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Appendix 1

Here, we present an interpretation of the (y7, AT)-formulae as
averages over a large number of simple branch length formulae,
which allows us to prove Theorem 1: Because these simple for-
mulae are correct—that is, they correctly provide the branch
lengths of a tree whenever the input distances are additive with
respect to that tree—it follows that also the (y7, AT)-formulae
are correct. The detailed arguments follow below.

Let Z,(6) denote the length that is assigned to branch e by an
adopted length estimation method. Let 7* be a tree where e has
length Z,. The adopted method is correct if, for any such tree
T ¢,@d7) =¢,.

Suppose e is an external branch, and define A4, B, i as in Fig. 14
in the main text. Choose a taxon a from A and a taxon b from B.
Then calculate the length of e with:

1

2(8) = 5 (Bia + 8ip = Bap).
If instead e is an internal branch, let 4,, 4,, B, , and B, be the
four clades surrounding it, as in Fig. 1B in the main text. Choose
taxaa, a,, by, b, from A, A,, B, B,, respectively. It is clear that
any drawing of the tree on the plane either places A; to the side
of B, and therefore A4, to the side of B, (as in Fig. S1B, Top) or
alternatively 4, to the side of B, and A4, to the side of B,
(Fig. S1B, Bottom). We associate the former drawing with the fol-

lowing formula for the length of e:

2a,byazb, 1
28" (8) = 5 (Bayp, + Bty = B0, = Bpyn,).

The alternative drawing is associated to the formula £ libaazby (6).
Note that 72°(8), 741712 (§) and 22172%P1(5) are all trivially
correct.

The yT and AT parameters introduced in the main text can be
interpreted as controlling a probability distribution over all pos-
sible such formulae for calculating the length of a given branch e
in T. First, as illustrated in Fig. S14, the y 7 parameters deter-
mine the probability of choosing a given taxon out of any given
clade (a from A, b from B in the case of external branches, a,
from A,, a, from A,, b, from By, b, from B, in the case of inter-
nal branches). Second, as illustrated in Fig. S1B, the AT para-
meters determine the probability of choosing either of the two
possible drawings for the clades around an internal branch e,
and therefore either of 72171272 (§) or #21%2%(8) for the length
of e: A4, B, = Mu,B, is the probability of drawing A4, to the side of
B, and A4, to the side of B,, whereas its complement
M, B, = M, = 1 —Ay,p, is the probability of drawing A, to
the side of B, and A, to the side of B;.

Given this probability distribution, let us take the resulting ex-
pected value of the length assigned to e. In the (harder) case of an
internal branch, this is given by

1 w w w

. 2 (61'A + 8/ — 6AB)

£, (6) = 1 [Zays,+ 2y, (&% +on )+ZA131+ZA232
2 Z4p A By Ay B, Zap
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»aibya,b,
2 Day|4,Par|4,Pb, 1B, Pis|B, Ma, B, C e 0

aj€Ay.b1€B)
ay€Ay,by€By

+ }\A!le/;:,bzazbl (6)]

1
=5 Z Pay|4,Par| 4,Pb, B, Pby 1B, Ma, B, (Bayb, + 8asp,)

aj€Ay,by€B
ap€Ay.bryeBy

+ (1 =24, 8,)(8a,b, + Bayb,) = Baya, — Ob,b,)
1

= E[M,Bl (84,8, +8.4,8,) + (1 =My, ,)(8.4,B, +84,5,)

- 6A1A2 - SBIBZ]'

Thus what we obtain (also in the easier case of an external
branch; not shown) are precisely the (y 7, AT)-formulae. In other
words, these formulae can be seen as providing the expected
length of a branch when this is assigned following the random
procedure described above. Given this observation, the correct-
ness of the (y7, AT)-formulae follows trivially from the correct-
ness of the base formulae #2°(8) and #2'"1“" (§). Theorem 1 is
therefore proved.

We note that the approach of expressing a length estimator as
the combination of several simple formulae has already been con-
sidered by Willson (1). His base formulae, however, express the
length of a path in the tree (as a function of the distances between
three taxa) rather than a single branch (which we express as a
function of the distances between three or four taxa, for exterior
and interior branches, respectively). Moreover, the combination
of his base formulae provide an estimate of the total length of the
tree (in the ME | sense).

Appendix 2

Here, we prove the relationship between the M&P formulae (2)
and our (yT,AT)-formulae, as stated in Theorem 2. We start by
formally defining the M&P formulae (A2.1); then we introduce a
few additional formalisms and a useful observation (A2.2) and
then prove separately the two parts of Theorem 2 (i in A2.3
and ii in A2.4). This requires showing how to derive the para-
meters of each class of formulae from the parameters of the other
class (i.€., (y7,AT) from w, and vice versa).

A2.1. The M&P Formulae. We assume that the weights w = (w;;) are
multiplicative w.r.t. a binary topology 7. Then, for any two clades
A and B of T, define

1
ZAB = ZWU and 6:{3 = TMZWUSU

ied ied
JjeEB JEB

Mihaescu and Pachter (2) have shown that the optimal branch

lengths of T with respect to the WLS criterion 1 are then given
by the following formula, applicable to any branch e in T

if e is external,

w w w w 1 e 1
(8% p, +8% ) — 84 .4, — 83 p,| Iif eisinternal,
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where, if e is external, we define A4, B, i as in Fig. 14 in the main
text and, if e is internal, we define 4, A,, A = A; U A,, By, B,,
B = B, U B, as in Fig. 1B in the main text.

A2.2. Decomposition of Zyy. Extend the w;; notation to any pair of

nodes x and y (possibly internal) in 7

wy =[] we [S1]

eeP,,(T)

where we recall that the w, are the branch-associated weights that
compose the pairwise weights w;;, and P, (T) is the set of
branches on the path betweenx andy in 7. Then define the multi-
plicative weight of X (a clade with root x) as:

ieX
We assume w,, = 1 for any node x, which implies Zy;, = 1, for

any one-taxon clade {i}. It is then easy to check that, if X and
Y are any two disjoint clades in T, with roots x and y , respec-
tively, then

A2.3. The M&P Formulae are Also (y<1)-Formulae.

Lemma 1. Given weights w = (w;;) multiplicative w.r.t. a binary to-
pology T, define, for each pair of adjacent branches e and f:

Yor = waA|
ef — 7 s
A

[54]

where A, and A = A, U A, are the clades having f and e as root
branches, respectively, as in Fig. 1B. Then,

i. The resulting average distances between clades are such that
dxy = d%y, for any two disjoint clades X and Y in T.

ii. For any internal branch e, let A = 4, U A, and B=B; U B,
be the clades in the configuration of Fig. 1B; then
(ZaB, + Za4,8,)/ Z4B = Yef +Yeh = 2VefYen-

Proof:
i. Eq. 83 allows us to express 8%y in a very similar form to that of
) XYy

Sy = Y70 = T
XY — ij ijs
ZXY iex ZXZY
Jjey

ieX
jey

where x and y are the root nodes of X and Y, respectively. In
order to have 8y y = 8Y%,, it is then sufficient to prove that, for
any clade X with root x, and any taxon i € X,

Wix
Pix = Z_x

Let the path from x to i traverse branches ey, e,, ..., ¢ (in this
order), and let X; be the subclade of X having ¢; as root
branch (0 < j < k, with X, = X and ¢, being the root branch
of X); then, X; = {i} and

oy _we|ZX| _WEZZXZ .
e Yerren 72){ 72)(1
.wekZXk We, = W, * Wi

_ X ""Wekz _ Wi
Zy., Zy Wz

Pilx = Yege, ~ Yeje,
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ii. Using again Eq. S3,

Z 4,8, + Z 4,8,
Z 4B

. WleZA]ZB2 + WgWhZA2Z31
- ZaZp

= YefYel + YegVeh = Yef + Yen — 2’Yef"{eh-

Points i and ii are thus both verified and Lemma 1 is proved.

Setting v, as in Eq. S4 has a simple intuitive meaning: If
we call g the root branch of A4, (as in Fig. 1B), then Z, =
wrZ 4, +wgZ4,. The v, above can then be seen as the relative
multiplicative weight of the subtree corresponding to clade 4, in
the subtree corresponding to clade 4. The random walk defined
by these parameters is then “attracted” by the heavier subtrees,
in a way that is directly proportional to the weights of the
subtrees.

Proof of Theorem 2, part i: Given w multiplicative w.r.t. T, define
the y 7 parameters as in Eq. S4. Note that because w, > 0 for any
branch e, then Z > 0 for every clade X. Moreover, for any three
adjacent branches e, f , and g in the configuration of Fig. 1B, we
have wyZ 4, +w,Z4, = Z4 and wyZ 4, wsZ 4, > 0, which imply
Yef +Yeg =1 and 0 <y, v, < 1. Therefore the definition of
the yT parameters is admissible and implies that 5yy = 8%y
(Lemma 1, part i).

As for the ).T parameters, set }\’AIBI = (ZA|BZ -+ ZAzBl )/ZAB!
for every pair of clades 4, and B, separated by 3 branches, and
being in the configuration of Fig. 1B with 4 = A4, U A, and
B=B,UB,. It is easy to check that this implies Ay p, =
7\,/4232 > 0, }"A]Bz = 7\/4231 >0 and 7\,4131 + }\'AIBZ = 1, and there-
fore the definition of the A7 parameters is also admissible.

It is now easy to verify that the resulting (y 7, AT)-formulae co-
incide with the M&P formulae corresponding to w: for the exter-
nal branches this is an immediate consequence of dyy = 8%y,
while for the internal branches we also use the above definition
Of )\AIBI and the faCt that 1 - 7\"4131 = (ZA]BI —+ ZAZBZ)/ZAB-
Finally, the y7 and AT defined above satisfy properties P1 and
P2: the first can be verified by using Eq. S4 in P1, and the second
is a direct consequence of Lemma 1, part ii.

A2.4. Characterization of the (y,))-Formulae That are Also M&P
Formulae.

Proof of Theorem 2, part ii: The proof has the following structure:
As an intermediate step, we introduce—for every three clades A4,
A,, and B whose respective root branches f, g, and e are incident
to the same internal node (as in Fig. 1B)—three values ¢, ¢,
and gp such that g4, + @4, + 9 =1,0 < @4.94,. pp < 1and

_ PAa, P4, _ ?B
Yef P4, +¢a, Ve 4, + 05 Tee OB+ 94,

[S5]
The existence of such values is guaranteed by property P1. In in-
tuitive terms, we are requiring that each clade has somewhat a
“preference value,” such that the probabilities y,; and y,, are pro-
portional to the preference values of the clades that f and g lead to.
On the basis of these values, we then define a set of branch-asso-
ciated weights w, specifying a multiplicative model such that the
preference values can be obtained as

_ WeZB
- WeZB +WfZA| +WgZA2 ’

¢B [S6]
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(With A4, 4>, B,f, g, e as above.) It is easy to see (shown below)
that this implies that Eq. S4 of Lemma 1, and therefore its con-
clusions, hold. This, together with the fact that the A7 parameters
satisfy P2, implies that the M&P formulae for w coincide with the
given (y7, AT)-formulae.

Let us now look in detail at each step. First of all, property P1
implies that the determinant of the coefficient matrix for the sys-
tem of linear equations in ¢4, @4, , and g corresponding to
Egs. S5 is equal to 0; this system is then solved by the following
subspace of solutions:

1- 1=y, 1—
(P8, @4, 94,) € {(x Yge y ~ el Ygex) Ix e R}.
Yge Yef Yee

If furthermore we impose @4, + @4, +¢@p = 1, it is easy to see
that a unique solution is determined, such that ¢4, ¢.4,, 95 >0
(and therefore also <1).

Given the ¢y parameters, we now show how to define the
branch-associated weights w,. For any internal branch e separat-
ing clades A and A, let

DA P4
I R

We = [87]

As for the external branches, which for simplicity we call with the
same names as the taxa they are incident to (e.g., branch i being
the one incident to taxon i), we assign their weight in the follow-
ing way: Choose arbitrarily w; > 0 and then, for any other exter-
nal branch i € {2, 3, ..., n} define

Y_fil—(ﬂl Pi

Wi =W " s
Yi oo 1-g

[S8]

where Y7 = Yee, *Veie, " --- " Vo> fOr any pair of branches e, f
linked by a path composed of the ordered sequence of branches
(e1, ey, ...,e;), and for simplicity we write ¢, and ¢; instead of
@qy and @y

The weights thus defined determine a multiplicative weighting
w = (w;;) that satisfies Eq. 86. In order to show this, we first show
that, for every clade A (whose root branch we call ¢) such that
|A] < n—1 (ie., the endpoint of ¢ on the other side of A is
not a leaf),

* 1_
WeZ 4 =w y—lf P1_Pa_
1 1—04

[59]

We prove this by induction on the size of A. If A consists of a
single taxon, then either this is taxon 1, in which case both sides
of the equation reduce to wy, or this is another taxon i, in which
case Eq. S9 coincides with Eq. S8. In both cases Eq. S9 trivially
holds. If |A| > 1, let A, A>, B, f and g be as in Fig. 1B. Then, by
inductive hypothesis, Eq. $9 holds for w;Z,, and w,Z,, and we
have:

ZA :WfZA] +WgZA2

o, L—oi [ Ny o4 N Yig @4,
2 Yl =4, Yo 1 =04,

Now note that

Yy Vie#a(1-¢4,)
vh Ya ¢s(l—9p)

Yig _ Vie®a, (1 —94,)

and =
Yo Ve vp(1 —p)

. [S10]
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which can be verified by noting that, depending on the position
of taxon 1 (in A, A, or B), y;;/v/, can either be equal to

(YI*e/Ye*l)(Yef/Yfe) or (YI*e/Yg*l)(Yngeg)/(Ygerg)’ and yrg/Y;I can
either be equal to ('Yfe/Ye*l)('YEg/Yge) or ('Yfe/Y:l)(Yngef)/(YfEYgf)
The equations in S10 can then be obtained from these expres-
sions by making the substitutions y,, = ¢y /(1 — ¢x) (equivalent
to Egs. S5) for x,y € {e,f, g}, where X, Y are the clades sepa-
rated by and having x,y as root branches, respectively. If now
we use Eq. S10 in the expression above for Z 4, we obtain after

obvious simplifications
L= 1-
W, Lie 1 23
Yer 1 ¢B

If now we use Egs. S7 and S11 to express w, and Z, in w,Z 4,

what we obtain is precisely Eq. S9, which therefore is proven.
We are now ready to prove Eq. S6. Note that Eq. S11 holds for

any “composite” clade A4 (i.e., one that can be decomposed into

two other clades 4, and A4,). Then,
[ s
w.Zp w.Zp -5

WeZp +wrZy, +wgZy, T WeZp+Z4 [ 4+ Jles
I-¢p @B

= ¢B;

Zy= [S11]

where for the second equality we have used both Egs. S11 and S9.
But this implies that, for every composite clade 4 = 4, U A,
in the configuration of Fig. 1B,
WiZa, __ WiZa, @4
Zy4 WiZy, +WeZya, Qa4 tQu,

=Y. [S12]

Eq. S4 of Lemma 1 is therefore verified. But this ensures that
dxy = 0%y, for any two disjoint clades X and Y (Lemma 1, part
i), while the fact that the AT parameters satisfy P2 implies (Lem-
ma 1, partii) that Ay g, = (Z4,5, + Z4,5,)/Z 45 for every pair of
3-separated clades A;, B, in the configuration of Fig. 1B. That is,
the M&P formulae for w coincide with the given (y 7, AT)-formu-
lae, which concludes the proof of Theorem 2, part ii.

Appendix 3

Here, we prove that the main criteria to score trees, LS and ME
(in all their common variants), are statistically consistent when
used in combination with our branch length formulae, as stated
in Theorem 3. We start by showing that the consistency of any
distance-based principle is essentially determined by its behavior
on perfect data (A3.1). Next, we move on to proving the consis-
tency of LS (A3.2) and then that of ME: For the latter, first
we show a useful dependency property between different variants
of ME (A3.3), and then we prove the consistency on perfect data
of the classic version of ME (A3.4), which is the key nontrivial
result of this appendix and allows us to conclude the proof of
Theorem 3 (A.3.5).

We recall that a branch length estimation scheme is a method
that, for any binary topology over the set of taxa under consid-
eration {1,2,...,n} (n = 3), determines how to fit the length
of its branches on the basis of an n x n distance matrix 6. We
say that a branch length estimation scheme is continuous [linear]
if, for any branch e in any binary topology, the function Z,(6) giv-
ing its fitted length is continuous [linear] in . A branch length
estimation scheme is correct if, for any branch e in any binary tree
with branch lengths, #,(8) returns the length of e whenever 6 is
additive with respect to that tree (as in Theorem 1). The branch
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length estimation schemes that we consider here are those based
on (7, A)-formulae, whereby a collection of y T and AT parameters
is chosen for each binary topology 7, thus determining a set of
(yT,AT)-formulae for T’s branch lengths (with no assumed rela-
tion between the values of these parameters across different
topologies). It is clear that the resulting branch length estimation
schemes are linear (thus continuous) and correct (Theorem 1).

Any branch length estimation scheme can be combined to a
number of principles identifying an optimal tree among all the
topologically distinct fitted trees. The optimization principles
we consider here are defined by a tree score function, which
can depend on the topology of the tree, the assigned branch
lengths and (in the case of LS but not ME) the input distances.
An optimization principle .Z then consists of seeking the fitted
tree(s) that minimize this function, and we denote this tree (or set
of trees) with .#(6). We say that ./ is statistically consistent if
L (6) converges (in probability) to the correct tree.

The following assumption (the consistency of the distance es-
timates and the positive additivity of the correct evolutionary dis-
tances) applies to all the propositions that follow, and we state it
here so that we do not have to repeat it in every statement.

Assumption 2. Let the correct phylogenetic tree for the taxa under
consideration, T*, be a binary tree with positive branch lengths. As-
sume that the input distances & converge (in probability) to dT".

A3.1. Consistency for Perfect Data Implies Statistical Consistency. The
following is a well-known sufficient condition for consistency,
which has been proven for ME with the same continuity argu-
ments (e.g., ref. 3). It can be applied to most tree optimization
principles (LS, ME, possibly combinations of the two or even to-
tally different criteria).

Proposition 3. Adopt a continuous branch length estimation scheme.
Let M be an optimization principle based on a tree score function
that is continuous in all its continuous parameters (i.e., all but the
topology). If #(dT") is unique and coincides with T*, then M is
statistically consistent.

Proof: To any binary topology, .# assigns a score by first assigning
branch lengths to it and then applying the adopted tree score
function. Note that because both the branch length estimation
scheme and the tree score function are continuous, then also
the score associated to any particular topology is continuous in
8. Because #(d7") = T* is unique, when 6 =d 7" the score of
the topology of T* must be strictly smaller than the score of
all other binary topologies. But then, because the scores of topol-
ogies are continuous in 6 and finite in number, this must still hold
for every 6 in a neighborhood of d7"; that is, for every § in this
neighborhood, .#(6) is unique and has the same topology as T*.
But because 6-5d " the probability that § belongs to this neigh-
borhood, and consequently .#(8) has the same topology as T*,
converges to 1. Finally, when .#(6) has the same topology as T*,
the continuity of the branch length estimation scheme implies
that the branch lengths in .#(8) converge in probability to those
in #(dT") = T*. We can then conclude that both the topology
and branch lengths of .#(8) consistently converge to T*.

A3.2. Consistency of Least Squares. We have briefly defined LS
methods in the Introduction. Here we assume the most general
form for LS and prove its consistency under very general condi-
tions (Proposition 4 below). We define LS methods as those that
use a tree score function with the following form:

Pardi and Gascuel www.pnas.org/cgi/doi/10.1073/pnas.1118368109

O(T,8)=(6—dT) Wrs6—dT), [S13]
where T is the tree fitted using the assumed branch length esti-
mation scheme, & is a column vector with the (}) input distances
and Wy s is a (5) x () matrix which may depend on the topology
of T and, continuously, on é and the branch lengths of 7. Addi-
tionally, we assume that, for any 7 and &, the matrix W 5 is po-
sitive-definite. (W 7 5 should be interpreted as the inverse of the
assumed covariance matrix for §.)

Note that whereas the dependence of W s on § is common
(e.g., the version of WLS by Fitch and Margoliash (4) uses a di-
agonal matrix with W;; ;; = 8;2), the dependence on T is non-
standard, and we have included it here for completeness. (But
for example the balanced version of WLS (5) at the basis of
the balanced branch lengths (6) does assume a variance model
that depends on tree topology.) Also recall that the criterion
Q(T, 6) above is used to score trees with already-fitted branch
lengths, so the dependence on the branch lengths does not cause
any computational problem.

Proposition 4. Adopt any correct and continuous branch length es-
timation scheme. Then, LS is consistent.

Proof: We prove that for LS, the hypotheses of Proposition 3 are
satisfied, and therefore LS is consistent. First, the branch length
estimation scheme is continuous (by hypothesis) and the score
function in Eq. S13 is a continuous function of both § and of
the branch lengths assigned to T (note that d T is linear, and thus
continuous, in the branch lengths). It remains then to show that,
for6 =dT’, LS uniquely identifies T* as optimal. Because W 4
is positive definite, Q(T,d”") =0 if and only if d7" —d” =0,
that is, if and only if 7 = T*, whereas for all other trees
W # T* Q(W,dT") > 0. Moreover, because the branch length
estimation scheme is correct, 7* is precisely what is obtained
when fitting its branch lengths. Therefore 7* uniquely minimizes
the score function Q and is returned by LS.

Corollary 5. Adopt a branch length estimation scheme based on
(7, A)-formulae. Then, LS is consistent.

A3.3. Dependency Between the Consistencies of Different Variants
of Minimum Evolution. Recall that ME; reconstructs the fitted
tree that minimizes the following tree score function, where
¢ = (¢,.) denotes the branch lengths in the fitted tree:

[S14]

In the main text, we assume i € {—1, 0, +1}, but here we con-
sider, more generally, ME, with x being any real number. We do
this not only for the sake of mathematical completeness but also
to include variants of ME that may be considered in the future
(e.g., ME_,, which corresponds to avoiding at all costs trees
which are assigned negative branch lengths). The following pro-
position shows that if we can prove the consistency of ME, using
Proposition 3, then the same can be done for any ME, withx < y.

Lemma 6. Adopt any correct branch length estimation scheme and let
x <y. If ME,(d"") = T*, then also ME,(d"") = T".

Proof: We adapt a line of reasoning that has appeared elsewhere
(3, 7). Because of the correctness of the branch length estimation
scheme, when the branches of the topology of T* are fitted using
dT’, their lengths are set to their correct values. Because these
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are all positive, the scores assigned by ME, and ME, to T* equal
precisely the sum L * of all branch lengths in 7*. Now let # denote
the branch lengths assigned to an incorrect topology us1ng ar’;
x <y implies that L,(#) > L,(¢), and because ME,(d”") is un-
ique and equal to T*, we “also have L (f) > L*. But then
L.(¢)> L* for any incorrect topology. Because L* coincides
with the score assigned to 7* by ME,, we can then conclude that
ME,(d7") is unique and coincides with T*.

A3.4. Consistency of the Classic Version of Minimum Evolution. We
now concentrate on the consistency of ME, |, which because
of Lemma 6 implies that of ME, for any x < +1. We use a stan-
dard framework for investigating the consistency of ME,
(e.g., ref. 1), which consists in verifying a property (“Willson’s
condition”) of branch length estimation in the presence of a spe-
cial kind of binary distance matrix. In the following, we introduce
and state Willson’s condition (A3.4.1), then prove some proper-
ties of the (y7, AT)-formulae that are useful to verify it (A3.4.2)
and finally prove the consistency of ME , | via Willson’s condition
(A3.4.3). For simplicity, we write L (§) as a shorthand for
L_(¢7(5)), that is, the tree length (sensu ME, ) resulting from
fitting the branch lengths of T using &.

A3.4.1. Willson’s condition. We denote by d5I5 (where S C
{1,2,...,n} and S = {1,2,....n}\ S) the following collection
of (}) distances, indexed by i # J:

255 _ {1 if [Sn{ij} =1,

Y 0 otherwise.

Willson's condition for ME consistency can be stated as fol-
lows: (1)

Lemma 7. Adopt any linear branch length estimation scheme such
that, for any binary topology T and any proper and nonempty subset
S of taxa from T,

iT(dSS){_I
>1

Y=

if Sis aclade in T,

otherwise.
Then ME_,(d”

Informally, this holds because d 7" is a weighed sum of all d5!°
corresponding to the clades in T, the coefficients of this
weighted sum being the branch lengths of T*. The linearity of

L™ then implies that, in turn, L (d T") is a weighted sum of
the branch lengths of T*, where the coefficients are now either
1 or strictly greater than 1, depending on whether or not the cor-
responding § is a clade in 7. Clearly this weighted sum is mini-
mized when all the clades in 7* are also clades in T, that is
for T=T".

A3.4.2. Tools to verify Willson’s condition. Given any subset of taxa
Sc{l1,2,...,n} and any clade X in a binary topology T for
which a set of (y”,A”)-formulae is defined, define pgy as the
probability of picking an element of S from the random distribu-
tion over X defined by the yT parameters. That is,

Psix = Z DPix-
ieXns

Moreover, a clade X is monochromatic (w.r.t. S) if either
XCSorXcCS={1,2,....,n}\S. In this case it is clear that

Psix €10, 1}
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Lemma 8. Assume that the branch lengths of T are assigned with
(yT, AT)-formulae using the input distances in d®!S, for some
Sc{l,2,...,n}. Then,

i. Forany two clades X and Y in T, the average distance between

518
them dyy = psxPg)y +P3)xPs|y-
ii. If branch e belongs to a monochromatic clade, it is assigned
length ¢, = 0.
iii. If adjacent branches f and g separate (and are the only ones to
separate) two monochromatic clades A, and A,, with A; € S
and A, C S, then ¢y + ¢, = 1.

Proofs‘s o5
i dyy = ZepuxPivd” = XiewspixPily + TiepsPixPjly =
Ps|xPsyy T P3|xPs|y-

ii. Branch e is either internal or external. We consider here only
the case where it is internal, as the external case is analogous
(and simpler). We assume clades A, 4,, By, and B, are de-
fined as in Fig. 1B. Because e belongs to a monochromatic
clade, at least three clades out of 4, 4,, By, and B, are
all subsets of S or all subsets of S. Without loss of generality,
we assume that 4, A,, B; are all subsets of S. Applying part i,
it is casy to see that this implies &%, = a5, = a5 =0

SIS SIS 88
anddBle—dAzBZ—dAle—pswz.Butthen,

| ,
=5 s, (@, S )+ (1=t @SS, +d55)

NK NK
_dAlAz dBl,Bz]
E[KAIBIPS\BZ + (1 =A4,8,)P315, —P3j5,] =0

iii.

=

Let B={1,2,...,n}\ (A4, U A4,), as in Fig. 1B. In a way ana-
logous to part ii, it is easy to check that, independently of f
being internal or external, £y = 1/2(1 + P35 > ~Psp) and,
similarly, 7, = 1/2(1 + pgjp — pg ). Therefore, ff +Z,=1.

Points i, ii, and iii are thus all proved.
A3.4.3. Consistency of minimum evolution with perfect data.

Proposition 9. Adopt a branch length estimation scheme based on
(1. A)-formulae. Then, ME ,(dT") = T*.

Proof: We show that any branch length estimation scheme based
on (y, A)-formulae satisfies Willson’s condition (i.e. the _hypoth-
eses of Lemma 7), and therefore we must have ME,; (d7") = T*.

First, it is trivial to see that any such branch length estimation
scheme is linear. Second, it is correct (Theorem 1), which implies

LT (dS1%) = 1 whenever S is a clade of T In this case, in fact, d5IS
is additive with respect to a tree with topology 7 and with all
branches of length 0 except the root branch of S, which has length
1; because of their correctness, the (y7,AT)-formulae result in
ass1gn1ng T precisely these branch lengths and therefore a total
length L (d5‘5) =1. ]

It remains to prove that L7 (dSI5) > 1 whenever S is not a
clade of T—for any branch length estimation scheme based
on (y, A)-formulae. We do this by induction on the size of T.

For n = 3 taxa, this is trivially true, as all proper, nonempty sets
of {1,2,3} are clades of T.

For n > 3, if S is not a clade of T, it is always possible to find a
palr of 2-separated clades A, A, such that A;CS and AZCS—
i.e., such that A, and A, are monochromatlc—but A; U A, and
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={1,2,...,n}\ (4, U Az) are not monochromatic. To see
thrs c0n51der the tree 75 that is obtained by substrtutlng every
monochromatic clade in T with a taxon; because § is not a clade
of T, then T(5) must have at least two cherries (i.e., pairs of
2-separated taxa); any of these corresponds to a pair of clades
A, A, in the original tree T with the required properties. Let
e, f, and g be the root branches of B, A; , and A4,, respectively,
and a their common endpoint, as in Fig. 1B. Because A and A,
are monochromatic, it is clear that all branches belonging to these
clades are assigned length 0 when the input distances are d = d5®
(Lemma 8, part ii).

Now let T’ be the topology that is obtained by deleting from T
all branches belongingto A = A; U A,,so thata isaleafof T'. It
is clear that there is one-to-one correspondence between the
branches/clades of 7'/ and a subset of the branches/clades of
T. When calculating the branch lengths in 7', we assume that
the v, and Ayy parameters are the same as those for the corre-
sponding branches/clades in 7. Now define the following dis-
tances over {1,2,....,n} U {a}\ 4, i.e., the taxa in T":

d() — g(Sulaha)|(Gva).
4@ = gS)I(3u{ana).
d' = yyd D) + y,d®).

Note thatd’ coincides with d except for the distances that involve
a. For these, we have

Ay = Vedyy + Vegdly)

a_]’

for every je{1,2,...,n}\ A. Note also that dl =dy,; and
d (J) =d,,;, which 1mply d, =d  4j- This in turn implies that,
for any drsjornt clades X and Y in T,

dxy
diyy =
Xy {dX/Y

ifagXuUY,

[S15]
if a € X and where X' = X U A\ {a},
that is, the average distances between disjoint clades remain the
same when going from (7', d) to (T, d’). To see this, note that the
first case is a simple consequence of the fact thatd’ coincides with
d for the distances that do not involve a. As for the second case, it
is a consequence of combining d,/; = d 4; (shown above) with the
first case (and it can be easily proved by induction on the size
of X).

Th)e important consequence of Eq. S15 is that the lengths of
branches belonging to B—which only depend on average dis-
tances between disjoint clades in 7'—remain constant when
going from (7', d) to (T',d"). Therefore, the only difference be-
tween the two tree lengths will come from the lengths of branches
e, fand g

LT@)y=L" @)+ +2,+¢, -2, [S16]
where 7 » and ¢ » represent the lengths assigned to branch b for
(T.d) and (T',d’), respectively.

Because for ME,; the tree length is a linear function of the
branch lengths and the branch lengths themselves are linear func-
tions of the input distances, LT (d') is then linear in d’ and we
can write

LT(d) =y LT @) +y,L" (@)

Because d(!) and d(? are equal to some d*¥ 18" where S”isa prop-
er and nonempty subset of the n'(< n) taxa in T’ we can apply
the induction hypothesis and infer that LT (d M)>1 and
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LT /(d N> 1 (where .equality is achieved when S’ is a clade
of T'). Therefore L”'(d") > 1.
In order to prove that the tree length in Eq. S16 is strictly

greater than 1, we then just need to prove that 1,2]« + 9g + 96—
f > 0.

First, because of Lemma 8, part iii, f’f + f = 1. In order to
calculate f and fe, it is useful to note that d 4,4, = 1 and, for

any CladeB CB dA B’_pS\B/_l_qu’ and dA B = pngr
(Lemma 8, part 1) Then
A 1
o= E[XA,B,U = psig, +Psig,) + (1 = Ay, )(1 —pgs, +Psi5,)
- 1 _dB]Bz]
1
=5 (1 =24, ) (PsiB, —Psi5,) — 4B, B,)-
Similarly,
[da’B. +d,p —dp ]
= E[dAB, +dap, —dp,s,]
1
= E[Yef(dA.Bl +dy,8,) + (1 =Ver)(da,B, +du,p,) —dp,B,)
1
= E[Yef(z —Ds|B, _pS\Bz) +(1- Yef)(l?sm! +pS\Bz) - dBlBZ]
1
= Yo + 5[(1 = 2Yer)(PsiB, + Psig,) — B, ,)-
Then,
2f+%g+2e_2,: ~Yer +PsiB, (Yer = May,)

+ D518, (Ve = (L = Ay, 3,))-

But this is a linear function of (pgp . pgp,) in the square [0, 1]2,
and is thus minimized in one of its four vertices. In (0, 0) 0, 1),
(1,0), and (1, 1), the function has values 1 — yo¢, hg, 5, 1 =g, 5,
Yof» Tespectively. Because these are all strictly greater than 0
by hypothesis, then so is £y +7€,+¢,—¢ . and therefore
L7 (d) > 1, which completes the proof of Proposition 9.

A3.5. Wrapping It All Together. By applying Proposition 9, Lemma 6,
and Proposition 3, we then conclude:

Corollary 10. Adopt a branch length estimation scheme based on
(7, A)-formulae. Then, for any x < +1, ME, is consistent.

Which, together with Corollary 5 and Assumption 2, completes
our proof of Theorem 3.

Appendix 4

Here, we prove the efficiency of calculating branch lengths with
our formulae in hill climbing heuristics, as stated in Theorem 4.
We start by showing that efficient branch length calculations es-
sentially depend on the availability of the average distances be-
tween (some) clades in the current tree and that these can be
calculated in quadratic time, which allows us to prove Theorem
4, part i (A4.1). When performing an NNI, calculating the new
branch lengths can be done efficiently by recalculating only some
of these average distances, which leads us to prove Theorem 4,
part ii (A4.2). Finally, we show that updating the average dis-
tances following an NNI can also be done efficiently (A4.3),
which is not a claim of Theorem 4 but is nevertheless potentially
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useful. The results and proofs here are inspired by those of Des-
per and Gascuel (8). However, their results were specific to the
balanced and OLS branch lengths in combination with the ME,
optimization principle. A key property of these estimators is that,
when performing an NNI, the sum of the branch lengths in each
of the four corner subtrees around the location of the NNI re-
mains constant. Thanks to this property, the difference between
the ME, | lengths of any two NNI neighbors 7" and 7'’ can be
efficiently calculated using simple formulae. This property does
not hold in general for (y7,AT)-estimators, and so we have to
recalculate all branch lengths every time we perform an NNI.
The good news is that (i) the complexity of each iteration in a
hill climbing heuristics for ME (computing the length of all
NNI neighbors of a given topology and updating the data struc-
tures for the new best topology), which for BME was quadratic in
the worst case, remains quadratic in the size of the tree, and that
(if) recalculating all branch lengths makes it possible to use opti-
mization principles such as MEy, ME_; , and ME__,

In the following, T, T’ , and T; always denote binary topol-
ogies, and y 7, yT", and y T, collections of y,; parameters defined
for them, in the way described in the main text.

A4.1. Computing the Branch Lengths of Fixed Topology.

Lemma 11. Adopt a set of (y T, AT)-formulae for the branch lengths of
T. Given 6 and 8y for every pair of 3-separated clades X, Y in T,
the length of any branch in T can be calculated in O(1) time.

Proof: The (yT,AT)-formulae are simple linear combinations of
average distances dyy between 2- and 3-separated clades X
and Y and can be computed in O(1) once these average distances
are available. Because we assume that the average distances be-
tween 3-separated clades are given, it remains to show that 8 yy
between any pair X, Y of 2-separated clades can be obtained in
O(1). But this is trivial: Either both X and Y consist of one taxon
only (i.e., X = {i} and Y = {j}) in which case 5xy = §;;, or at
least one of the two clades, say X, is such that X = X U X,
where both X; and X, are clades, in which case &yy =
YefOx,v + YeOx,v> Where e, f, and g are the root branches of
X, X, and X,, respectively, and both 8y, y and 8,y are known,
as X; and Y are 3-separated (for i € 1,2}). Lemma 11 is there-
fore proved.

Although the one above is a straightforward observation, it
determines the minimum amount of information necessary to
determine any branch length in 7 in constant time. Motivated
by it, we define A7 (yT) as a data structure holding all the aver-
age distances dyy between pairs of disjoint clades in 7" and
make explicit its dependence on y 7. Note that AT (yT) specifies
the average distances between 3-separated clades as a particu-
lar case.

Lemma 12. Given 8, T and y7, the calculation of AT (yT

O(n?) time.

) requires

Proof: Consider any total ordering 4;, Ay, ..., A>p,-3) of the
clades in T, such that if Ay = A; U A; then i <k and j < k.
Finding one such ordering is trivial and can be done in a number
of ways, for example by sorting the clades in ascending order
of depth (2), or by rooting the tree in one of its leaves and
then performing a postorder traversal, listing the clades oriented
away from the root, followed by a preorder traversal, listing the
clades oriented toward the root. The following procedure then
calculates dyy for all pairs of clades (including non-disjoint
ones):
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Fori=2,...,2(2n-3),
forj=1,...,i—1,
By
if 4;={x} and A;={y}.
5 Vera, 4, + Vegda, 4,
Aid) = if A; = A, U A;, for some clades A4; , A;

ip»
'Yef6A[Aj1 + YegSA,Ajz

if Aj= A; U A;, for some clades A; , 4;,.
[S17]

In the second case of Eq. S17 we assume that e, f, g are the root
branches of 4;, A; , A;,, respectively, whereas in the third case
they are the root branches of Aj, A;,, A;,, respectively. Note that
these two cases are not mutually excluswe and the result is the
same independently of which case is applied. Moreover, because
of the way the ordering is defined, we must have iy, i, < i, in the
second case, or j;, j, < j, in the third case, which means that
84, A and 8 4, A, (second case), or 8 4, 4, and 84, 4, (third case)
have already been calculated and are available when we calculate
8 4,4,- Because each & 4,4, Can be calculated in constant time, the
whole calculation requlres O(n?) time. Lemma 12 is thus proved.

The complexity we obtain in Lemma 12 is optimal. Even if we
restrict the calculation to 3-separated clades, we still cannot do
better than O(n?), as the average distances between such pairs of
clades still depend on O(n?) input distances.

Proof of Theorem 4, part i: Combining Lemma 12 with Lemma 11
yields that the branch lengths determined by a set of (y 7, AT)-for-
mulae for a binary topology T can be calculated in O(n?) time.

A4.2. Computing the Branch Lengths of the NNI Neighbors of a Given
Topology.

Lemma 13. Let T and T' be NNI neighbors and let yT and y™' be
almost identical. Let 8y and &%, denote the average clade dis-
tances in AT(yT) and AT (yT"), respectively. Then, given AT (yT),
the calculation of 84 for every pair of 3-separated clades X, Y in
T', requires O(n) time.

Proof: We assume that T is as in Fig. 1B and T’ as in Fig. S2.
Let the elements of y7 and y*' be denoted by v, ., and v/,
respectively. i

First, we show that & . is straightforward to obtain in the case
of pairs of 3-separated clades in 7'’ such that none or 1 of the 3
branches separating X and Y belongs to one of the corner clades
Al,Az,Bl,Bz. Let AIZAIIUA{,, Az:AZ,UAZH, Bl =
B/ u B{"and B, = B] U BJ’, where all the sets involved are also
clades of T’ (and therefore T'). It is trivial to verify that

6‘111‘42 = %440 61/31192 = 85,8, 61:1131 =348

6;1232 - SAZBZ’ 6",11,82 = 6’41,32’ 6/:11”32 = 6,41”32’

6;1132, = Oamy. 8’:1132” =8a/py- 6;12’31 =848,

848, = a8, 84,5 = Sa4,8/> 8,5 = S,
[S18]

asy” and y7" are the same within all the clades in the subscripts
above. Now observe that A; U B, and A, U By are clades in T’
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but not in 7. Their average distances with other 3-separated
clades must then be obtained with expressions such as

6/

A apum, [S19]

= yg,’gsA]’Az + ¥, 1,04/B,-

6/
["A,UB;” VB, A,UB,’

!/
SB.”AuuBz .) We have

(Similar formulae are easy to obtain for &
615/32"Azu3. and 6xliz'A.uBz’ 6//12"A1u32r Sél’A.uBZ’
therefore proved that these 84, can be obtained from one or
two corresponding entries in AT(yT) in O(1) time.

We still have to show how to derive 8}, when two or all three
of the branches separating X and Y belong to a corner clade.
Without loss of generality, we assume this clade to be A;. If both
X,Y c A;, then we trivially have 8}, = 8xy. Assume then
YDOB,UB,UA,. Let clades Y, Y,, ..., Y, be defined as in
Fig. S2 (and note that if Y = B; U B, U A,, no such Y; clade
is defined). Also, if clade Y contains clade Y’ in T, define
Py'|y as the probability that the random walk defined by the

T parameters reaches Y/, assuming that it enters Y from its root
branch: py/y = Yeee, " Yeje, " +++ " Ye,_e» Where eg is the root
branch of Y and e;,e,, ..., ¢, are the branches on the path
between the roots of Y and Y. Define pl’f’IY similarly for 7’

and y7'. Then,

Sxy =Py, vOxy, + -+ Py vOxv, +Pp,vOxs,
+Pp,yOxB, TP4,yO%a,
=Py, vOxy, + -+ Py, vOxv,
+pl,?IUBZUA2|Y(Yf/e’ye,'h6),(B. +V70%5, + Yf/e’ye,’gs),(Az)
=Py, )vdxy, +--- + Py, )vOxy,
+PBuBuA Y (Ve Ve OxB, + YidxB, + Vfer Yo Oxa,),

where the last equality uses the almost identity of y” and y 7"
Similarly,

dxy =Py, vOxy, +--- + Py, rdxv,

+PB,uBua, |y (YreYenOxB, + YeeVeiOxB, + VeOx.4,)-

Therefore,

dyy —dxy = pB,uBZUAZ\Y[(Yf/g'Ye,'h - Yereh)5XBl

+ (Yfs = YreYer)OxB, + (Yfo ¥,y — Vrg)Ox.a,]. [S20]
It is easy to derive similar equations for the cases where (a)
XCAz, YQB] UBZ UA], (b) Xc Bl’ YQA] UA2 UBz, (C)
X Cc By, Y24, U A, U By, which allow us to derive 85, in
O(1) time from four entries in AT(y7) (including §yy) and
DB,UB,uA, |Y> P A,uAsUB,|Y> Pa,uayuB, |y TOT Cases (a), (b), (¢), respec-
tively. Now consider the following procedure:

1. For every clade Y2 B, U B, U A4,, calculate pg p,u4,y-

2. Do the same as above, for every clade Y2B; U B, U 4, for
every Y2A, U A, U B, and for every Y2A, U 4, U B,.

3. Use Eq. S20, or similar equation, to derive 84, for all 3-
separated clades X,Y in 7' such that two or all three of
the branches separating X and Y belong to a corner
clade A] s Az, Bl s Bz.

4. Use the simple equations in S18 and S19 to calculate &, for
the remaining 3-separated clades.

Step 1 can be done in O(n) time, by starting with the smallest
clades including B; U B, U A, and using the derived values to
calculate those for the larger clades. The same holds for step 2.
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Then, each &4, can be calculated in O(1) time. Because there
are O(n) 3-separated pairs of clades, the entire algorithm runs
in O(n) time and thus Lemma 13 is proved.

We are now ready to complete the proof of Theorem 4.

Proof of Theorem 4, part ii: Recall that all the branch lengths in T,
and its NNI neighbors T, T, ..., T3 are defined by
(yTi, ATi)-formulae, with the constraint that yTi and yTo are
almost identical. We wish to prove that the branch len%ths of
Ty, T,, ..., Typ-3) can be calculated in O( ) time. Let 8,/ de-
note the average clade distances in ATi(y 7). Because of Lemma
12, ATo(yTo) can be calculated in O(n?) time. From this, the
calculation of 6;)}, for every pair of 3-separated clades in T}, re-
quires O(n) time (Lemma 13). Combining this to Lemma 11
yields that all O(n) branch lengths in 7; can be calculated in
O(n) time. Because there are O(n) neighbors of T and each
is treated in O(n) time, the whole calculation requires O(n?)
time. The proof of Theorem 4 is thus complete.

A4.3. Updating the Accessory Information When Performing an NNI.
The proof of Lemma 13 above suggests a related result that
may also be useful for hill climbing, when the best NNI neighbor
T’ of T has been identified and we need to calculate A”'(y7") in
order to explore efficiently the NNI neighborhood of 7'. Define
diam(T'), the diameter of 7, as the maximum number of branches
separating any two leaves of T.

Proposition 14. Let T and T' be NNI neighbors and let y* and y ™'
be almost identical. Given AT(yT), its update into AT (y7")
requires O(n - diam(T)) time.

Proof: Let T be as in Fig. 1B and T’ as in Fig. S2. Let 8yy and
84, denote average clade distances from AT (yT) and AT'(yT"),
respectively. In order to obtain AT (y7') from A”(yT), one
needs to calculate the entries of A7 (y7") that have no corre-
sponding entry in AT(yT) or those that have changed. These
are the 8y, for all pairs of clades X, Y in T’ such that some
of the branches f, g, i, belong to X or Y. The only case where
both X and Y have at least one of f, g, &,/ belonging to them
is that where X = A, UB, and Y = A4, U B;. In this case,
8y can be obtained from AT(y") with 8%y =v,v,,8.4,4,+
Ye,’fye/’haAlBl + Ye,’gYe,’lsAsz + ye,’hYe,’laBlﬂz'

All the other cases correspond to a pair of clades X, Y such
that one of them, say X, is included in one of the four corner
clades A, A,, B, B, and the other, Y, includes two or three
of the other clades (see, e.g., Fig. S2, where X c A; and
Y2B, U B, U A,). It is clear that for any such X, the number
of possible choices for Y equals the number of branches in
the path starting with e’ and ending in the root of X. In other
words, there are O(n) possible choices for X, each of which cor-
responds to at most diam(7') choices for Y. Therefore we need to
consider O(ndiam(T')) pairs of clades. For each of these pairs, we
now prove that 8}, can be calculated in O(1) time from A7 (yT),
once steps 1 and 2 from the proof of Proposition 13 have been
executed (in O(n) time): If Y = 4, U B, or Y = A, U B,, then it
is straightforward to obtain 84, as ye’,gSXAz +7v,,9xp, or as
Y, ,f6 x4, +v.,9x5,, respectively; otherwise, if Y includes three
of A, A,, By, B,, it is easy to see that Eq. S20, and similar equa-
tions for X C A,, By, B,, still hold (without the assumption,
made in the proof of Lemma 13, that X and Y are 3-separated).
It is then possible to calculate each &4, in constant time.
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A . B

A2 A A2 Bl B 1

Fig. S1. (A) Pija = Yepe, “ Yere, * -+ * Yerse, 1S the probability of ending up in i when entering clade A from its root and following the random walk rules de-
scribed in the main text; (B) Aa,5, = Ma,s, can be seen as the probability of drawing the tree in the top configuration, while A4 5, = Aa,s, = 1 — 4,5, can be seen
as the probability of drawing the tree in the bottom configuration.

P

Fig. S2. lllustration for the proof of Lemma 13.

Pardi and Gascuel www.pnas.org/cgi/doi/10.1073/pnas.1118368109 9 of 9


http://www.pnas.org/cgi/doi/10.1073/pnas.1118368109

