynaptic inhibition of all cortical terminals at higher stimulation frequencies

*A*, normal probability plot comparisons of individual halftimes of release in slices from WT and CB<sub>1</sub><sup>-/-</sup> mice showed similar distributions at 1 Hz, *B*, 10 Hz and *C*, 20 Hz. *D*, compared to slices from WT mice, higher stimulation frequencies of 30 Hz and *E*, 40 Hz increased exocytosis from most terminals in CB<sub>1</sub><sup>-/-</sup> mice.

# Figure S5. D1Rs modulate corticoaccumbal terminals with a low-probability of release

*A*, individual terminal responses to treatments shown in **Fig. 2***A* demonstrate that either amphetamine or the D1R agonist SKF38393 inhibited exocytosis from terminals with the lowest probability of release. *B*, analysis of the individual terminal responses for treatments shown in **Fig. 2***C* demonstrates that either SKF38393 or adenosine inhibited exocytosis from terminals with a low probability of release. *C*, individual terminal responses for destaining curves shown in **Fig. 2***E* demonstrate that the NMDAR antagonist APV prevented inhibition by SKF38393, while the CB<sub>1</sub>R antagonist AM251 had no effect.

46

*D*, the individual terminal responses for the destaining curves shown in **Fig. 2***G* demonstrates that the AMPAR antagonist NBQX reduced inhibition of low-probability release synapses following SKF38393.

# Figure S6. D2Rs modulate terminals with a low probability of release while CB<sub>1</sub>Rs more broadly inhibit corticoaccumbal terminals

*A*, individual terminal responses for the experiments shown in **Fig. 3***A* demonstrate that both amphetamine and quinpirole inhibited terminals with the lowest probability of release, while the D2R antagonist sulpiride only partially blocked inhibition by amphetamine. *B*, the individual terminal responses for destaining curves shown in **Fig. 3***C* show that both D1 and D2 receptor antagonists SCH23390 and sulpiride were required to block inhibition from terminals with a low probability of release. *C*, individual terminal responses for the experiments shown **Fig. 3***E* show that the CB<sub>1</sub>R agonist WIN55-2,2 (WIN) inhibited a broad population of terminals, the CB<sub>1</sub>R antagonist AM251 blocked inhibition by the D2R agonist quinpirole, and AM251 boosted release from most cortical terminals.

# Figure S7. D1Rs excite terminals with a low release probability when glutamate receptors are blocked

*A*, individual terminal responses for destaining curves in **Fig. 4***A* show that the D1R agonist SKF38393 boosted exocytosis from terminals with a low probability of release once AMPA, NMDA and mGluRs are blocked by NBQX, APV and MCPG. *B*, individual terminal responses for destaining curves in **Fig. 4***C* show that these glutamate antagonists prevented the inhibition of low release probability terminals by the D2R agonist quinpirole and they did not increase FM1-43 destaining beyond control in the presence of quinpirole.

#### **Supplementary References**

Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, Schmauss C, Zakharenko SS, Zablow L & Sulzer D. (2004b). Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. *Neuron* 42, 653-663.





W. Wang and others - Supplemental Figure 3









