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Appendix 1
Here, we present an interpretation of the ðγT; λTÞ-formulae as
averages over a large number of simple branch length formulae,
which allows us to prove Theorem 1: Because these simple for-
mulae are correct—that is, they correctly provide the branch
lengths of a tree whenever the input distances are additive with
respect to that tree—it follows that also the ðγT; λTÞ-formulae
are correct. The detailed arguments follow below.

Let ℓ̂eðδÞ denote the length that is assigned to branch e by an
adopted length estimation method. Let T � be a tree where e has
length ℓe. The adopted method is correct if, for any such tree
T �, ℓ̂eðdT � Þ ¼ ℓe.

Suppose e is an external branch, and defineA, B, i as in Fig. 1A
in the main text. Choose a taxon a from A and a taxon b from B.
Then calculate the length of e with:

ℓ̂
ab
e ðδÞ ¼ 1

2
ðδia þ δib − δabÞ:

If instead e is an internal branch, let A1, A2, B1 , and B2 be the
four clades surrounding it, as in Fig. 1B in the main text. Choose
taxa a1, a2, b1, b2 fromA1,A2, B1, B2, respectively. It is clear that
any drawing of the tree on the plane either places A1 to the side
of B1 and therefore A2 to the side of B2 (as in Fig. S1B, Top) or
alternatively A1 to the side of B2 and A2 to the side of B1

(Fig. S1B, Bottom). We associate the former drawing with the fol-
lowing formula for the length of e:

ℓ̂
a1b1a2b2
e ðδÞ ¼ 1

2
ðδa1b1 þ δa2b2 − δa1a2 − δb1b2Þ:

The alternative drawing is associated to the formula ℓ̂
a1b2a2b1
e ðδÞ.

Note that ℓ̂
ab
e ðδÞ, ℓ̂ a1b1a2b2

e ðδÞ and ℓ̂
a1b2a2b1
e ðδÞ are all trivially

correct.
The γT and λT parameters introduced in the main text can be

interpreted as controlling a probability distribution over all pos-
sible such formulae for calculating the length of a given branch e
in T. First, as illustrated in Fig. S1A, the γT parameters deter-
mine the probability of choosing a given taxon out of any given
clade (a from A, b from B in the case of external branches, a1
from A1, a2 from A2, b1 from B1, b2 from B2 in the case of inter-
nal branches). Second, as illustrated in Fig. S1B, the λT para-
meters determine the probability of choosing either of the two
possible drawings for the clades around an internal branch e,
and therefore either of ℓ̂ a1b1a2b2

e ðδÞ or ℓ̂ a1b2a2b1
e ðδÞ for the length

of e: λA1B1
¼ λA2B2

is the probability of drawing A1 to the side of
B1 and A2 to the side of B2, whereas its complement
λA1B2

¼ λA2B1
¼ 1 − λA1B1

is the probability of drawing A1 to
the side of B2 and A2 to the side of B1.

Given this probability distribution, let us take the resulting ex-
pected value of the length assigned to e. In the (harder) case of an
internal branch, this is given by

∑
a1∈A1 ;b1∈B1
a2∈A2 ;b2∈B2

pa1jA1
pa2jA2

pb1jB1
pb2jB2

½λA!B1
ℓ̂
a1b1a2b2
e ðδÞ

þ λA!B2
ℓ̂
a1b2a2b1
e ðδÞ�

¼ 1

2 ∑
a1∈A1 ;b1∈B1
a2∈A2 ;b2∈B2

pa1jA1
pa2jA2

pb1jB1
pb2jB2

½λA!B1
ðδa1b1 þ δa2b2Þ

þ ð1 − λA1B!
Þðδa1b2 þ δa2b1Þ − δa1a2 − δb1b2 �

¼ 1

2
½λA1B1

ðδA1B1
þ δA2B2

Þ þ ð1 − λA1B1
ÞðδA1B2

þ δA2B1
Þ

− δA1A2
− δB1B2

�:

Thus what we obtain (also in the easier case of an external
branch; not shown) are precisely the ðγT; λTÞ-formulae. In other
words, these formulae can be seen as providing the expected
length of a branch when this is assigned following the random
procedure described above. Given this observation, the correct-
ness of the ðγT; λTÞ-formulae follows trivially from the correct-
ness of the base formulae ℓ̂

ab
e ðδÞ and ℓ̂

a1b1a2b2
e ðδÞ. Theorem 1 is

therefore proved.
We note that the approach of expressing a length estimator as

the combination of several simple formulae has already been con-
sidered by Willson (1). His base formulae, however, express the
length of a path in the tree (as a function of the distances between
three taxa) rather than a single branch (which we express as a
function of the distances between three or four taxa, for exterior
and interior branches, respectively). Moreover, the combination
of his base formulae provide an estimate of the total length of the
tree (in the MEþ1 sense).

Appendix 2
Here, we prove the relationship between the M&P formulae (2)
and our ðγT; λTÞ-formulae, as stated in Theorem 2. We start by
formally defining the M&P formulae (A2.1); then we introduce a
few additional formalisms and a useful observation (A2.2) and
then prove separately the two parts of Theorem 2 (i in A2.3
and ii in A2.4). This requires showing how to derive the para-
meters of each class of formulae from the parameters of the other
class (i.e., ðγT; λTÞ from w, and vice versa).

A2.1. The M&P Formulae.We assume that the weights w ¼ ðwijÞ are
multiplicative w.r.t. a binary topology T. Then, for any two clades
A and B of T, define

ZAB ¼ ∑
i∈A
j∈B

wij and δw
AB ¼ 1

ZAB ∑
i∈A
j∈B

wijδij:

Mihaescu and Pachter (2) have shown that the optimal branch
lengths of T with respect to the WLS criterion 1 are then given
by the following formula, applicable to any branch e in T:

ℓ̂eðδÞ ¼

8>>><
>>>:

1
2
ðδw

iA þ δw
iB − δw

ABÞ if e is external;

1
2

�
ZA1B2

þZA2B1
ZAB

ðδw
A1B1

þ δw
A2B2

Þ þ ZA1B1
þZA2B2

ZAB
ðδw

A1B2
þ δw

A2B1
Þ − δw

A1A2
− δw

B1B2

�
if e is internal;
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where, if e is external, we define A, B, i as in Fig. 1A in the main
text and, if e is internal, we define A1, A2, A ¼ A1 ∪ A2, B1, B2,
B ¼ B1 ∪ B2 as in Fig. 1B in the main text.

A2.2. Decomposition of ZXY. Extend the wij notation to any pair of
nodes x and y (possibly internal) in T:

wxy ¼
Y

e∈PxyðTÞ
we; [S1]

where we recall that the we are the branch-associated weights that
compose the pairwise weights wij, and PxyðTÞ is the set of
branches on the path between x and y in T. Then define themulti-
plicative weight of X (a clade with root x) as:

ZX ¼ ∑
i∈X

wix: [S2]

We assume wxx ¼ 1 for any node x, which implies Zfig ¼ 1, for
any one-taxon clade fig. It is then easy to check that, if X and
Y are any two disjoint clades in T, with roots x and y , respec-
tively, then

ZXY ¼ wxyZXZY : [S3]

A2.3. The M&P Formulae are Also ðγ, λÞ-Formulae.

Lemma 1. Given weights w ¼ ðwijÞ multiplicative w.r.t. a binary to-
pology T, define, for each pair of adjacent branches e and f :

γef ¼
wfZA1

ZA
; [S4]

where A1 and A ¼ A1 ∪ A2 are the clades having f and e as root
branches, respectively, as in Fig. 1B. Then,

i. The resulting average distances between clades are such that
δXY ¼ δw

XY , for any two disjoint clades X and Y in T.
ii. For any internal branch e, let A ¼ A1 ∪ A2 and B ¼ B1 ∪ B2

be the clades in the configuration of Fig. 1B; then
ðZA1B2

þZA2B1
Þ∕ZAB ¼ γef þ γeh − 2γefγeh.

Proof:
i. Eq. S3 allows us to express δw

XY in a very similar form to that of
δXY :

δw
XY ¼ ∑

i∈X
j∈Y

wij

ZXY
δij ¼ ∑

i∈X
j∈Y

wix

ZX

wjy

ZY
δij;

where x and y are the root nodes of X and Y , respectively. In
order to have δXY ¼ δw

XY , it is then sufficient to prove that, for
any clade X with root x, and any taxon i ∈ X ,

pijX ¼ wix

ZX
:

Let the path from x to i traverse branches e1; e2;…; ek (in this
order), and let Xj be the subclade of X having ej as root
branch (0 ≤ j ≤ k, with X0 ¼ X and e0 being the root branch
of X); then, Xk ¼ fig and

pijX ¼ γe0e1 · γe1e2 · … · γek−1ek ¼
we1ZX1

ZX
·
we2ZX2

ZX1

· …

·
wekZXk

ZXk−1

¼ we1 · we2 · … · wek

ZX
Zfig ¼

wix

ZX
:

ii. Using again Eq. S3,

ZA1B2
þZA2B1

ZAB
¼ wfwlZA1

ZB2
þ wgwhZA2

ZB1

ZAZB

¼ γefγel þ γegγeh ¼ γef þ γeh − 2γefγeh:

Points i and ii are thus both verified and Lemma 1 is proved.

Setting γef as in Eq. S4 has a simple intuitive meaning: If
we call g the root branch of A2 (as in Fig. 1B), then ZA ¼
wfZA1

þ wgZA2
. The γef above can then be seen as the relative

multiplicative weight of the subtree corresponding to clade A1 in
the subtree corresponding to clade A. The random walk defined
by these parameters is then “attracted” by the heavier subtrees,
in a way that is directly proportional to the weights of the
subtrees.

Proof of Theorem 2, part i: Given w multiplicative w.r.t. T, define
the γT parameters as in Eq. S4. Note that because we > 0 for any
branch e, then ZX > 0 for every cladeX . Moreover, for any three
adjacent branches e, f , and g in the configuration of Fig. 1B, we
have wfZA1

þ wgZA2
¼ ZA and wfZA1

; wgZA2
> 0, which imply

γef þ γeg ¼ 1 and 0 < γef ; γeg < 1. Therefore the definition of
the γT parameters is admissible and implies that δXY ¼ δw

XY
(Lemma 1, part i).

As for the λT parameters, set λA1B1
¼ ðZA1B2

þZA2B1
Þ∕ZAB,

for every pair of clades A1 and B1 separated by 3 branches, and
being in the configuration of Fig. 1B with A ¼ A1 ∪ A2 and
B ¼ B1 ∪ B2. It is easy to check that this implies λA1B1

¼
λA2B2

> 0, λA1B2
¼ λA2B1

> 0 and λA1B1
þ λA1B2

¼ 1, and there-
fore the definition of the λT parameters is also admissible.

It is now easy to verify that the resulting ðγT; λTÞ-formulae co-
incide with the M&P formulae corresponding to w: for the exter-
nal branches this is an immediate consequence of δXY ¼ δw

XY ,
while for the internal branches we also use the above definition
of λA1B1

and the fact that 1 − λA1B1
¼ ðZA1B1

þZA2B2
Þ∕ZAB.

Finally, the γT and λT defined above satisfy properties P1 and
P2: the first can be verified by using Eq. S4 in P1, and the second
is a direct consequence of Lemma 1, part ii.

A2.4. Characterization of the ðγ,λÞ-Formulae That are Also M&P
Formulae.

Proof of Theorem 2, part ii: The proof has the following structure:
As an intermediate step, we introduce—for every three clades A1,
A2, and B whose respective root branches f , g, and e are incident
to the same internal node (as in Fig. 1B)—three values φA1

, φA2

and φB such that φA1
þ φA2

þ φB ¼ 1, 0 < φA!
; φA2

; φB < 1 and

γef ¼
φA1

φA1
þ φA2

; γf g ¼
φA2

φA2
þ φB

; γge ¼
φB

φB þ φA1

:

[S5]

The existence of such values is guaranteed by property P1. In in-
tuitive terms, we are requiring that each clade has somewhat a
“preference value,” such that the probabilities γef and γeg are pro-
portional to the preference values of the clades that f and g lead to.
On the basis of these values, we then define a set of branch-asso-
ciated weights we specifying a multiplicative model such that the
preference values can be obtained as

φB ¼ weZB

weZB þ wfZA1
þ wgZA2

: [S6]
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(With A1; A2; B; f ; g; e as above.) It is easy to see (shown below)
that this implies that Eq. S4 of Lemma 1, and therefore its con-
clusions, hold. This, together with the fact that the λT parameters
satisfy P2, implies that the M&P formulae for w coincide with the
given ðγT; λTÞ-formulae.

Let us now look in detail at each step. First of all, property P1
implies that the determinant of the coefficient matrix for the sys-
tem of linear equations in φA1

, φA2
, and φB corresponding to

Eqs. S5 is equal to 0; this system is then solved by the following
subspace of solutions:

ðφB; φA1
; φA2

Þ ∈
��

x;
1 − γge
γge

x;
1 − γef
γef

1 − γge
γge

x
�
jx ∈ R

�
:

If furthermore we impose φA1
þ φA2

þ φB ¼ 1, it is easy to see
that a unique solution is determined, such that φA1

;φA2
;φB > 0

(and therefore also <1).
Given the φX parameters, we now show how to define the

branch-associated weights we. For any internal branch e separat-
ing clades A and A, let

we ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φA

1 − φA

φA

1 − φA

r
: [S7]

As for the external branches, which for simplicity we call with the
same names as the taxa they are incident to (e.g., branch i being
the one incident to taxon i), we assign their weight in the follow-
ing way: Choose arbitrarily w1 > 0 and then, for any other exter-
nal branch i ∈ f2; 3;…; ng define

wi ¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ�
1i

γ�
i1

1 − φ1

φ1

φi

1 − φi

s
; [S8]

where γ�
ef ¼ γee1 · γe1e2 · … · γekf , for any pair of branches e, f

linked by a path composed of the ordered sequence of branches
ðe1; e2;…; ekÞ, and for simplicity we write φ1 and φi instead of
φf1g and φfig.

The weights thus defined determine a multiplicative weighting
w ¼ ðwijÞ that satisfies Eq. S6. In order to show this, we first show
that, for every clade A (whose root branch we call e) such that
jAj < n − 1 (i.e., the endpoint of e on the other side of A is
not a leaf),

weZA ¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ�
1e

γ�
e1

1 − φ1

φ1

φA

1 − φA

s
: [S9]

We prove this by induction on the size of A. If A consists of a
single taxon, then either this is taxon 1, in which case both sides
of the equation reduce to w1, or this is another taxon i, in which
case Eq. S9 coincides with Eq. S8. In both cases Eq. S9 trivially
holds. If jAj > 1, let A1, A2, B, f and g be as in Fig. 1B. Then, by
inductive hypothesis, Eq. S9 holds for wfZA1

and wgZA2
and we

have:

ZA ¼ wfZA1
þ wgZA2

¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ1

φ1

s  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ�
1f

γ�
f1

φA1

1 − φA1

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ�
1g

γ�
g1

φA2

1 − φA2

s !

Now note that

γ�
1f

γ�
f1

¼ γ�
1e

γ�
e1

φA1
ð1 − φA1

Þ
φBð1 − φBÞ

and
γ�
1g

γ�
g1

¼ γ�
1e

γ�
e1

φA2
ð1 − φA2

Þ
φBð1 − φBÞ

; [S10]

which can be verified by noting that, depending on the position
of taxon 1 (in A1, A2 or B), γ�

1f∕γ
�
f1 can either be equal to

ðγ�
1e∕γ�

e1Þðγef∕γf eÞ or ðγ�
1e∕γ�

e1ÞðγgfγegÞ∕ðγgeγf gÞ, and γ�
1g∕γ�

g1 can
either be equal to ðγ�

1e∕γ�
e1Þðγeg∕γgeÞ or ðγ�

1e∕γ�
e1Þðγf gγef Þ∕ðγf eγgf Þ.

The equations in S10 can then be obtained from these expres-
sions by making the substitutions γxy ¼ φY∕ð1 − φX Þ (equivalent
to Eqs. S5) for x; y ∈ fe; f ; gg, where X; Y are the clades sepa-
rated by and having x; y as root branches, respectively. If now
we use Eq. S10 in the expression above for ZA, we obtain after
obvious simplifications

ZA ¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ�
1e

γ�
e1

1 − φ1

φ1

1 − φB

φB

s
: [S11]

If now we use Eqs. S7 and S11 to express we and ZA in weZA,
what we obtain is precisely Eq. S9, which therefore is proven.

We are now ready to prove Eq. S6. Note that Eq. S11 holds for
any “composite” clade A (i.e., one that can be decomposed into
two other clades A1 and A2). Then,

weZB

weZB þ wfZA1
þ wgZA2

¼ weZB

weZB þZA
¼

ffiffiffiffiffiffiffiffiffi
φB

1−φB

q
ffiffiffiffiffiffiffiffiffi
φB

1−φB

q
þ

ffiffiffiffiffiffiffiffiffi
1−φB
φB

q
¼ φB;

where for the second equality we have used both Eqs. S11 and S9.
But this implies that, for every composite clade A ¼ A1 ∪ A2

in the configuration of Fig. 1B,

wfZA1

ZA
¼ wfZA1

wfZA1
þ wgZA2

¼ φA1

φA1
þ φA2

¼ γef : [S12]

Eq. S4 of Lemma 1 is therefore verified. But this ensures that
δXY ¼ δw

XY , for any two disjoint clades X and Y (Lemma 1, part
i), while the fact that the λT parameters satisfy P2 implies (Lem-
ma 1, part ii) that λA1B1

¼ ðZA1B2
þZA2B1

Þ∕ZAB for every pair of
3-separated clades A1, B1 in the configuration of Fig. 1B. That is,
the M&P formulae for w coincide with the given ðγT; λTÞ-formu-
lae, which concludes the proof of Theorem 2, part ii.

Appendix 3
Here, we prove that the main criteria to score trees, LS and ME
(in all their common variants), are statistically consistent when
used in combination with our branch length formulae, as stated
in Theorem 3. We start by showing that the consistency of any
distance-based principle is essentially determined by its behavior
on perfect data (A3.1). Next, we move on to proving the consis-
tency of LS (A3.2) and then that of ME: For the latter, first
we show a useful dependency property between different variants
of ME (A3.3), and then we prove the consistency on perfect data
of the classic version of ME (A3.4), which is the key nontrivial
result of this appendix and allows us to conclude the proof of
Theorem 3 (A.3.5).

We recall that a branch length estimation scheme is a method
that, for any binary topology over the set of taxa under consid-
eration f1; 2;…; ng (n ≥ 3), determines how to fit the length
of its branches on the basis of an n × n distance matrix δ. We
say that a branch length estimation scheme is continuous [linear]
if, for any branch e in any binary topology, the function ℓ̂eðδÞ giv-
ing its fitted length is continuous [linear] in δ. A branch length
estimation scheme is correct if, for any branch e in any binary tree
with branch lengths, ℓ̂eðδÞ returns the length of e whenever δ is
additive with respect to that tree (as in Theorem 1). The branch
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length estimation schemes that we consider here are those based
on ðγ; λÞ-formulae, whereby a collection of γT and λT parameters
is chosen for each binary topology T, thus determining a set of
ðγT; λTÞ-formulae for T’s branch lengths (with no assumed rela-
tion between the values of these parameters across different
topologies). It is clear that the resulting branch length estimation
schemes are linear (thus continuous) and correct (Theorem 1).

Any branch length estimation scheme can be combined to a
number of principles identifying an optimal tree among all the
topologically distinct fitted trees. The optimization principles
we consider here are defined by a tree score function, which
can depend on the topology of the tree, the assigned branch
lengths and (in the case of LS but not ME) the input distances.
An optimization principle M then consists of seeking the fitted
tree(s) that minimize this function, and we denote this tree (or set
of trees) with MðδÞ. We say that M is statistically consistent if
MðδÞ converges (in probability) to the correct tree.

The following assumption (the consistency of the distance es-
timates and the positive additivity of the correct evolutionary dis-
tances) applies to all the propositions that follow, and we state it
here so that we do not have to repeat it in every statement.

Assumption 2. Let the correct phylogenetic tree for the taxa under
consideration, T �, be a binary tree with positive branch lengths. As-
sume that the input distances δ converge (in probability) to dT �

.

A3.1. Consistency for Perfect Data Implies Statistical Consistency. The
following is a well-known sufficient condition for consistency,
which has been proven for ME with the same continuity argu-
ments (e.g., ref. 3). It can be applied to most tree optimization
principles (LS, ME, possibly combinations of the two or even to-
tally different criteria).

Proposition 3.Adopt a continuous branch length estimation scheme.
Let M be an optimization principle based on a tree score function
that is continuous in all its continuous parameters (i.e., all but the
topology). If MðdT � Þ is unique and coincides with T �, then M is
statistically consistent.

Proof: To any binary topology, M assigns a score by first assigning
branch lengths to it and then applying the adopted tree score
function. Note that because both the branch length estimation
scheme and the tree score function are continuous, then also
the score associated to any particular topology is continuous in
δ. Because MðdT � Þ ¼ T � is unique, when δ ¼ dT � the score of
the topology of T � must be strictly smaller than the score of
all other binary topologies. But then, because the scores of topol-
ogies are continuous in δ and finite in number, this must still hold
for every δ in a neighborhood of dT � ; that is, for every δ in this
neighborhood, MðδÞ is unique and has the same topology as T �.
But because δ→

p
dT � , the probability that δ belongs to this neigh-

borhood, and consequently MðδÞ has the same topology as T �,
converges to 1. Finally, when MðδÞ has the same topology as T �,
the continuity of the branch length estimation scheme implies
that the branch lengths in MðδÞ converge in probability to those
in MðdT � Þ ¼ T �. We can then conclude that both the topology
and branch lengths of MðδÞ consistently converge to T �.

A3.2. Consistency of Least Squares. We have briefly defined LS
methods in the Introduction. Here we assume the most general
form for LS and prove its consistency under very general condi-
tions (Proposition 4 below). We define LS methods as those that
use a tree score function with the following form:

QðT; δÞ ¼ ðδ − dTÞ tWT;δðδ − dTÞ; [S13]

where T is the tree fitted using the assumed branch length esti-
mation scheme, δ is a column vector with the ðn

2
Þ input distances

andWT;δ is a ðn2Þ × ðn
2
Þ matrix which may depend on the topology

of T and, continuously, on δ and the branch lengths of T. Addi-
tionally, we assume that, for any T and δ, the matrix WT;δ is po-
sitive-definite. (WT;δ should be interpreted as the inverse of the
assumed covariance matrix for δ.)

Note that whereas the dependence of WT;δ on δ is common
(e.g., the version of WLS by Fitch and Margoliash (4) uses a di-
agonal matrix with Wij;ij ¼ δ−2

ij ), the dependence on T is non-
standard, and we have included it here for completeness. (But
for example the balanced version of WLS (5) at the basis of
the balanced branch lengths (6) does assume a variance model
that depends on tree topology.) Also recall that the criterion
QðT; δÞ above is used to score trees with already-fitted branch
lengths, so the dependence on the branch lengths does not cause
any computational problem.

Proposition 4. Adopt any correct and continuous branch length es-
timation scheme. Then, LS is consistent.

Proof: We prove that for LS, the hypotheses of Proposition 3 are
satisfied, and therefore LS is consistent. First, the branch length
estimation scheme is continuous (by hypothesis) and the score
function in Eq. S13 is a continuous function of both δ and of
the branch lengths assigned to T (note that dT is linear, and thus
continuous, in the branch lengths). It remains then to show that,
for δ ¼ dT � , LS uniquely identifies T � as optimal. Because WT;δ
is positive definite, QðT; dT � Þ ¼ 0 if and only if dT � − dT ¼ 0,
that is, if and only if T ¼ T �, whereas for all other trees
W ≠ T �, QðW; dT � Þ > 0. Moreover, because the branch length
estimation scheme is correct, T � is precisely what is obtained
when fitting its branch lengths. Therefore T � uniquely minimizes
the score function Q and is returned by LS.

Corollary 5. Adopt a branch length estimation scheme based on
ðγ; λÞ-formulae. Then, LS is consistent.

A3.3. Dependency Between the Consistencies of Different Variants
of Minimum Evolution. Recall that MEi reconstructs the fitted
tree that minimizes the following tree score function, where
ℓ̂ ¼ ðℓ̂eÞ denotes the branch lengths in the fitted tree:

Liðℓ̂Þ ¼ ∑
e : ℓ̂e>0

ℓ̂e þ ∑
e : ℓ̂e<0

i · ℓ̂e:Λ [S14]

In the main text, we assume i ∈ f−1; 0;þ1g, but here we con-
sider, more generally, MEx with x being any real number. We do
this not only for the sake of mathematical completeness but also
to include variants of ME that may be considered in the future
(e.g., ME−∞, which corresponds to avoiding at all costs trees
which are assigned negative branch lengths). The following pro-
position shows that if we can prove the consistency of MEy using
Proposition 3, then the same can be done for any MEx with x < y.

Lemma 6.Adopt any correct branch length estimation scheme and let
x < y. If MEyðdT � Þ ¼ T �, then also MExðdT � Þ ¼ T �.

Proof: We adapt a line of reasoning that has appeared elsewhere
(3, 7). Because of the correctness of the branch length estimation
scheme, when the branches of the topology of T � are fitted using
dT � , their lengths are set to their correct values. Because these
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are all positive, the scores assigned by MEx and MEy to T � equal
precisely the sumL� of all branch lengths inT �. Now let ℓ̂ denote
the branch lengths assigned to an incorrect topology using dT � ;
x < y implies that Lxðℓ̂Þ ≥ Lyðℓ̂Þ, and because MEyðdT � Þ is un-
ique and equal to T �, we also have Lyðℓ̂Þ > L�. But then
Lxðℓ̂Þ > L� for any incorrect topology. Because L� coincides
with the score assigned to T � by MEx, we can then conclude that
MExðdT � Þ is unique and coincides with T �.

A3.4. Consistency of the Classic Version of Minimum Evolution. We
now concentrate on the consistency of MEþ1, which because
of Lemma 6 implies that of MEx for any x < þ1. We use a stan-
dard framework for investigating the consistency of MEþ1

(e.g., ref. 1), which consists in verifying a property (“Willson’s
condition”) of branch length estimation in the presence of a spe-
cial kind of binary distance matrix. In the following, we introduce
and state Willson’s condition (A3.4.1), then prove some proper-
ties of the ðγT; λTÞ-formulae that are useful to verify it (A3.4.2)
and finally prove the consistency of MEþ1 via Willson’s condition
(A3.4.3). For simplicity, we write L̂TðδÞ as a shorthand for
Lþ1ðℓ̂TðδÞÞ, that is, the tree length (sensu MEþ1) resulting from
fitting the branch lengths of T using δ.

A3.4.1. Willson ’s condition. We denote by dSjS̄ (where S ⊆
f1; 2;…; ng and S̄ ¼ f1; 2;…; ng \ S) the following collection
of ðn

2
Þ distances, indexed by i ≠ j:

dSjS̄
ij ¼

�
1 if jS ∩ fi; jgj ¼ 1;

0 otherwise:

Willson's condition for ME consistency can be stated as fol-
lows: (1)

Lemma 7. Adopt any linear branch length estimation scheme such
that, for any binary topology T and any proper and nonempty subset
S of taxa from T,

L̂TðdSjS̄Þ
(¼1 if S is a clade in T;

>1 otherwise:

Then MEþ1ðdT � Þ ¼ T �.

Informally, this holds because dT � is a weighed sum of all dSjS̄
corresponding to the clades in T �, the coefficients of this
weighted sum being the branch lengths of T �. The linearity of
L̂T then implies that, in turn, L̂TðdT � Þ is a weighted sum of
the branch lengths of T �, where the coefficients are now either
1 or strictly greater than 1, depending on whether or not the cor-
responding S is a clade in T. Clearly this weighted sum is mini-
mized when all the clades in T � are also clades in T, that is
for T ¼ T �.

A3.4.2. Tools to verify Willson’s condition. Given any subset of taxa
S ⊆ f1; 2;…; ng and any clade X in a binary topology T for
which a set of ðγT; λTÞ-formulae is defined, define pSjX as the
probability of picking an element of S from the random distribu-
tion over X defined by the γT parameters. That is,

pSjX ¼ ∑
i∈X∩S

pijX :

Moreover, a clade X is monochromatic (w.r.t. S) if either
X ⊆ S or X ⊆ S̄ ¼ f1; 2;…; ng \ S. In this case it is clear that
pSjX ∈ f0; 1g.

Lemma 8. Assume that the branch lengths of T are assigned with
ðγT; λTÞ-formulae using the input distances in dSjS̄, for some
S ⊆ f1; 2;…; ng. Then,
i. For any two clades X and Y in T, the average distance between

them dSjS̄
XY ¼ pSjXpS̄jY þ pS̄jXpSjY .

ii. If branch e belongs to a monochromatic clade, it is assigned
length ℓ̂e ¼ 0.

iii. If adjacent branches f and g separate (and are the only ones to
separate) two monochromatic clades A1 and A2, with A1 ⊆ S
and A2 ⊆ S̄, then ℓ̂f þ ℓ̂g ¼ 1.

Proof:
i. dSjS̄

XY ¼ ∑i∈X
j∈Y
pijXpjjYd

SjS̄
ij ¼ ∑i∈X∩S

j∈Y∩S̄
pijXpjjY þ ∑i∈X∩S̄

j∈Y∩S
pijXpjjY ¼

pSjXpS̄jY þ pS̄jXpSjY .
ii. Branch e is either internal or external. We consider here only

the case where it is internal, as the external case is analogous
(and simpler). We assume clades A1, A2, B1, and B2 are de-
fined as in Fig. 1B. Because e belongs to a monochromatic
clade, at least three clades out of A1, A2, B1, and B2 are
all subsets of S or all subsets of S̄. Without loss of generality,
we assume thatA1,A2, B1 are all subsets of S. Applying part i,

it is easy to see that this implies dSjS̄
A1A2

¼ dSjS̄
A1B1

¼ dSjS̄
A2B1

¼ 0

and dSjS̄
B1B2

¼ dSjS̄
A2B2

¼ dSjS̄
A1B2

¼ pS̄jB2
. But then,

ℓ̂e ¼
1

2
½λA1B1

ðdSjS̄
A1B1

þ dSjS̄
A2B2

Þ þ ð1 − λA1B1
ÞðdSjS̄

A1B2
þ dSjS̄

A2B1
Þ

− dSjS̄
A1A2

− dSjS̄
B1B2

�

¼ 1

2
½λA1B1

pS̄jB2
þ ð1 − λA1B1

ÞpS̄jB2
− pS̄jB2

� ¼ 0.

iii. Let B ¼ f1; 2;…; ng \ ðA1 ∪ A2Þ, as in Fig. 1B. In a way ana-
logous to part ii, it is easy to check that, independently of f
being internal or external, ℓ̂f ¼ 1∕2ð1þ pS̄jB − pSjBÞ and,
similarly, ℓ̂g ¼ 1∕2ð1þ pSjB − pS̄jBÞ. Therefore, ℓ̂f þ ℓ̂g ¼ 1.

Points i, ii, and iii are thus all proved.

A3.4.3. Consistency of minimum evolution with perfect data.

Proposition 9. Adopt a branch length estimation scheme based on
ðγ; λÞ-formulae. Then, MEþ1ðdT � Þ ¼ T �.

Proof: We show that any branch length estimation scheme based
on ðγ; λÞ-formulae satisfies Willson’s condition (i.e. the hypoth-
eses of Lemma 7), and therefore we must have MEþ1ðdT � Þ ¼ T �.

First, it is trivial to see that any such branch length estimation
scheme is linear. Second, it is correct (Theorem 1), which implies
L̂TðdSjS̄Þ ¼ 1 whenever S is a clade of T: In this case, in fact, dSjS̄
is additive with respect to a tree with topology T and with all
branches of length 0 except the root branch of S, which has length
1; because of their correctness, the ðγT; λTÞ-formulae result in
assigning T precisely these branch lengths and therefore a total
length L̂TðdSjS̄Þ ¼ 1.

It remains to prove that L̂TðdSjS̄Þ > 1 whenever S is not a
clade of T—for any branch length estimation scheme based
on ðγ; λÞ-formulae. We do this by induction on the size of T.

For n ¼ 3 taxa, this is trivially true, as all proper, nonempty sets
of f1; 2; 3g are clades of T.

For n > 3, if S is not a clade of T, it is always possible to find a
pair of 2-separated clades A1; A2 such that A1⊊S and A2⊊S̄—
i.e., such that A1 and A2 are monochromatic—but A1 ∪ A2 and
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B ¼ f1; 2;…; ng \ ðA1 ∪ A2Þ are not monochromatic. To see
this, consider the tree T ðSÞ that is obtained by substituting every
monochromatic clade in T with a taxon; because S is not a clade
of T, then T ðSÞ must have at least two cherries (i.e., pairs of
2-separated taxa); any of these corresponds to a pair of clades
A1, A2 in the original tree T with the required properties. Let
e, f , and g be the root branches of B, A1 , and A2, respectively,
and a their common endpoint, as in Fig. 1B. Because A1 and A2

are monochromatic, it is clear that all branches belonging to these
clades are assigned length 0 when the input distances are d ¼ dSjS̄
(Lemma 8, part ii).

Now let T 0 be the topology that is obtained by deleting from T
all branches belonging toA ¼ A1 ∪ A2, so that a is a leaf of T 0. It
is clear that there is one-to-one correspondence between the
branches/clades of T 0 and a subset of the branches/clades of
T. When calculating the branch lengths in T 0, we assume that
the γef and λXY parameters are the same as those for the corre-
sponding branches/clades in T. Now define the following dis-
tances over f1; 2;…; ng ∪ fag \ A, i.e., the taxa in T 0:

d ð1Þ ¼ d ðS∪fag\A1ÞjðS̄\A2Þ;

d ð2Þ ¼ d ðS\A1ÞjðS̄∪fag\A2Þ;

d 0 ¼ γefd ð1Þ þ γegd ð2Þ:

Note that d 0 coincides with d except for the distances that involve
a. For these, we have

d 0
aj ¼ γef d

ð1Þ
aj þ γegd

ð2Þ
aj ;

for every j ∈ f1; 2;…; ng \ A. Note also that dð1Þ
aj ¼ dA1j and

dð2Þ
aj ¼ dA2j, which imply d 0

aj ¼ dAj. This in turn implies that,
for any disjoint clades X and Y in T’,

d 0
XY ¼

(
dXY if a∉X ∪ Y;

dX 0Y if a ∈ X and where X 0 ¼ X ∪ A \ fag;
[S15]

that is, the average distances between disjoint clades remain the
same when going from ðT; dÞ to ðT 0; d 0Þ. To see this, note that the
first case is a simple consequence of the fact that d 0 coincides with
d for the distances that do not involve a. As for the second case, it
is a consequence of combining d 0

aj ¼ dAj (shown above) with the
first case (and it can be easily proved by induction on the size
of X).

The important consequence of Eq. S15 is that the lengths of
branches belonging to B—which only depend on average dis-
tances between disjoint clades in T 0—remain constant when
going from ðT; dÞ to ðT 0; d 0Þ. Therefore, the only difference be-
tween the two tree lengths will come from the lengths of branches
e, f and g:

L̂TðdÞ ¼ L̂T 0 ðd 0Þ þ ℓ̂f þ ℓ̂g þ ℓ̂e − ℓ̂
0
e ; [S16]

where ℓ̂b and ℓ̂
0
b represent the lengths assigned to branch b for

ðT; dÞ and ðT 0; d 0Þ, respectively.
Because for MEþ1 the tree length is a linear function of the

branch lengths and the branch lengths themselves are linear func-
tions of the input distances, L̂T 0 ðd 0Þ is then linear in d 0 and we
can write

L̂T 0 ðd 0Þ ¼ γef L̂
T 0 ðd ð1ÞÞ þ γegL̂

T 0 ðd ð2ÞÞ:

Because d ð1Þ and d ð2Þ are equal to some dS 0 jS̄ 0
where S 0 is a prop-

er and nonempty subset of the n 0ð< nÞ taxa in T 0, we can apply
the induction hypothesis and infer that L̂T 0 ðd ð1ÞÞ ≥ 1 and

L̂T 0 ðd ð2ÞÞ ≥ 1 (where equality is achieved when S 0 is a clade
of T 0). Therefore L̂T 0 ðd 0Þ ≥ 1.

In order to prove that the tree length in Eq. S16 is strictly
greater than 1, we then just need to prove that ℓ̂f þ ℓ̂g þ ℓ̂e−
ℓ̂

0
e > 0.
First, because of Lemma 8, part iii, ℓ̂f þ ℓ̂g ¼ 1. In order to

calculate ℓ̂e and ℓ̂
0
e , it is useful to note that dA1A2

¼ 1 and, for
any clade B 0 ⊆ B, dA1B 0 ¼ pS̄jB 0 ¼ 1 − pSjB 0 and dA2B 0 ¼ pSjB 0

(Lemma 8, part i). Then,

ℓ̂e ¼
1

2
½λA1B1

ð1 − pSjB1
þ pSjB2

Þ þ ð1 − λA1B1
Þð1 − pSjB2

þ pSjB1
Þ

− 1 − dB1B2
�

¼ 1

2
½ð1 − 2λA1B1

ÞðpSjB1
− pSjB2

Þ − dB1B2
�:

Similarly,

ℓ̂
0
e ¼ 1

2
½d 0

aB1
þ d 0

aB2
− d 0

B1B2
�

¼ 1

2
½dAB1

þ dAB2
− dB1B2

�

¼ 1

2
½γef ðdA1B1

þ dA1B2
Þ þ ð1 − γef ÞðdA2B1

þ dA2B2
Þ − dB1B2

�

¼ 1

2
½γef ð2 − pSjB1

− pSjB2
Þ þ ð1 − γef ÞðpSjB!

þ pSjB2
Þ − dB1B2

�

¼ γef þ
1

2
½ð1 − 2γef ÞðpSjB!

þ pSjB2
Þ − dB1B2

�:

Then,

ℓ̂f þ ℓ̂g þ ℓ̂e − ℓ̂
0
e ¼ 1 − γef þ pSjB1

ðγef − λA1B1
Þ

þ pSjB2
ðγef − ð1 − λA1B1

ÞÞ:

But this is a linear function of ðpSjB1
; pSjB2

Þ in the square ½0; 1�2,
and is thus minimized in one of its four vertices. In (0, 0), (0, 1),
(1, 0), and (1, 1), the function has values 1 − γef , λA1B1

, 1 − λA1B1
,

γef , respectively. Because these are all strictly greater than 0
by hypothesis, then so is ℓ̂f þ ℓ̂g þ ℓ̂e − ℓ̂

0
e and therefore

L̂TðdÞ > 1, which completes the proof of Proposition 9.

A3.5. Wrapping It All Together.By applying Proposition 9, Lemma 6,
and Proposition 3, we then conclude:

Corollary 10. Adopt a branch length estimation scheme based on
ðγ; λÞ-formulae. Then, for any x ≤ þ1, MEx is consistent.

Which, together with Corollary 5 and Assumption 2, completes
our proof of Theorem 3.

Appendix 4
Here, we prove the efficiency of calculating branch lengths with
our formulae in hill climbing heuristics, as stated in Theorem 4.
We start by showing that efficient branch length calculations es-
sentially depend on the availability of the average distances be-
tween (some) clades in the current tree and that these can be
calculated in quadratic time, which allows us to prove Theorem
4, part i (A4.1). When performing an NNI, calculating the new
branch lengths can be done efficiently by recalculating only some
of these average distances, which leads us to prove Theorem 4,
part ii (A4.2). Finally, we show that updating the average dis-
tances following an NNI can also be done efficiently (A4.3),
which is not a claim of Theorem 4 but is nevertheless potentially
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useful. The results and proofs here are inspired by those of Des-
per and Gascuel (8). However, their results were specific to the
balanced and OLS branch lengths in combination with the MEþ1

optimization principle. A key property of these estimators is that,
when performing an NNI, the sum of the branch lengths in each
of the four corner subtrees around the location of the NNI re-
mains constant. Thanks to this property, the difference between
the MEþ1 lengths of any two NNI neighbors T and T 0 can be
efficiently calculated using simple formulae. This property does
not hold in general for ðγT; λTÞ-estimators, and so we have to
recalculate all branch lengths every time we perform an NNI.
The good news is that (i) the complexity of each iteration in a
hill climbing heuristics for ME (computing the length of all
NNI neighbors of a given topology and updating the data struc-
tures for the new best topology), which for BME was quadratic in
the worst case, remains quadratic in the size of the tree, and that
(ii) recalculating all branch lengths makes it possible to use opti-
mization principles such as ME0, ME−1 , and ME−∞.

In the following, T, T 0 , and Ti always denote binary topol-
ogies, and γT , γT 0 , and γTi , collections of γef parameters defined
for them, in the way described in the main text.

A4.1. Computing the Branch Lengths of Fixed Topology.

Lemma 11.Adopt a set of ðγT; λTÞ-formulae for the branch lengths of
T. Given δ and δXY for every pair of 3-separated clades X , Y in T,
the length of any branch in T can be calculated in Oð1Þ time.

Proof: The ðγT; λTÞ-formulae are simple linear combinations of
average distances δXY between 2- and 3-separated clades X
and Y and can be computed inOð1Þ once these average distances
are available. Because we assume that the average distances be-
tween 3-separated clades are given, it remains to show that δXY
between any pair X , Y of 2-separated clades can be obtained in
Oð1Þ. But this is trivial: Either bothX and Y consist of one taxon
only (i.e., X ¼ fig and Y ¼ fjg) in which case δXY ¼ δij, or at
least one of the two clades, say X , is such that X ¼ X1 ∪ X2,
where both X1 and X2 are clades, in which case δXY ¼
γefδX1Y þ γegδX2Y , where e, f , and g are the root branches of
X , X1, and X2, respectively, and both δX1Y and δX2Y are known,
as Xi and Y are 3-separated (for i ∈ 1; 2g). Lemma 11 is there-
fore proved.

Although the one above is a straightforward observation, it
determines the minimum amount of information necessary to
determine any branch length in T in constant time. Motivated
by it, we define ΔTðγTÞ as a data structure holding all the aver-
age distances δXY between pairs of disjoint clades in T and
make explicit its dependence on γT . Note that ΔTðγTÞ specifies
the average distances between 3-separated clades as a particu-
lar case.

Lemma 12. Given δ, T and γT , the calculation of ΔTðγTÞ requires
Oðn2Þ time.

Proof: Consider any total ordering A1; A2;…; A2ð2n−3Þ of the
clades in T, such that if Ak ¼ Ai ∪ Aj then i < k and j < k.
Finding one such ordering is trivial and can be done in a number
of ways, for example by sorting the clades in ascending order
of depth (2), or by rooting the tree in one of its leaves and
then performing a postorder traversal, listing the clades oriented
away from the root, followed by a preorder traversal, listing the
clades oriented toward the root. The following procedure then
calculates δXY for all pairs of clades (including non-disjoint
ones):

For i ¼ 2;…; 2ð2n − 3Þ,
for j ¼ 1;…; i − 1,

δAiAj
¼

8>>>>>>>>>><
>>>>>>>>>>:

δxy

if Ai ¼ fxg and Aj ¼ fyg;
γefδAi1

Aj
þ γegδAi2

Aj

if Ai ¼ Ai1 ∪ Ai2 for some clades Ai1 ; Ai2 ;

γefδAiAj1
þ γegδAiAj2

if Aj ¼ Aj1 ∪ Aj2 for some clades Aj1 ; Aj2 :

[S17]

In the second case of Eq. S17we assume that e; f ; g are the root
branches of Ai; Ai1 ; Ai2 , respectively, whereas in the third case
they are the root branches of Aj; Aj1 ; Aj2 , respectively. Note that
these two cases are not mutually exclusive, and the result is the
same independently of which case is applied. Moreover, because
of the way the ordering is defined, we must have i1; i2 < i, in the
second case, or j1; j2 < j, in the third case, which means that
δAi1

Aj
and δAi2

Aj
(second case), or δAiAj1

and δAiAj2
(third case)

have already been calculated and are available when we calculate
δAiAj

. Because each δAiAj
can be calculated in constant time, the

whole calculation requiresOðn2Þ time. Lemma 12 is thus proved.

The complexity we obtain in Lemma 12 is optimal. Even if we
restrict the calculation to 3-separated clades, we still cannot do
better thanOðn2Þ, as the average distances between such pairs of
clades still depend on Oðn2Þ input distances.

Proof of Theorem 4, part i: Combining Lemma 12 with Lemma 11
yields that the branch lengths determined by a set of ðγT; λTÞ-for-
mulae for a binary topology T can be calculated in Oðn2Þ time.

A4.2. Computing the Branch Lengths of the NNI Neighbors of a Given
Topology.

Lemma 13. Let T and T 0 be NNI neighbors and let γT and γT
0
be

almost identical. Let δXY and δ 0
XY denote the average clade dis-

tances in ΔTðγTÞ and ΔT 0 ðγT 0 Þ, respectively. Then, given ΔTðγTÞ,
the calculation of δ 0

XY for every pair of 3-separated clades X; Y in
T 0, requires OðnÞ time.

Proof: We assume that T is as in Fig. 1B and T 0 as in Fig. S2.
Let the elements of γT and γT

0 be denoted by γe1e2 and γ 0
e1e2 ,

respectively.
First, we show that δ 0

XY is straightforward to obtain in the case
of pairs of 3-separated clades in T 0 such that none or 1 of the 3
branches separating X and Y belongs to one of the corner clades
A1; A2; B1; B2. Let A1 ¼ A 0

1 ∪ A 0 0
1 , A2 ¼ A 0

2 ∪ A 0 0
2 , B1 ¼

B 0
1 ∪ B 0 0

1 and B2 ¼ B 0
2 ∪ B 0 0

2 , where all the sets involved are also
clades of T 0 (and therefore T). It is trivial to verify that

δ 0
A1A2

¼ δA1A2
; δ 0

B1B2
¼ δB1B2

; δ 0
A1B1

¼ δA1B1
;

δ 0
A2B2

¼ δA2B2
; δ 0

A 0
1
B2

¼ δA 0
1
B2
; δ 0

A 0 0
1
B2

¼ δA 0 0
1
B2
;

δ 0
A1B 0

2
¼ δA1B 0

2
; δ 0

A1B 0 0
2
¼ δA 0

1
B 0 0

2
; δ 0

A 0
2
B1

¼ δA 0
2
B1
;

δ 0
A 0 0

2
B1

¼ δA 0 0
2
B1
; δ 0

A2B 0
1
¼ δA2B 0

1
; δ 0

A2B 0 0
1
¼ δA2B 0 0

1
;

[S18]

as γT and γT
0 are the same within all the clades in the subscripts

above. Now observe that A1 ∪ B2 and A2 ∪ B1 are clades in T 0

Pardi and Gascuel www.pnas.org/cgi/doi/10.1073/pnas.1118368109 7 of 9

http://www.pnas.org/cgi/doi/10.1073/pnas.1118368109


but not in T. Their average distances with other 3-separated
clades must then be obtained with expressions such as

δ 0
A 0

1
A2∪B1

¼ γ 0
e 0gδA 0

1
A2

þ γ 0
e 0hδA 0

1
B1
: [S19]

(Similar formulae are easy to obtain for δ 0
A 0 0

1
A2∪B1

; δ 0
B 0

2
A2∪B1

;

δ 0
B 0 0

2
A2∪B1

and δ 0
A 0

2
A1∪B2

, δ 0
A 0 0

2
A1∪B2

, δ 0
B 0
1
A1∪B2

, δ 0
B 0 0

1
A1∪B2

.) We have
therefore proved that these δ 0

XY can be obtained from one or
two corresponding entries in ΔTðγTÞ in Oð1Þ time.

We still have to show how to derive δ 0
XY when two or all three

of the branches separating X and Y belong to a corner clade.
Without loss of generality, we assume this clade to be A1. If both
X; Y ⊂ A1, then we trivially have δ 0

XY ¼ δXY . Assume then
Y⊇B1 ∪ B2 ∪ A2. Let clades Y 1; Y 2;…; Yk be defined as in
Fig. S2 (and note that if Y ¼ B1 ∪ B2 ∪ A2, no such Yi clade
is defined). Also, if clade Y contains clade Y 0 in T, define
pY 0 jY as the probability that the random walk defined by the
γT parameters reaches Y 0, assuming that it enters Y from its root
branch: pY 0 jY ¼ γe0e1 · γe1e2 · … · γek−1ek , where e0 is the root
branch of Y and e1; e2;…; ek are the branches on the path
between the roots of Y and Y 0. Define p 0

Y 0 jY similarly for T 0

and γT
0 . Then,

δ 0
XY ¼ p 0

Y 1jYδ
0
XY 1

þ…þ p 0
YkjYδ

0
XYk

þ p 0
B1jYδ

0
XB1

þ p 0
B2jYδ

0
XB2

þ p 0
A2jYδ

0
XA2

¼ p 0
Y 1jYδ

0
XY 1

þ…þ p 0
YkjYδ

0
XYk

þ p 0
B1∪B2∪A2jY ðγ 0

f e 0γ 0
e 0hδ

0
XB1

þ γ 0
f lδ

0
XB2

þ γ 0
f e 0γ 0

e 0gδ
0
XA2

Þ
¼ pY 1jYδXY 1

þ…þ pYkjYδXYk

þ pB1∪B2∪A2jY ðγ 0
f e 0γ 0

e 0hδXB1
þ γ 0

f lδXB2
þ γ 0

f e 0γ 0
e 0gδXA2

Þ;

where the last equality uses the almost identity of γT and γT
0 .

Similarly,

δXY ¼ pY 1jYδXY1
þ…þ pYkjYδXYk

þ pB1∪B2∪A2jY ðγf eγehδXB1
þ γf eγelδXB2

þ γf gδXA2
Þ:

Therefore,

δ 0
XY − δXY ¼ pB1∪B2∪A2jY ½ðγ 0

f e 0γ 0
e 0h − γf eγehÞδXB1

þ ðγ 0
f l − γf eγelÞδXB2

þ ðγ 0
f e 0γ 0

e 0g − γf gÞδXA2
�: [S20]

It is easy to derive similar equations for the cases where (a)
X ⊂ A2, Y⊇B1 ∪ B2 ∪ A1, (b) X ⊂ B1, Y⊇A1 ∪ A2 ∪ B2, (c)
X ⊂ B2, Y⊇A1 ∪ A2 ∪ B1, which allow us to derive δ 0

XY in
Oð1Þ time from four entries in ΔTðγTÞ (including δXY ) and
pB1∪B2∪A1jY , pA1∪A2∪B2jY , pA1∪A2∪B1jY for cases (a), (b), (c), respec-
tively. Now consider the following procedure:

1. For every clade Y⊇B1 ∪ B2 ∪ A2, calculate pB1∪B2∪A2jY .
2. Do the same as above, for every clade Y⊇B1 ∪ B2 ∪ A1, for

every Y⊇A1 ∪ A2 ∪ B2 and for every Y⊇A1 ∪ A2 ∪ B1.
3. Use Eq. S20, or similar equation, to derive δ 0

XY for all 3-
separated clades X; Y in T 0 such that two or all three of
the branches separating X and Y belong to a corner
clade A1; A2; B1; B2.

4. Use the simple equations in S18 and S19 to calculate δ 0
XY for

the remaining 3-separated clades.

Step 1 can be done in OðnÞ time, by starting with the smallest
clades including B1 ∪ B2 ∪ A2 and using the derived values to
calculate those for the larger clades. The same holds for step 2.

Then, each δ 0
XY can be calculated in Oð1Þ time. Because there

are OðnÞ 3-separated pairs of clades, the entire algorithm runs
in OðnÞ time and thus Lemma 13 is proved.

We are now ready to complete the proof of Theorem 4.

Proof of Theorem 4, part ii:Recall that all the branch lengths in T0

and its NNI neighbors T1; T2;…; T2ðn−3Þ are defined by
ðγTi ; λTiÞ-formulae, with the constraint that γTi and γT0 are
almost identical. We wish to prove that the branch lengths of
T1; T2;…; T2ðn−3Þ can be calculated in Oðn2Þ time. Let δðiÞ

XY de-
note the average clade distances in ΔTiðγTiÞ. Because of Lemma
12, ΔT0ðγT0Þ can be calculated in Oðn2Þ time. From this, the
calculation of δðiÞ

XY for every pair of 3-separated clades in Ti, re-
quires OðnÞ time (Lemma 13). Combining this to Lemma 11
yields that all OðnÞ branch lengths in Ti can be calculated in
OðnÞ time. Because there are OðnÞ neighbors of T and each
is treated in OðnÞ time, the whole calculation requires Oðn2Þ
time. The proof of Theorem 4 is thus complete.

A4.3. Updating the Accessory Information When Performing an NNI.
The proof of Lemma 13 above suggests a related result that
may also be useful for hill climbing, when the best NNI neighbor
T 0 of T has been identified and we need to calculate ΔT 0 ðγT 0 Þ in
order to explore efficiently the NNI neighborhood of T 0. Define
diamðTÞ, the diameter of T, as the maximum number of branches
separating any two leaves of T.

Proposition 14. Let T and T 0 be NNI neighbors and let γT and γT
0

be almost identical. Given ΔTðγTÞ, its update into ΔT 0 ðγT 0 Þ
requires Oðn · diamðTÞÞ time.

Proof: Let T be as in Fig. 1B and T 0 as in Fig. S2. Let δXY and
δ 0
XY denote average clade distances from ΔTðγTÞ and ΔT 0 ðγT 0 Þ,

respectively. In order to obtain ΔT 0 ðγT 0 Þ from ΔTðγTÞ, one
needs to calculate the entries of ΔT 0 ðγT 0 Þ that have no corre-
sponding entry in ΔTðγTÞ or those that have changed. These
are the δ 0

XY for all pairs of clades X; Y in T 0 such that some
of the branches f ; g; h; l belong to X or Y . The only case where
both X and Y have at least one of f ; g; h; l belonging to them
is that where X ¼ A1 ∪ B2 and Y ¼ A2 ∪ B1. In this case,
δ 0
XY can be obtained from ΔTðγTÞ with δ 0

XY ¼ γ 0
e 0fγ

0
e 0gδA1A2

þ
γ 0
e 0fγ

0
e 0hδA1B1

þ γ 0
e 0gγ

0
e 0 lδA2B2

þ γ 0
e 0hγ

0
e 0lδB1B2

.
All the other cases correspond to a pair of clades X; Y such

that one of them, say X , is included in one of the four corner
clades A1; A2; B1; B2 and the other, Y , includes two or three
of the other clades (see, e.g., Fig. S2, where X ⊂ A1 and
Y⊇B1 ∪ B2 ∪ A2). It is clear that for any such X , the number
of possible choices for Y equals the number of branches in
the path starting with e 0 and ending in the root of X . In other
words, there are OðnÞ possible choices for X , each of which cor-
responds to at most diamðTÞ choices for Y . Therefore we need to
considerOðndiamðTÞÞ pairs of clades. For each of these pairs, we
now prove that δ 0

XY can be calculated inOð1Þ time from ΔTðγTÞ,
once steps 1 and 2 from the proof of Proposition 13 have been
executed (inOðnÞ time): If Y ¼ A2 ∪ B1 or Y ¼ A1 ∪ B2, then it
is straightforward to obtain δ 0

XY as γ 0
e 0gδXA2

þ γ 0
e 0hδXB1

or as
γ 0
e 0fδXA1

þ γ 0
e 0lδXB2

, respectively; otherwise, if Y includes three
of A1; A2; B1; B2, it is easy to see that Eq. S20, and similar equa-
tions for X ⊂ A2; B1; B2, still hold (without the assumption,
made in the proof of Lemma 13, that X and Y are 3-separated).
It is then possible to calculate each δ 0

XY in constant time.
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Fig. S1. (A) pijA ¼ γe0e1 · γe1e2 · … · γek−1ek is the probability of ending up in i when entering clade A from its root and following the random walk rules de-
scribed in the main text; (B) λA1B1

¼ λA2B2
can be seen as the probability of drawing the tree in the top configuration, while λA1B2

¼ λA2B1
¼ 1 − λA1B1

can be seen
as the probability of drawing the tree in the bottom configuration.

Fig. S2. Illustration for the proof of Lemma 13.
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