SUPPLEMENTARY DATA

Figure S1 Taxonomic Families of Gammaproteobacteria Can Be Recovered Using Hfq DNA Sequences

54 non-redundant (<95% identical) hfq DNA and corresponding protein sequences of representative species of eight gammaproteobacteria families were analysed (Table S1). hfq DNA sequences were retrieved from the NCBI nucleotide database using BlastN and the sequence of E. coli hfq as the query. Gammaproteobacteria are classified into 13 orders in accordance to their distribution in 16S rRNA gene trees^{1, 2}. However, phylogenies computed using multiple concatenated proteins, an approach that is considered to be more robust, were unable to recover some of these taxons^{3, 4}; for this reason, we restricted our analysis to taxonomic families that have not shown conflicting phylogenies (Table S1). Phylogenies were calculated for both amino acid and DNA sequences. The best model for amino acid replacement was selected using Prottest 1.4⁵ and was Dayhoff with gamma-distributed rate variation. The best model for DNA substitution was selected using MrAIC 1.4.3⁶ and was symmetrical with gamma distribution of rate variation and a proportion of invariable sites. Phylogenetic analyses of the DNA sequences corresponding to Hfq where performed both by maximum likelihood and Bayesian approaches. Maximum likelihood trees were estimated with PhyML 2.4.4⁷ and a Bayesian analysis was performed with MrBayes⁸. Bootstrap replicates and consensus trees were calculated with the Phylip suite⁹. Trees were visualized and prepared for publication with Dendroscope¹⁰.

(a) Maximum-likelihood consensus phylogenetic tree computed using PhyML 2.4.4⁷ with 1000 bootstrap replicates and a 50% majority-rule. Numbers indicate percentage of support, only

those equal to or more than 50% are shown. Sequences used in the analysis are listed in Table S1.

(b) Consensus phylogenetic tree computed using MrBayes⁸ with default parameters for five million generations sampling every 200 generations. The first 6250 trees were discarded before computing the majority-rule consensus tree. Numbers indicate credibility (posterior probability) values. Sequences used in the analysis are listed in Table S1.

Figure S2Multiple Sequence Alignment of Representative Members of theGammaproteobacteria Families.

Only non-redundant sequences (<95% amino acid identity) are shown. Positions are coloured according to the Clustal colour scheme: glycines are orange and prolines are yellow; other positions are coloured according to conservation of chemical properties: hydrophobic in blue, aromatic in cyan, polar negative in purple, polar positive in red and polar neutral in green.

Figure S3 Analytical Ultracentrifugation (AUC) of VcHfq and EcHfq

AUC was carried out in a Beckman Optima XL-A analytical ultracentrifuge using an AnTi-50 eight-hole rotor (Beckman Coulter). Sedimentation velocity experiments used doublesector cells with a 12 mm path length with 400 µl of VcHfq at 3.29 mg/ml or EcHfq at 4.13 mg/ml in 10 mM Tris pH 8, 50 mM NaCl and 50 mM KCl buffer loaded into the sample channel and 425 µl of buffer loaded into the buffer channel. The rotor was accelerated to 30,000 rpm at 10°C. Radial absorbance scans were collected every 10 minutes at 280 nm. The differential sedimentation coefficient distribution (c(S)) and the molar mass distribution (c(M)) were calculated in SEDFIT[2] using a partial specific volume of 0.73 mg/ml. Sedimentation equilibrium experiments used six-channel cells with a 12 mm path length. 90 μ l of VcHfq at 3.29 mg/ml or EcHfq at 4.13 mg/ml in 10 mM Tris pH 8, 50 mM NaCl and 50 mM KCl buffer were loaded into the sample channels and 110 μ l of buffer were loaded into the buffer channels. The rotor was accelerated at 20,000 rpm at 10°C for 24 hours. Scans of absorbance versus radial displacement were measured at 280 nm after 18, 21 and 24 hours. Data were analysed in Origin 6.0 (Microcal Software Inc., developed by Beckman Coulter) and molecular masses were calculated using a partial specific volume of 0.73 ml/g.

(a) Sedimentation velocity. (i) Fits of the data for VcHfq and EcHfq. For clarity, only every fourth scan is shown. The residual error between the fit and the experimental data is shown below the fit for each protein. (ii) The associated c(S) distribution plot for VcHfq (blue) and EcHfq (magenta). The sedimentation coefficient is indicated above the respective peak. (iii) The associated c(M) distribution plot for VcHfq (blue) and EcHfq (magenta). The molecular mass is indicated above the respective peak. The theoretical molecular mass is 60,981.6 Da for VcHfq and 66,210.6 Da for EcHfq.

(b) Sedimentation equilibrium. Example fits (lower panels) are shown for data scanned at 280 nm after 24 hours for VcHfq and EcHfq. The residual error between the fit and the experimental data is shown for each protein in the upper panels. The theoretical molecular mass is 60,981.6 Da for VcHfq and 66,210.6 Da for EcHfq.

Figure S4 Non-denaturing MS Reveals that the VcHfq Hexamer is Less Stable than the EcHfq Hexamer

Non-denaturing MS was performed using 10 µM solutions of VcHfq and EcHfq in aqueous ammonium acetate buffer pH 7 (for MS mode 83 mM, for MS/MS mode 250 mM).

Samples were introduced using nano-electrospray ionization (ESI) with a TriVersa Nanomate inlet system (Advion) and a Synapt T-wave Ion Mobility Mass Spectrometer (IM-MS; Waters) in positive ion mode. Experimental parameters were chosen to preserve intact non-covalent interactions during transfer of ions into the mass spectrometer¹¹. In MS/MS mode the 16+ peaks of both protein hexamers were chosen for collision-induced dissociation (CID) and the release of the monomer was monitored. Key settings were backing: 3 mbar and source: 1.6×10^{-3} mbar; in MS mode: sampling cone: 75 V, extraction cone: 1 V, trap and transfer collision energy: 9 and 6 V respectively, bias: 17.5 V; in MS/MS mode: sampling cone: 50 V, extraction cone: 0 V, trap collision energy: variable, transfer collision energy: 3 V, bias: 15 V. Data were smoothed using a window with ± 50 channels using MassLynx software, 4.0.

(a) Non-denaturing MS of VcHfq (left) and EcHfq (right) under identical conditions. The peak series corresponding to the intact hexamer are labelled with H in both spectra and those corresponding to monomer are labeled with M. The VcHfq spectra shows a series of peaks which correspond to the 14+ to 18+ charge states of hexameric protein next to a much smaller series centred on the 8+ charge state corresponding to the monomer (theoretical mass: 10,163.6 Da; experimental mass: 10,165.9 Da). Similarly, the EcHfq shows a peak series corresponding to the 15+ to 18+ charge states of the hexamer and a series centred on the 8+ charge state of the monomeric species (theoretical mass: 11,035.1 Da; experimental mass: 11,037.0 Da). Additional species, marked with an * are most likely due to minor impurities co-purifying with the VcHfq/EcHfq hexamers. The peak series labeled with # in each spectrum is attributed to a very small amount of dodecamer, which has been observed previously for *E. coli* Hfq^{12, 13}. The 16+ charge states, which are highlighted in bold, were chosen for fragmentation by collision induced dissociation (CID) prior to the ion mobility cell (b).

(b). Fragment MS/MS spectra for VcHfq (left column) and EcHfq (right column) for three different trap collision energies: 45 V (top panels), 55 V (middle panels) and 120 V (bottom panels).

REFERENCES

 Kersters, K., de Vos, P., Gillis, M., Swings, J., Vandamme, P. & Stackebrand, E. (2006).
Introduction to the Proteobacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria (Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., Stackebrandt, E., ed.). 3-37, Springer, New York, USA.

Garrity, G. M., Bell, J. A., Lilbum, T., Brenner, D. J., Krieg, N. R. & Staley, J. T. (2005).
The Revised Road Map to the Manual. In Bergey's Manual of Systematic Bacteriology. 159-187,
Springer, NewYork, USA.

Williams, K. P., Gillespie, J. J., Sobral, B. W., Nordberg, E. K., Snyder, E. E., Shallom, J.
M. & Dickerman, A. W. Phylogeny of gammaproteobacteria. *J. Bacteriol.* 192, 2305-2314.

4. Gao, B., Mohan, R. & Gupta, R. S. (2009). Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. *Int. J. Syst. Evol. Microbiol.* **59**, 234-247.

5. Abascal, F., Zardoya, R. & Posada, D. (2005). ProtTest: selection of best-fit models of protein evolution. *Bioinformatics*. **21**, 2104-2105.

6. Nylander, J. A. A. (2004). MrAIC [1.4.3]. *Evolutionary Biology Centre, Uppsala University*.

7. Guindon, S., Delsuc, F., Dufayard, J. F. & Gascuel, O. (2009). Estimating maximum likelihood phylogenies with PhyML. *Methods Mol. Biol.* **537**, 113-137.

8. Ronquist, F. & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*. **19**, 1572-1574.

9. Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) [3.6]. *Department of Genome Sciences, University of Washington, Seattle.*

Huson, D. H., Richter, D. C., Rausch, C., Dezulian, T., Franz, M. & Rupp, R. (2007).
Dendroscope: An interactive viewer for large phylogenetic trees. *BMC Bioinformatics* 8, 460.

11. Sobott, F., McCammon, M. G., Hernández, H. & Robinson, C. V. (2005). The flight of macromolecular complexes in a mass spectrometer. *Phil. Trans. R. Soc. A* **363**, 379-391.

12. de Haseth, P. L. & Uhlenbeck, O. C. (1980). Interaction of *Escherichia coli* host factor protein with Q beta ribonucleic acid. *Biochemistry* **19**, 6146-6151.

13. de Haseth, P. L. & Uhlenbeck, O. C. (1980). Interaction of *Escherichia coli* host factor protein with oligoriboadenylates. *Biochemistry* **19**, 6138-6146.

Table S1 Hfq Sequences for Phylogenetic Analysis and Multiple Sequence Alignmnet

Taxonomic family/Tree group	Species	NCBI accession code	Position of gene in accession code sequence
Ectothiorhodospiraceae	Alkalilimnicola ehrlichii MI HF-1	114225560	622297-622566
Ectothiorhodospiraceae	Halorhodospirahalophila SL1	121588215	748883-749155
Ectothiorhodospiraceae	Thioalkalivibrio K90 mix	288942818	517278-517532
Enterobateriaceae	Cronobacter turicensis z3032	323575285	3838103-3838411
Enterobateriaceae	Dickeva dadantii 3937	307128764	4253799-4254098
Enterobateriaceae	Enterobacter cloacae subsp cloaeae ATCC	295054830	563135-563446
Enterobateriaceae	Erwinia hillingiae st Eb661	299060424	540494-540802
Enterobateriaceae	Erwinia tasmaniensis	188027207	3307510-3307818
Enterobateriaceae	Escherichia coli	332341332	4988603-4988911
Enterobateriaceae	Klebsiella variicola At22	288887617	4972955-4973263
Enterobateriaceae	Rahnella Y9602	321165934	459891-460199
Enterobateriaceae	Serratia plymuthica G3	193888381	-
Enterobateriaceae	Sodalis glossinidius str morsitans	84778498	623805-624110
Enterobateriaceae	Yersinia pestis KIM D27	270335045	2634180-2634485
Moraxellaceae	Acinetobacter baumannii TCDC-AB0715	323516058	2650109-2650615
Moraxellaceae	Acinetobacter calcoaceticus PHEA-2	325121063	1713026-1713550
Moraxellaceae	Psychrobacter cryohalolentis K5	92392509	1836200-1836751
Pasteurellaceae	Actinobacillus pleuropneumoniae str AP76	189914400	2253347-2253625
Pasteurellaceae	Actinobacillus succinogenes 130Z	150839411	1065965-1066264
Pasteurellaceae	Aggregatibacter actinomycetemcomitans D11S-1	261412053	877097-877393
Pasteurellaceae	Aggregatibacter aphrophilus NJ8700	247533203	610066-610368
Pasteurellaceae	Haemophilus ducreyi 35000HP	33149228	582457-582762
Pasteurellaceae	Haemophilus influenzae F3031	317431924	1843745-1844020
Pasteurellaceae	Haemophilus parainfluenzae T3T1	301154649	1077751-1078035
Pasteurellaceae	Haemophilus parasuis SH0165	219690483	1194908-1195189
Pasteurellaceae	Haemophilus somnus 2336	168825335	1235543-1235833
Pasteurellaceae	Mannheimia succiniciproducens MBEL55E	52306107	1508974-1509264
Pasteurellaceae	Pasteurella multocida multocida str Pm70	13400023	1064798-1065088
Pseudomonadaceae	Azotobacter vinelandii DJ	226717097	713089-713343
Pseudomonadaceae	Pseudomonas aeruginosa LESB58	218768969	5880732-5880980
Pseudomonadaceae	Pseudomonas entomophila str L48	95101722	5247772-5248032.
Pseudomonadaceae	Pseudomonas mendocina ymp	145573243	702481-702741
Pseudomonadaceae	Pseudomonas putida BIRD	313496345	5223576-5223836-1
Pseudomonadaceae	Pseudomonas stutzeri A1501	145568602	3963634-3963888
Shewanellaceae	Shewanella amazonensis SB2B	119765642	3599691-3599966
Shewanellaceae	Shewanella loihica PV-4	126636230	642172-642450
Shewanellaceae	Shewanella pealeana ATCC	157844830	4323638-4323916
Shewanellaceae	Shewanella piezotolerans WP3	212554395	790124-790402
Vibrionaceae	Aliivibrio salmonicida LFI1238	208007585	3007118-3007384
Vibrionaceae	Listonella anguillarum	167987245	375-641
Vibrionaceae	Photobacterium profundum SS9	46914592	314528-314785
Vibrionaceae	Vibrio cholerae MJ-1236	229368777	269828-270091
Vibrionaceae	Vibrio fischeri ES114	171902228	2610406-2610672
Vibrionaceae	Vibrio furnissii NCTC 11218	315178329	11716-11979
Vibrionaceae	Vibrio parahaemolyticus RIMD 2210633	47118310	2980906-2981169
Vibrionaceae	Vibrio splendidus LGP32	223587976	263140-263406
Vibrionaceae	Vibrio vulnificus CMCP6	319998996	1280011-1280271
Xanthomonadaeae	Pseudoxanthomonas suwonensis 11	317464132	893565-893840-1
Xanthomonadaeae	Stenotrophomonas maltophilia R551	194346582	1654093-1654368-3
Xanthomonadaeae	Xanthomonas albilineans str GPE PC73	283472039	1365965-1366240
Xanthomonadaeae	Xanthomonas campestris str ATCC	21166373	1991534-1991812
Xanthomonadaeae	Xanthomonas oryzae MAFF 31018	84365597	3149285-3149563
Xanthomonadaeae	Xylella fastidiosa M12	167964044	87835-88113

Table S2 Primers Used to Construct Hfq Expression Plasmids and DNA Template for *in vitro* Transcription of Qrr1

Primer Name	Primer Sequence (5' to 3')
VcHfqf	tac gta cat atg gct aag ggg caa tct c
VcHfqr	tac gta ctc gag tca caa ctc ttc aga ctt ctc tgc
VcHfq72f	cct gct cgt cca gtt agc cac cac agc taa cat atg ggc gac cgc cca gca tcg gat c
VcHfq72r	gat ccg atg ctg ggc ggt cgc cca tat gtt agc tgt ggt ggc taa ctg gac gag cag g
VcNTDEcCTRS2	cet get egt eca gtt age eae eae age aae aae g
VcNTDEcCTRS1	gee ace aca gea aca acg eeg gtg geg gta eea gea gta act ace ate atg gta gea geg
VcNTDEcCTRAS1	cgg ttt ctt cgc tgt cct gtt gcg cgg aag tat tct gcg cgc tgc tac cat gat ggt agt
VcNTDEcCTRAS2	gat ccg atg ctg ggc ggt cgc cca tat gtt att cgg ttt ctt cgc tgt cct gt
EcHfqf	tac gta cat atg gct aag ggg caa tct
EcHfqr	tac gta ctc gag tca tta ttc ggt ttc ttc
EcHfq72f	ccc gtc tcg ccc ggt ttc tca tca cag t taa cat atg aac aac gcc ggt ggc ggt acc agc ag
EcHfq72r	ctg ctg gta ccg cca ccg gcg ttg ttc ata tgt taa ctg tga tga gaa acc ggg cga gac ggg
EcNTDVcCTRS2	ccc gtc tcg ccc ggt ttc tca tca
EcNTDVcCTRS1	ctc gcc cgg ttt ctc atc aca gtg gcg acc gcc cag cat cgg atc gtc cag cag a
EcNTDVcCTRAS1	cca ccg gcg ttg ttc ata tgt tac tct tca gac ttc tct gct gga cga tcc gat g
EcNTDVcCTRAS2	gat ccg atg ctg ggc ggt cgc cct gct ggt acc gcc acc ggc gtt gtt cat atg
Qrr1S2	taa tac gac tca cta tag ggt gac ccg caa ggg tca c
Qrr1S1	gtg acc cgc aag ggt cac cta gcc aac tga cgt tgt tag tga ata atc
Qrr1AS1	gaa tga gtc tat tgg ctg tta ttt gtg aac att gat tat tca cta aca acg tca gtt g
Qrr1AS2	aaa aaa ata gcc aat aga atg agt cta ttg gct gtt att tgt gaa cgc

Figure S2

Alkalilimnicola ehrlichii Halorhodospira halophila Thioalkalivibrio sp. K90 Cronobacter turicensis Dickeya dadantii Enterobacter cloacae Erwinia billingiae Erwinia tasmaniensis Escherichia coli Klebsiella variicola Rahnella Y9602 Serratia plymuthica Sodalis glossinidius Yersinia pestis Acinetobacter baumannii Acinetobacter calcoaceticus Psychrobacter cryohalolentis Actinobacillus pleuropneumoniae Actinobacillus succinogenes Aggregatibacter actinomycetemcomitans Aggregatibacter aphrophilus Aggregatibacter aphrophilus Haemophilus ducreyi Haemophilus influenzae Haemophilus parainfluenzae Haemophilus parasuis Haemophilus somnus Mannheimia succiniciproducens Pasteurella multocida Azotobacter vinelandii Pseudomonas aeruginosa Pseudomonas entomophila Pseudomonas mendocina Pseudomonas putida Pseudomonas puida Pseudomonas stutzeri Shewanella amazonensis Shewanella loihica Shewanella pealeana Shewanella piezotolerans Aliivibrio salmonicida Listonella anguillarum Photobacterium profundum Vibrio cholerae Vibrio fischeri Vibrio furnissii Vibrio parahaemolyticus Vibrio splendidus Vibrio vulnificus Pseudoxanthomonas suwonensis Stenotrophomonas maltophilia Xanthomonas albilineans Xanthomonas campestris Xanthomonas oryzae Xylella fastidiosa

Alkalilimnicola ehrlichii Halorhodospira halophila Thioalkalivibrio sp. K90 Cronobacter turicensis Dickeya dadantii Enterobacter cloacae Erwinia billingiae Erwinia tasmaniensis Escherichia coli Klebsiella variicola Rahnella Y9602 Serratia plymuthica Sodalis glossinidius Yersinia pestis Acinetobacter baumannii Acinetobacter calcoaceticus Psychrobacter cryohalolentis Actinobacillus pleuropneumoniae Actinobacillus succinogenes Aggregatibacter actinomycetemcomita Aggregatibacter aphrophilus Haemophilus ducreyi Haemophilus influenzae Haemophilus parainfluenzae Haemophilus parasuis Haemophilus somnus Mannheimia succiniciproducens Pasteurella multocida Azotobacter vinelandii Pseudomonas aeruginosa Pseudomonas entomophila Pseudomonas mendocina Pseudomonas putida Pseudomonas puida Pseudomonas stutzeri Shewanella amazonensis Shewanella loihica Shewanella pealeana Shewanella piezotolerans Aliivibrio salmonicida Listonella anguillarum Photobacterium profundum Vibrio cholerae Vibrio fischeri Vibrio furnissii Vibrio parahaemolyticus Vibrio splendidus Vibrio vulnificus Pseudoxanthomonas suwonensis Stenotrophomonas maltophilia Xanthomonas albilineans Xanthomonas campestris Xanthomonas orvzae Xylella fastidiosa

MA <mark>KGQSLQEP</mark> FL <mark>N</mark> AL <mark>RKEK</mark> VPV <mark>SIY</mark> LVNGI	KLQGQIESFDQFVILLRNNVNQMVYKHAISTVVPARNVRTAPPV
MA <mark>KGQSLQEP</mark> FL <mark>NTLRKEK</mark> VPVSIYLVNGI	KLOGQIESFDQFVVLLRNNVNQMVYKHAISTIVPARRVRLPQQG
MAKGOMI OFPEINAL RRDRVPVSI YLVNGI	
MAKCOSLODDEL NAL PRERVRVSLVLVNCL	ALOCOLESEDDEVILLEKNTVSOMVYKHALSTVVDSPDVSHHSNNACCC.SSN.YHH
MAKCOSLODDELNAL DEKEVEVELVI VNCL	
MANOQ SLOUPFLNAL REAVEVSTIL VNOT	
MARGQSLQDPFLNALRRERVPVSTYLVNGT	CLOGOTESFDOFVILLEN IVSOMVYKHATSIVVPSRPVSHHSNNAGGG-SSN-YHH
MAKGQSLQDPFLNALRRERVPVSIYLVNGI	KLQGQIESFDQFVILLKNTVSQMVYKHAISTVVPSRPVSHHSNNTGGG-SNN-YHH
MA <mark>KGQSLQDP</mark> FL <mark>N</mark> AL <mark>RRER</mark> VPVSIYLVNGI	KLQGQIESFDQFVILLKNTVSQMVYKHAISTVVPSRPVSHHSNNAGGGTSSN-YHH
MA <mark>KGQSLQDP</mark> FL <mark>N</mark> AL RRER VPV <mark>SIY</mark> LVNGI	KLQGQIESFDQFVILLKNTVSQMVYKHAISTVVPSRPVSHHSNNAGGG-SSN-YHH
MAKGQSLQDPFLNALRRERVPVSIYLVNGI	KLOGQIESFDQFVILLKNTVSQMVYKHAISTVVPSRPVSHHSNNPGSGSTNN-YHQ
MAKGQSLQDPFLNAL RRERVPVSIYLVNGI	CLOGQIESFDQFVILLKNTVSQMVYKHAISTVVPSRPVSHHSNNPSAG-TSN-YHH
MAKGOSLODPELNAL RRERVPVSLYLVNGL	CLOGO LESEDO EVILLENTY SOMVYKHALSTVYPS RPVSHHNNN PSGG-SSN-YHH
MAKGOSLODPELNAL BRERVEVSLYLVNGL	ALOGOVESEDOEVILLENTVSOMVYKHALSTVVPSRPVSHHSNTP-SGSTNN-Y-H
MSKGOTLODPELNSLEKERLEVSLELVNGL	A DOCH LESEDOXYVULL KNTVSOMVYKHALSTVVPAEN PRPAGAOGAGE PAOGOSOGGEGGOGA
MONGQILQUPPLNOLKKURIPVOIPLVNGI	LUGGTESFDUTVVLL NI VSUMVTNATSTVVPARNPRSSTTPSATTUSUGAAPMGTPSUSG
MAKGQSLQDPYLNALRREKTPVSTYLVNGT	CLUGUTESFDUFVTLLKNTVSQMVYKHATSTVVPARSVSHNNGG
MAKGQSLQDPYLNALRRERIPVSIYLVNGI	KLQGQIESFDQFVILLKNTVNQMVYKHAISTVVPARSVSHHNNNAQQQYQQ
MA <mark>KGQSLQDPYLN</mark> AL RRERIPVSIYLVNGI	KLQGQIESFDQFVILLKNTVNQMVYKHAISTVVPARSVAHHNANQQQQHQ
MAKGQSLQDPYLNALRRERIPVSIYLVNGI	KLQGQIESFDQFVILLKKNTVNQMVYKHAISTVVPARSVAHHNANQQQQHQQG
MA <mark>KGQSLQDPYLN</mark> AL RRER IPVSIYLVNGI	KLQGQIESFDQFIILLKNTVSQMVYKHAISTVVPARSISHNNNGSSQAQAPQQ
MA <mark>KGQSLQDPYLN</mark> AL RRERIPVSIYLVNG I	CLOGQIESFDQFVILLKNTVNQMVYKHAISTVVPARSVSHHNN
MAKGQSLQDPYLNAL RRERIPVSIYLVNGI	KLOGO I ESFDOFVILL KNTVNOMVYKHAISTVVPARSVSHHNNNGG
MAKGOSLODPYLNAL RRERI PVSI YLVNGI	CLOGO I ESEDO EVILLENTY SOMVYKHAI STVV PARAI SHNNN SN
MAKGOSLODPYLNAL BREBLEVSLYLVNGL	ALOGO LESEDO EVILLE KNTVNOM VYKHALSTVVPARSVSHIN SVOHHI
MAKGOSLODPYLNAL RREPLEVSLYLVNGL	A DOOLESEDOEVILLE KNTVNOMVYKHALSTVVPARSVSHHNNPOOOO
MAKCOSLODDYL NAL PREPLOVSLVLVNCL	
MONGHOLOD PYLNTL RKERVPVOI YLVNGI	
MSKGHSLQUPYLNILKKERVPVSIYLVNGI	LUGUIESFDUFVILLEN IVSUMVYKHAISIVVPSRPVRLPSAG
MSKGHSLQDPYLNTLRKEKVPVSTYLVNGT	CLOGSTESFDQFVVLLKNTVSQMVYKHATSTVVPARPVRLPSPT
MSKGHSLQDPYLNTLRKERVPVSIYLVNGI	CLOGOTESFDOFVILLENTVSOMVYKHATSTVVPGRPVRLPTAG
MAKGQSLQDPFLNALRRERVPVSIYLVNGI	KLQGQVESFDQFVILLKNTVSQMVYKHAISTVVPSRPFNVGSHQ
MA <mark>KGQSLQDP</mark> FL <mark>N</mark> AL RRER VPVSIYLVNGI	KLQGQVESFDQFVILLKNTVSQMVYKHAISTVVPARPFNVSSHH
MA <mark>KGQSLQDP</mark> FL <mark>N</mark> AL RRER VPVSIYLVNGI	KLQGQVESFDQFVILLKNTVSQMVYKHAISTVVPSRPFNVSNHQ
MA <mark>KGQSLQDP</mark> FL <mark>N</mark> AL RRER VPV <mark>SIY</mark> LVNGI	KLQGQVESFDQFVILLKNTVSQMVYKHAISTVVPSRPFNVSNHQ
MA <mark>KGQSLQDPFLN</mark> ALRCERIPVSIYLVNGI	CLQGQIESFDQFVILLKNTVNQMVYKHAISTVVPARAVSHHTAS
MA <mark>KGQSLQDP</mark> FL <mark>N</mark> AL RRER IPVSIYLVNGI	CLQGQIESFDQFVILLKNTVNQMVYKHAISTVVPARAVSHHTAE
MA <mark>KGQSLQDP</mark> FL <mark>N</mark> AL RRER IPVSIYLVNGI	CLQGQIESFDQFVILLKNTVNQMVYKHAISTVVPARPVNHHHAS
MAKGOSLODPELNAL RRERI PVSI YLVNGI	CLOGO I ESEDO EVILLENTVNOM VYKHAI STVVPARPVSHHSG
MAKGOSLODPELNAL RREPLEVSLYLVNGL	CLOGOLESEDOEVILLENTVNOMVYKHALSTVVPARAVSHHSAS
MAKGOSLODPELNAL RREPLEVSLYLVNGL	ALOGOLESEDOEVILLEKNTVNOMVYKHALSTVVPARPVSHHSG
MAKGOSLOD PELNAL PREPLAVSLVLVNGL	LOCOLESEDOEVILLE KNTVNOMVYKHALSTVVDADDVSHHSC
MAKGOSLODPELNAL RREPLEVSLVLVNCL	
MAKCOSLODDEL NAL BREDLOVEL VI VNCL	
MARGOOLODDELWAL BRERVEVEVEVEVELVNGT	
MSKGQSLQDPFLNAL RRERVPVSVYLVNGT	
MSKGQSLQUPFLNALRRERVPVSVYLVNGT	LUGITESPOURVVLL KNTVSUMVYKHATSTVVPARNVKVGPGG
MSKGQSLQDPFLNALKRERVPVSVYLVNGI	LUGIIESTDUTVVLERNIVSUMVYKHAISTVVPARNVRVGPGG
MAKGQSLQDPFLNALRRERVPVSVYLVNGI	CLUGIIESFDUFVVLLRNTVSQMVYKHAISTVVPARNVRVGPGG
MAKGQSLQDPFLNALRRERVPVSVYLVNGI	CLOGTIESFDQFVVLLERNTVSQMVYKHAISTVVPARNVRVGPGG
MAKGOSI ODPELNAI PRERVPVSVVI VNGI	

		PTETHAQSSEEFGNI
		FEASAESLVGEEESNN
		SNNAUPSSAASUDSEDAE
		- ANNQSAQQQPQQESDDAE
		- GSNAQGSSAPAQDSDETE
		- GSNQGASTQPQQESDDTE
		- GSSPAPSSQPQQDSADAE
		GSSAONTSA-OODSEETE
		GOSAOOSSAPOODSDDAF
		GNNPSAPQQPQQESDDAE
		- GS- TPASQPSQPESDDAE
		- GSNPSAPQQPQQDSDDAE
	GFGGAQGAGFGGQGGFG-GQGGFGGQGGFGGQ-GGFG-GQGGFGGQGGFGGQGGFGGHQGGFDNDSKFE	D <mark>G</mark> QD <mark>D E</mark> NN R
	GFGGAQGGFGGAQGGFGGAQGGFGGQGGFGGQGGFG-GQGGFGGQGGFGGQGGFGGAGGFDNDSKFE	D GQD D ENNR
	GV SGG F E RGG S AN PAT GGG F E E RG F AN R SG F N R GG F SOG O E RG F E RG S F GOG O E RG F E RG G F G O RG F E A P	LENVGYDNKPNDESDDSNS
		TSHTOOAPAVEAVADKAE
		COOLETTRAENNVEAOAE
ns		GOOGENPOOLETNTPACAGAE
		QQQEAPSSIEINIDAQIE
		- AVQTIQPVEATVATDKME
		- NHHTAPTEAVENVETQAE
		- HHAAQTSDAVAEVETQAE
		- HAHQAA <mark>P</mark> VQSAEV <u>V</u> EKVE
		- I VQTQEMQAEVLA <mark>EN</mark> QT <mark>E</mark>
		- QH SQQ T E S A A <mark>P</mark> A A <mark>E P</mark> Q A <mark>E</mark>
		- QQN YQQEQQTD SN VEKAE
		E <mark>G</mark> EQ <mark>PEPG</mark> NA
		D - Q <mark>P</mark> A <mark>E PG</mark> N A
		DAEHGDSEPGNA
		DSEQADAEPGNA
		DSEHGDSEPGNA
	N	
	η	THACAS TNASHDDSA- E-
		ATNAQAG INAQHDDGD-EK
		AINAQAGYNAQHDEID-EK
		DRPQGERPQEITEE
		PRTGSDRPSDKSEE
		· DRPA TLEKTEE
		DRPASDRPAEKSEE
		DRPQGERPQEKTEE
		DRPINERGSEKSED
		CYVOODRE COEDODEOA
		CYVOSCEC COACDEADE
		CYVONEC CSALDEAE
		GYVOSNENNOAEDDDVE
		GYVOSNEGNOAEDDDVEG
		GYVHSGSDTI OINDDEVE

Figure S3

