2*C*-Methyl-D-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity

J. Kipchirchir Bitok and Caren Freel Meyers*

Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore,

Maryland 21205.

*Corresponding author: <u>cmeyers8@jhmi.edu</u>

SUPPORTING INFORMATION

Table of Contents

	Page
Figure S1: SDS-PAGE of C-His ₆ IspF purification by affinity chromatography	2
Figure S2: ${}^{1}H - {}^{31}P$ NMR and HPLC characterization of the IspF reaction	3
Figure S3: Dependence of IspF rate on pH	4
Figure S4: Michaelis-Menten kinetics of IspF, IspF-MEP and IspF-ME	5
Figure S5: IspF inhibition by CDP	6
Table S1: Rates of CMP formation in the presence or absence of additives	7
Figure S6: Evaluation of Glycerol and DDM as stabilizers	8
Figure S7: AC ₅₀ determinations of MEP and ME	9
Table S2. Effects of CDP and isoprenoid diphosphates on the activity of the IspF-MEP complex	10

Figure S1: Ni²⁺ affinity purification of C-His₆ E. coli IspF. IspF was eluted 5-500 mM imidazole.

Figure S2: *IspF-catalyzed MEcDP and CMP formation.* Formation of MEcDP was confirmed using ${}^{1}\text{H} - {}^{31}\text{P}$ two-dimensional NMR (Figure S2a,b). A reaction containing 50 mM phosphate buffer, pH 7.4, 5 mM MgCl₂, 2 mM 4-diphosphocytidyl-2*C*-methyl-D-erythritol-2-phosphate, 1.5 μ M IspF and 50 μ g/mL BSA in a total volume of 150 μ L was analyzed by H–P–NMR. NMR analysis was carried out following reported procedures.^{1, 2} Magnetization transfers in NMR experiments are depicted in blue (${}^{1}\text{H} \rightarrow {}^{31}\text{P}$) and red (${}^{31}\text{P} \rightarrow {}^{31}\text{P}$). (a) Constant-time CT ${}^{1}\text{H} - {}^{31}\text{P}$ HSQC showing H₁:P_A, H₅:P_A, and H₄:P_B correlations. (b) CT ${}^{1}\text{H} - {}^{31}\text{P} - {}^{31}\text{P}$ COSY spectrum indicating magnetization transfer between P_A and P_B. This is evident in H₁:P_B, H₅:P_B, and H₄:P_A correlations. (c) HPLC stackplot showing IspF-catalyzed conversion of CDPME2P to CMP.

Figure S3: *Dependence of IspF rate on pH*. The dependence of IspF initial rate on pH was determined following the described general IspF assay. Each reaction contained 200 μ M 4-diphosphocytidyl-2*C*-methyl-D-erythritol-2-phosphate at pH 6.0, 7.0, 7.4, 8.0, 9.0 and 10.0. HPLC sample preparation and analyses were carried out as described. IspF showed apparent maximal activity at pH 7.4.

Figure S4: *Michaelis-Menten kinetic analyses*. IspF-catalyzed formation of CMP was kinetically characterized in the absence or presence of additives at 20°C. (a) Kinetic parameters of IspF in the absence of additives; (b) Kinetic parameters of IspF in the presence of 500 μ M MEP; (c) Kinetic parameters of IspF in the presence of 500 μ M ME.

Figure S5: *IspF inhibition by CDP*. Concentrations of CDP used were in the range 0.1-1000 μ M. The IC₅₀ was calculated using GraFit software version 7 (Figure S5).³

Table S1. *Rates of IspF-catalyzed CMP formation in the presence or absence of additives*: isopentenyl diphosphate (IDP), dimethylallyl diphosphate (DMADP), geranyl diphosphate (GDP), farnesyl diphosphate (FDP), 1-deoxy-D-xylulose 5-phosphate (DXP),4-diphosphocytidyl-2*C*-methyl-D-erythritol (CDPME), (*E*)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBDP), 2*C*-methyl-D-erythritol 4-phosphate (MEP), Deoxyxylulose (DX), D-erythritol 4-phosphate (EP), or 2*C*-methyl-D-erythritol (ME).

	^a Time, (min)	Rate, μM ∙ min ⁻¹	Relative Rate
Control		1.12 ± 0.22	1.00
^b 1:4:2		1.35 ± 0.13	1.21
^b 10:40:20		1.22 ± 0.16	1.09
^b 100:400:200		1.57 ± 0.04	1.40
^b 200:800:400		1.42 ± 0.21	1.27
Control	0	1.10 ± 0.15	1.00
	30	0.12 ± 0.04	0.11
	24 h	0	0.00
۵IDP	0	1.74 ± 0.23	1.58
	30	0.33 ± 0.11	0.30
^c DMADP	0	1.88 ± 0.41	1.70
	30	0.34 ± 0.02	0.31
℃GDP	0	1.97 ± 0.18	1.79
	30	0.66 ± 0.04	0.59
۴DP	0	1.16 ± 0.07	1.05
	30	0.41 ± 0.08	0.37
^c DXP	0	1.07 ± 0.22	0.96
	30	0.17 ± 0.05	0.16
^c CDPME	0	1.24 ± 0.24	1.12
	30	0.19 ± 0.03	0.17
[€] HMBDP	0	1.57 ± 0.18	1.43
	30	0.28 ± 0.01	0.25
^c MEP	0	2.25 ± 0.13	2.03
	30	1.99 ± 0.11	1.80
	24 h	2.19 ± 0.21	1.99
°DX	0	1.15 ± 0.19	1.04
	30	0.25 ± 0.03	0.23
°ЕР	0	1.46 ± 0.09	1.33
	30	0.31 ± 0.03	0.28
^c ME	0	2.17 ± 0.38	1.97
	30	2.12 ± 0.05	1.92
	24 h	1.91 ± 0.09	1.73

^aPre-incubation time, before the reaction was initiated with the substrate CDPME2P. ^bRatio of IDP:GDP:FDP concentrations in μ M. ^cUsed at a final concentration of 500 μ M.

Figure S6: *Evaluation of activity-enhancing or activity-stabilizing properties of glycerol and n-dodecyl* β -*D-maltoside (DDM)*. The IspF reaction was carried out in the presence of known enzyme stabilizers, glycerol (500 μ M) or DDM (0.005%). (a) Structures of glycerol and DDM; (b) Rate of CMP formation in the presence of 500 μ M glycerol, or 0.005% DDM.). (c) Summary of the effects of the enzyme stabilizers in (b).

Figure S7: AC_{50} determinations of MEP and ME. Representative AC₅₀ determinations for MEP (**a**) or ME (**b**) in the presence of 100 μ M CDPME2P at 20 °C.

Table S2.	Effects of	CDP and	isoprenoid a	diphosphates	on the activity	of the Is	pF-MEP c	complex.
					2			

Conditions	Rate, µM ∙ min ⁻¹			
(-) MEP control	1.10 ± 0.15			
(-) MEP (+) CDP	0.45 ± 0.02			
(+) MEP control	2.06 ± 0.07			
(+) MEP (+) CDP	2.28 ± 0.29			
(+) MEP (+) HMBDP	2.20 ± 0.31			
(+) MEP (+) IDP	2.10 ± 0.37			
(+) MEP (+) DMADP	2.34 ± 0.28			
(+) MEP (+) GDP	2.03 ± 0.24			
(+) MEP (+) FDP	1.17 ± 0.21			

REFERENCES

 Majumdar, A.; Shah, M. H.; Bitok, J. K.; Hassis-LeBeau, M.; Freel Meyers, C. L. Probing phosphorylation by nonmammalian isoprenoid biosynthetic enzymes using ¹H-³¹P-³¹P correlation NMR spectroscopy. *Mol. BioSyst.* 2009, *5*, 935– 944.

2. Majumdar, A.; Sun, Y.; Shah, M.; Freel Meyers, C. L. Versatile ¹H-³¹P-³¹P COSY 2D NMR Techniques for the Characterization of Polyphosphorylated Small Molecules. *J. Org. Chem.* **2010**, *75*, 3214–3223.

3. Leatherbarrow, R. J. GraFit Version 7, Erithacus Software Ltd., Horley, U.K. 2010, .