Supplementary information S1 (table) | **Paradigms for understanding roles played by non-coding RNAs in nervous system disorders with examples**

Disease	ncRNA	Relationship	Ref.
Genetic variation in ncRNA	genes		
		Bc1 ^{-/-} mice exhibit neuronal hyperexcitability and	
Epilepsy	<i>Bc1</i> IncRNA	seizures	1
		Amplification of miR-26a, targeting PTEN, is often	
Gliomas	miR-26a	present in gliomas	2
		Loss of heterozygosity and associated overexpression	
		of miR-185, targeting DNMT1, promotes glioma	
Gliomas	miR-185	formation	3
Major depression /		Polymorphism leads to abnormal processing of pre-miR-	
insomnia	miR-182	182 and target gene deregulation	4
Mitochondrial encephalo-	Mitochondrial	Heterogeneous mutations impair mitochondrial protein	
myopathies	tRNAs / rRNAs	synthesis and respiration	5, 6
	SNORD116		
Prader-Willi syndrome	snoRNA cluster	Microdeletion gives rise to clinical features of PWS	7
	miR-517c,		
Primitive neuroectodermal	-520g poly-	Chr19q13.41 amplification results in oncogenic miRNA	
tumors	cistronic cluster	overexpression	8
Spinocerebellar ataxia type	ATXN8OS	Expanded repeats in IncRNA gene cause RNA-	
8	IncRNA	mediated toxicity	9, 10
Stroke, gliomas,			
neurofibromas	ANRIL IncRNA	Variation in the ANRIL gene confers disease risk	11-15
Genetic variation in diseas	e-linked protein-o	coding genes impacts interactions with ncRNAs	<u>.</u>
Alzheimer's disease and		Altered miR-659 binding site in GRN 3'-UTR is risk	
frontotemporal lobar		factor for hippocampal sclerosis in AD and TARDBP-	
dementia	miR-659	positive FTLD	16, 17
		Variant miR-189 binding site in SLITRK1 3'-UTR is	
		deregulation of SLITRK1 and is associated with	
Tourette's syndrome	miR-189	Tourette' syndrome	18
		Altered miR-433 binding site in FGF20 3'-UTR leads to	
Parkinson's disease	miR-433	deregulation and repression of α -synuclein	19

Epigenetic deregulation of	ncRNA genes		
Brain tumors	H19	Partial loss of imprinting leads to biallelic expression	20, 21
	miR-124, -137,		
Brain tumors	-199b-5p	Abnormal DNA methylation leads to deregulation	22, 23
Perturbations in factors re	sponsible for mo	dulating ncRNA biogenesis, maturation, and function	
	Pol III-		
Autosomal recessive	dependent	Mutations in Pol III subunits impair transcription of	
leukoencephalopathy	ncRNAs,	ncRNAs	24
Fragile X syndrome	miRNAs	FMRP interacts with miRNA pathways	25
Frontotemporal lobar			
dementia	NEAT1/2	TARDBP binds high levels of <i>NEAT1/2</i> in FTLD brains	26
	CCND1		
	promoter-		
FUS-associated	derived	FUS recruited by IncRNAs to CCND1 promoter in	
pathological states	IncRNAs	response to DNA damage	27
	miRNA		
	isomiRs,		
Huntington's disease	IncRNAs	Deregulation of REST and consequently of ncRNAs	28-30
		DICER1 deletion leads to accumulation of toxic Alu	
Macular degeneration	<i>Alu</i> ncRNAs	ncRNAs in retinal pigmented epithelium	31
		Mutations in <i>LRRK2</i> impair miRNA-mediated	
Parkinson's disease	miRNAs	translational repression	32
Genomic context links ncF	RNA genes to dise	ease-causing genes and susceptibility loci	
	BACE1-		
	antisense	Derived from the <i>BACE1</i> gene locus; modulates BACE1	
Alzheimer's disease	IncRNA	expression and localization	33
Fragile X and associated			
tremor and ataxia	FMR4, ASFMR	Overlap the FMR1 gene locus and are deregulated in	
syndrome	IncRNAs	these diseases	34, 35
Neurodevelopmental	SOX2OT,		
syndromes associated with	SOX2DOT		
Sox2 locus	IncRNAs	Overlap the SOX2 gene locus	36
Non-syndromic mental		Derived from and implicated in regulating synaptic gene	
retardation	endo-siRNAs	loci including SYNGAP1	37
Schizophrenia, bipolar			
disorder, major depression,			
autism	DISC2 IncRNA	Derived from and implicated in regulating <i>DISC1</i> locus	38
Spinocerebellar ataxia type	SCAANT1	Transcribed antisense to and implicated in regulating	
7	IncRNA	ATXN7	39

ncRNAs differentially expressed in disease-related central and peripheral tissues					
		Upregulated in mouse models of ALS and implicated in			
Amyotrophic lateral		slowing disease progression and enhancing			
sclerosis	miR-206	regenerative responses	40		
	Alu / L1 retro-				
	transposon-				
	derived	Tumor cells release exosomes containing ncRNAs			
	ncRNAs,	potentially promoting angiogenesis, local invasion, and			
Brain tumors	miRNAs	metastasis	41, 42		
		piRNAs implicated in regulating LINE retrotransposons			
Cerebral ischemia	piRNAs	are differentially expressed in ischemic mouse brain	43		
	snoRNAs,	Deregulated in human endothelial progenitor cells			
Down syndrome	IncRNAs	isolated from blood	44		
	L1				
	retrotransposon				
	-derived	Patients with MECP2 mutations have increased			
Rett syndrome	ncRNAs	susceptibility to L1 retrotransposition	45		

AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; AS, Angelman syndrome; ATXN7, ataxin 7; BACE1, ß-site APP-cleaving enzyme 1; CCND1, cyclin D1; DISC1, disrupted in schizophrenia 1; DNMT1, DNA methyltransferase 1; FMR1, fragile X mental retardation 1; FMRP, fragile X mental retardation protein; FTLD, frontotemporal lobar dementia; FUS, fused in sarcoma; GRN, granulin; HD, Huntington's disease; LRRK2, leucine-rich repeat kinase 2; IncRNA, long non-coding RNA; MECP2, methyl CpG binding protein 2; miRNA, microRNA; ncRNA, non-coding RNA; PD, Parkinson's disease; piRNA, PIWI-interacting RNA; PTEN, phosphatase and tensin homolog; PWS, Prader-Willi syndrome; RNA Pol III, RNA polymerase III; SCA8, spinocerebellar ataxia type 8; SLITRK1, Slit and Trk-like; SOX2, SRY (sex determining region Y)-box 2; SYNGAP1, synaptic Ras GTPase activating protein 1; TARDBP, TAR DNA binding protein; XLMR, X-linked mental retardation.

Supplementary References

- 1. Zhong, J. et al. BC1 regulation of metabotropic glutamate receptor-mediated neuronal excitability. *J Neurosci* **29**, 9977-86 (2009).
- 2. Huse, J.T. et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. *Genes and Development* **23**, 1327-37 (2009).
- 3. Zhang, Z. et al. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. *Molecular Cancer* **10**, 124 (2011).
- 4. Saus, E. et al. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. *Human Molecular Genetics* **19**, 4017-25 (2010).
- 5. Yarham, J.W., Elson, J.L., Blakely, E.L., McFarland, R. & Taylor, R.W. Mitochondrial tRNA mutations and disease. *Wiley Interdiscip Rev RNA* **1**, 304-24 (2010).
- 6. Rotig, A. Human diseases with impaired mitochondrial protein synthesis. *Biochimica et Biophysica Acta* **1807**, 1198-205 (2011).
- 7. Sahoo, T. et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. *Nature Genetics* **40**, 719-21 (2008).
- 8. Li, M. et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. *Cancer Cell* **16**, 533-46 (2009).
- 9. Moseley, M.L. et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. *Nat Genet* **38**, 758-69 (2006).
- 10. Daughters, R.S. et al. RNA gain-of-function in spinocerebellar ataxia type 8. *PLoS Genet* **5**, e1000600 (2009).
- 11. Pasmant, E., Sabbagh, A., Vidaud, M. & Bieche, I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. *FASEB Journal* **25**, 444-8 (2011).
- 12. Zhang, W. et al. Variants on Chromosome 9p21.3 Correlated With ANRIL Expression Contribute to Stroke Risk and Recurrence in a Large Prospective Stroke Population. *Stroke* (2011).
- 13. Pasmant, E. et al. Role of Noncoding RNA ANRIL in Genesis of Plexiform Neurofibromas in Neurofibromatosis Type 1. *Journal of the National Cancer Institute* **103**, 1713-1722 (2011).
- 14. Burd, C.E. et al. Expression of linear and novel circular forms of an INK4/ARFassociated non-coding RNA correlates with atherosclerosis risk. *PLoS Genetics* **6**, e1001233 (2010).
- 15. Cunnington, M.S., Santibanez Koref, M., Mayosi, B.M., Burn, J. & Keavney, B. Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression. *PLoS Genetics* **6**, e1000899 (2010).
- 16. Rademakers, R. et al. Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. *Human Molecular Genetics* **17**, 3631-42 (2008).
- 17. Dickson, D.W., Baker, M. & Rademakers, R. Common variant in GRN is a genetic risk factor for hippocampal sclerosis in the elderly. *Neuro-Degenerative Diseases* **7**, 170-4 (2010).
- 18. Abelson, J.F. et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. *Science* **310**, 317-20 (2005).
- 19. Wang, G. et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. *American Journal of Human Genetics* **82**, 283-9 (2008).
- 20. Albrecht, S. et al. Variable imprinting of H19 and IGF2 in fetal cerebellum and medulloblastoma. *J Neuropathol Exp Neurol* **55**, 1270-6 (1996).
- 21. Muller, S., Zirkel, D., Westphal, M. & Zumkeller, W. Genomic imprinting of IGF2 and H19 in human meningiomas. *Eur J Cancer* **36**, 651-5 (2000).
- 22. Silber, J. et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. *BMC Medicine* **6**, 14 (2008).
- 23. Garzia, L. et al. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. *PLoS ONE* **4**, e4998 (2009).

- 24. Saitsu, H. et al. Mutations in POLR3A and POLR3B Encoding RNA Polymerase III Subunits Cause an Autosomal-Recessive Hypomyelinating Leukoencephalopathy. *American Journal of Human Genetics* **89**, 644-51 (2011).
- 25. Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. *Nature Neuroscience* **7**, 113-7 (2004).
- 26. Tollervey, J.R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. *Nature Neuroscience* **14**, 452-8 (2011).
- 27. Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. *Nature* **454**, 126-30 (2008).
- 28. Packer, A.N., Xing, Y., Harper, S.Q., Jones, L. & Davidson, B.L. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. *J Neurosci* **28**, 14341-6 (2008).
- 29. Marti, E. et al. A myriad of miRNA variants in control and Huntington's disease brain regions detected by massively parallel sequencing. *Nucleic Acids Research* (2010).
- 30. Johnson, R. et al. The Human Accelerated Region 1 noncoding RNA is repressed by REST in Huntington's disease. *Physiological Genomics* (2010).
- 31. Kaneko, H. et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. *Nature* **471**, 325-30 (2011).
- 32. Gehrke, S., Imai, Y., Sokol, N. & Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. *Nature* **466**, 637-41 (2010).
- Faghihi, M.A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. *Nat Med* 14, 723-30 (2008).
- 34. Khalil, A.M., Faghihi, M.A., Modarresi, F., Brothers, S.P. & Wahlestedt, C. A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. *PLoS One* **3**, e1486 (2008).
- 35. Ladd, P.D. et al. An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. *Hum Mol Genet* **16**, 3174-87 (2007).
- 36. Amaral, P.P. et al. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. *RNA* **15**, 2013-27 (2009).
- 37. Smalheiser, N.R., Lugli, G., Thimmapuram, J., Cook, E.H. & Larson, J. Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training. *RNA* **17**, 166-81 (2011).
- 38. Brandon, N.J. & Sawa, A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. *Nature Reviews. Neuroscience* **12**, 707-22 (2011).
- 39. Sopher, B.L. et al. CTCF regulates ataxin-7 expression through promotion of a convergently transcribed, antisense noncoding RNA. *Neuron* **70**, 1071-84 (2011).
- 40. Williams, A.H. et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. *Science* **326**, 1549-54 (2009).
- 41. Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. *Nat Commun* **2**, 180 (2011).
- 42. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. *Nat Cell Biol* **10**, 1470-6 (2008).
- 43. Dharap, A., Nakka, V.P. & Vemuganti, R. Altered expression of PIWI RNA in the rat brain after transient focal ischemia. *Stroke* **42**, 1105-9 (2011).
- 44. Costa, V. et al. Massive-scale RNA-Seq analysis of non ribosomal transcriptome in human trisomy 21. *PLoS ONE* **6**, e18493 (2011).
- 45. Muotri, A.R. et al. L1 retrotransposition in neurons is modulated by MeCP2. *Nature* **468**, 443-6 (2010).