
Supplementary Notes 

1. Implementation of the compressed sensing algorithm 

A major consideration of our implementation of the compressed sensing algorithm is the 
computation time. Therefore, we subdivided the original image into smaller patches, which not 
only reduces to total time to analyze the entire image, but also opens the possibility for parallel 
computing to further improve the computation speed. On the other hand, merging results from 
different patches becomes important. Our implementation took a simple approach that is 
facilitated by a small overlap between adjacent patches: 

 

             

Given: camera image B, super-resolution image x, patch size u-by-
v pixels, oversampling factor R, reduced chi-squared target ε, 
the imaging matrix A and the vector c for a small u-by-v image. 

Dividing the camera image, B, into a set of small u-by-v image 
patches, b, with two pixels shared by adjacent patches. 
 
For each small image, b, do:  
 

1. Create an oversample grid, x, with a size of R × (u + 4) by 
R × (v + 4). The margin of extra 2 pixels on each edge of 
the patch accounts for the contribution from molecules 
outside. 

 
2. Minimize cTx’  
     subject to xi ≥ 0  
            and ||Ax’ – b’||2 ≤ ε × sqrt(sum(b)) 

 
For each patch of the optimization result, x, set the outmost 3-
pixel boundary to zero to avoid overlap (2 pixel extra marging + 
one pixel overlap between patches). 
 
Add all x together to form the result of the full image. 
 
             

 

The computation time of our compressed sensing algorithm depends on the number of 
molecules in an image frame. Analyzing a 32 × 32 pixel2 image typically takes about 30 seconds 
on our Intel Xeon X5560 (2.8 GHz) workstation using a single computation thread. The slow 
computation speed is inherent for such a large optimization problem, and can also be partially 
attributed to our choice of MATLAB programming language instead of the faster C/C++. On the 
other hand, the fact that our algorithm performs independent optimizations on small, uniformly 



sized image patches makes it easily adaptable to massive parallel computing, especially GPU 
computation1,2, for much enhanced speed.  

 

 

2. Evaluation of the compressed sensing method 

We first analyzed the density of molecules identifiable by different methods. In the high 
photon number simulation which corresponds to bright organic fluorophores (Figure 1b), 
compressed sensing is much more efficient in identifying densely located molecules. The number 
of identified molecules using the single-molecule fitting algorithm peaks at 0.58 per μm2 when 
the original image has approximately 2 molecules per μm2. On the contrary, compressed sensing 
can identify as many as 8.8 molecules per μm2 out of 12.5 molecules per μm2 in the original 
image.  

Next, we examined the localization precisions (Figure 1c). At low molecule density, the 
precision of compressed sensing is just slightly worse than that of single-molecule fitting, 
presumably due to the finite size of the grid and the unweighted least square constraints used. In 
simulations with only one molecule in the view field, both methods approach the theoretical limit 
(9.2 nm for fitting, 11.1 nm for compressed sensing, whereas the Cremer-Rao lower bound 
(CRLB)2,3,4 is 8.8 nm; all numbers are FWHM). As expected, the localization precision starts to 
degrade with high molecule densities. At a density higher than 2 molecules per μm2, compressed 
sensing gives slightly better precision than the fitting method.  

We also analyzed the same set of simulated data with the previous reported DAOSTORM 
method using the Python code provided by its authors5. Supplementary Figure 4 compares the 
performance in molecule identification and localization precision. The number of molecules 
identified by DAOSTORM plateaus at 2.4 to 2.7 per µm2 when the molecule density exceeds 4 
per µm2, At the same time, the localization error of DAOSTORM in this range of molecule 
density is about the same as the single-molecule fitting method. At relatively low molecule 
density (< 2 per µm2), all three methods show similar localization precision. We note that our 
DAOSTORM results are consistent with those previously published5 considering that our 
simulation uses a smaller average photon number per molecule (3,000 versus 8,333 (5,000 
effective)), includes a higher background (70 photons per pixel versus 10), and considers the 
variation of photon numbers among molecules.  

Finally, for the overall temporal resolution, Figure 1d and Supplementary Figure 9 
summarizes the minimum number of image frames to attain a given overall spatial resolution. At 
a resolution of 40 nm (the best allowed by our grid size) to 110 nm (close to what can be achieved 
by the faster Structured Illumination Microscopy6), compressed sensing allows 1/6 to 1/15 of the 
number of camera frames to be used compared to the single-molecule fitting method. That means 
a factor of 6 to 15 of improvement in time resolution depending on the desired spatial resolution. 
For example, only 45 camera frames are needed to support a 100 nm spatial resolution, 
corresponding to 0.75 sec integration time if the camera operates at 60 frames / sec.  

In the two additional sets of simulations with photon statistics corresponding to fluorescent 
protein mEos2 and a very low photon case (see Supplementary Figs. 6 and 8), we have also seen 



the substantial improvement in molecule identification efficiency by compressed sensing. At 750 
photons per molecule, compressed sensing identifies 6.7 molecules per µm2 with a precision of 
113 nm. At 200 photons per molecule, compressed sensing identifies 3.8 molecules per µm2 with 
a precision of 126 nm. These values suggest an imaging speed that is approximately 75% and 
40%, respectively, compared to the 3,000 photons per molecule case if one targets ~ 100 nm 
resolution. 

We must emphasize that the resolution calculation above is for a 2D continuous sample. In 
real biological samples where the molecules are clustered into one-dimensional (e.g. microtubule) 
or “zero-dimensional” (e.g. clathrin-coated pits) structures, the number of frames needed to 
achieve a given molecule density can be even smaller7.  

 

3. Fundamental limit in molecule density 

Compressed sensing is able to recover sparse or compressed signals using very few 
measurements from a linear system, without knowing in advance the support of the signal (i.e. 
where the signals are exactly zeros). An important concept in the compressed sensing theory is 
the restricted isometry principle (RIP)8, which determines the accuracy and the stability of the 
signal recovery. A linear system A is said to obey RIP with a sparsity s (i.e., s non-zero elements 

in x) and an error tolerance s if one has 

 (1 – δs) ||x||2
2  ≤  ||Ax||2

2  ≤  (1 + δs) ||x||2
2 (1) 

for all s-sparse vector x, where s is the smallest value such that the inequation holds and s-sparse 
means that x has at most s non-zero elements. To recover s-sparse vectors, it is important to 

consider 2s, since the difference between two s-sparse vectors must be a 2s-sparse vector. If 2s is 

sufficiently smaller than 1 (practical implementations require 2s0.4)8, then any pair of s-sparse 
vectors will have a degree of distinguishability in the data space. The compressed sensing theory 
shows that s-sparse vectors can be exactly recovered via L1 norm minimization on the estimated 
signals9. 

Our problem of localizing sparse molecules fits the application scenario of compressed 
sensing. The condition on the molecule sparsity for exact signal recovery, however, requires a 
complete RIP analysis. Although such an analysis is complicated in general, here we try to use a 
simplified case to provide insights into the limit of molecular density that compressed sensing can 
detect. Specifically, we investigate what is the smallest distance of two molecules (s = 2) for them 

to be “perfectly” detected using compressed sensing. For this purpose, we calculate 4 as shown 
in Supplementary Figure 3 for different minimum distances between molecules. The system PSF 
is assumed to be a 2D symmetric Gaussian function, and the molecule distances are plotted in 

unit of PSF standard deviation . The 4 values are below 0.4 for molecule distances larger than 

2.5 (approximately the FWHM of the PSF), which indicates that the compressed sensing 
algorithm is able to achieve exact molecule localization for a molecule density up to 

approximately 0.16/2. Given that our observed PSF has  = 143 nm, this limit corresponds to a 
molecular density of 7.8 µm-2, consistent with fact that in the high photon number case, our 
molecule identification starts to lose efficiency at a molecule density around 9 µm-2. It is also 



consistent with the maximum density of recovered molecules (around 8.8 µm-2) in our 
simulations despite our overly simplified derivations. 

The conventional fitting-based algorithms may allow a similar minimum molecule distance 
for accurate detection if only a few molecules are present in the imaging field and the total 
number is known. Compressed sensing is able to automatically detect all the molecule locations 
without prior knowledge of their total number, as long as their mutual distance (therefore density) 

is not higher than the value suggested by the 4 plot. The advantage is more obvious when one 
image frame contains a large number of molecules. Finally, we would like to emphasize that a 

rigorous RIP analysis should calculate s of all s values for the given linear system A. The above 
description should be considered as only a rough estimation of the maximum density of detected 
molecules in the STORM imaging using compressed sensing, which will hopefully be replaced 
by future, more solid work. 

It is also an interesting topic to compare the compressed sensing approach and the statistical 
approach. The goal of STORM imaging in general is to determine the molecule locations with 
some prior knowledge. The available prior knowledge in this problem includes the sparsity of the 
true signals, the probability distribution of the detected photons and the detector PSF. The 
advantage of compressed sensing is efficient recovery of sparse signals even if the measured data 
are heavily corrupted by noise or errors. On the other hand, statistics-based approaches improve 
the imaging performance by accurate modeling of the probability distribution of the detected 
photons. These two categories of methods use different prior knowledge in the same application, 
with different pros and cons. In the study presented in this paper, we adopt a classic form of 
compressed sensing reconstruction, using very limited prior knowledge of the statistics. As shown 
in the general framework (Eq. 1), only an estimated noise standard deviation of the measured data 
is required in our algorithm. However, compressed sensing is compatible with statistics-based 
approaches. We can further improve our algorithm performance, especially in the case of high 
noise, by modeling the noise statistics in our optimization framework. This improved framework 
will achieve the theoretical limit as shown in Ref. 10. It will be one of our future research 
directions. 
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Supplementary Figures 

 

4× subdivision 8× subdivision 16× subdivision 

   

   

Supplementary Figure 1. Analyzing single molecule images by compressed sensing. (Upper 
row) Scheme of dividing image pixels into oversampled grids. (Middle row) Comparing the 
analysis of the image in Figure 1a using different oversampling factors. (Lower row) Zoomed-in 
displays of the compressed sensing results for the boxed regions. Note that the difference in 
molecular identification efficiency is relatively small. The computation times for 4×, 8×, and 16× 
oversampling are 15 sec, 28 sec and 134 sec, respectively. Scale bars: 300 nm. 
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Supplementary Figure 2. Effect of ε on compressed sensing. Showing the number of molecules 
identified in the simulated image of Figure 1a (100 molecules in the simulation). Because ε 
corresponds to the reduced χ2, an ε value of 1 corresponds to perfect modeling of the image if the 
noise estimation is exact. With an ε value smaller than 1, the image is over fitted which results in 
over-identification, whereas an ε value larger than 2 enforces the sparsity condition too strongly. 
In practice, we choose an ε value of 1.5 for all of our analyses (with an extra factor of √2 in 
analyzing experimental images from EMCCD to account for its extra noise).  

 

  

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

Id
e

n
tif

ie
d

 m
o

le
cu

le
s





 

Supplementary Figure 3. Analysis of the limitation in inter-molecular distances for “perfect” 
recovery using compressed sensing. Plotting the value of δ4 as a function of the separation 
between two molecules in units of the standard deviation of the PSF, σ. δ4 reaches a value of 0.4 
(the threshold for perfect recovery, see Candès, E.J., Comptes Rendus Mathematique, 346, 589-

592 (2008)) when the separation is larger than 2.5, or approximately the FWHM of the PSF.  
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Supplementary Figure 4. Comparing compressed sensing to DAOSTORM in the high photon 
count case corresponding to the Alexa Fluor 647 dye (mean photon number 3,000 per molecule, 
background 70 photons per pixel). The same simulation data sets are analyzed by DAOSTORM 
using the Python code provided by Holden, Uphoff & Kapanidis, Nat. Methods 6, 279-280 (2011). 
The number of molecules identified and the localization precisions are compared to those of the 
fitting method and compressed sensing in the same way as in Figures 1b and 1c.  
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Supplementary Figure 5. Localization precision of the compressed sensing algorithm as a 
function of molecule density. The analysis is done to simulated data in the high photon count case 
corresponding to the Alexa Fluor 647 dye (mean photon number 3,000 per molecule, background 
70 photons per pixel). Each molecule identified by compressed sensing is matched to the closest 
“true” molecule position. The two histograms of the x offsets and y offsets are summed and 
displayed in each panel. These histograms are fitted with Gaussian functions whose widths are 
presented in Figure 1c and Supplementary Figure 4.  
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Supplementary Figure 6. Comparing compressed sensing and single-molecule fitting in 
analyzing simulated data corresponding to the fluorescent protein mEos2 images (mean photon 
number 750 per molecule, background 50 photons per pixel). The dashed line in the localization 
precision plot represents the CRLB for single-molecule localization (22 nm FWHM). 
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Supplementary Figure 7. Compressed sensing analysis in a low signal-to-noise case. The 
simulation is performed with 50 molecules with 200 photons per molecule and a background of 
20 photons per pixel. Showing (a) the simulated camera image, (b) compressed sensing result, 
and (c) the comparison of the compressed sensing result (red crosses) with the molecule positions 
in the simulation. Scale bars: 300 nm. It is evident that the result from compressed sensing 
generally matches well with the simulation input, although closely located molecules are 
occasionally merged into one because the high noise can make them statistically indistinguishable.  
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Supplementary Figure 8. Comparing compressed sensing and single-molecule fitting in 
analyzing simulated low signal-to-noise images (mean photon number 200 per molecule, 
background 10 photons per pixel). The dashed line in the localization precision plot represents the 
CRLB for single-molecule localization (40 nm FWHM). 
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Supplementary Figure 9. Minimum number of frames to achieve a given overall image 
resolution for a continuous 2D sample based on the simulation results, displayed on a log-log plot 
with the image resolution set between 40 and 110 nm. The analysis is done to simulated data in 
the high photon count case corresponding to the Alexa Fluor 647 dye (mean photon number 3,000 
per molecule, background 70 photons per pixel). The curve for the fitting method is calculated 
using a constant 0.58 μm-2 identified molecule density, whereas the curves for the compressed 
sensing and DAOSTORM are calculated using identified molecule densities that allow the 
corresponding localization precisions to match the desired image resolution.  
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Supplementary Video 

STORM “movie” of microtubules in a living Drosophila S2 cell stably expressing mEos2-fused 
tubulin, with a time resolution of 3 sec. The movie is reconstructed from 4349 camera frames (77 
sec) and plays 11 times as fast as real time. Three snapshots from the movie are shown in Figure 
2b. Scale bar: 1 µm. 

 


