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S| Materials and Methods

Multivariate Functional Magnetic Resonance Imaging (fMRI) Analysis.
Defining network nodes. Preparation [cue: color (C) or motion (M)]
and no-preparation conditions [cue: no preparation (N)] were
modeled using a general linear model (GLM). Parameter esti-
mates were registered to the MNI152 standard brain template in
2-mm resolution and subjected to an across-participant multi-
variate pattern analysis, using the PYMVPA software package
(1). No spatial smoothing was applied. To search in an unbiased
fashion for voxels that discriminate between preparation and no-
preparation conditions, we used a searchlight analysis (2, 3),
which examines information in local spatial patterns of brain
activity surrounding each voxel. Around each gray matter voxel
v; we first defined a spherical cluster (radius = 8 mm) and ex-
tracted the parameter estimates for preparation and non-
preparation. This yielded two pattern vectors that were used to
train a pattern classification algorithm. To assess the classifi-
cation performance, we trained a sparse logistic regression
classifier on the pattern vectors of all but one subject (default A
= 0.1). The pattern vectors of the remaining subject were used
as an independent test set. This leave-one-subject-out cross-valida-
tion procedure was repeated until each subject had been used in
the test set once. The resulting classification accuracy (across
subjects) was assigned to the respective voxel v;. This procedure
was repeated for each voxel and resulted in a 3D accuracy map,
restricted to gray matter.

To estimate the significance of classification accuracy for each
voxel v;, we conducted a nonparametric permutation test (4). To
this end, the searchlight analysis was repeated 10,000 times with
permuted labels. The P value for every voxel v; was then calculated
as the fraction of permutation samples that were greater than or
equal to the accuracy actually observed when using correct la-
bels. The resulting P-map (i.e., Fig. 1B) was corrected for mul-
tiple comparison with false discovery rate (FDR) (g = 0.05) and
thresholded accordingly.

Brain areas involved in task preparation were used to define
network nodes (5-7) for subsequent analyses. To derive non-
overlapping and equally sized network nodes, we used an itera-
tive approach. We started by defining a sphere (radius = 12 mm)
around the voxel with the lowest P value, as identified by the
searchlight analysis. This sphere became the first node in the net-
work. Then we moved to the second-lowest P value and defined the
next sphere. A sphere was created only when it did not overlap
with previously generated spheres. In the case of an overlap, this
voxel was ignored and we selected the voxel with the next lowest
P value. This procedure was repeated until no additional spheres
could be created and resulted in 70 nodes. The Montreal Neu-
rological Institute (MNI) coordinates of the spherical center
coordinates are displayed in Table S1.

Graph Construction and Control Analyses. Our approach to con-
catenate relevant segments of the raw data time series was
previously successfully applied (8-10), but might induce artifacts
that need to be examined. Here we report a series of control
analyses that aim to support the validity of our approach. First,
we ruled out the possibility of slow mean shifts (e.g., related to
changes in scanner signal) driving the correlation estimates, rather
than task-related changes. To this end, we compared the average
blood oxygen level dependent (BOLD) signal between all 12
subsequent task blocks, using an ANOVA across subjects. No
significant differences were found [F(11, 96) = 0.31, P = 0.98].
Furthermore, to directly test the similarity of individual time
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courses throughout the experiment, we calculated the connec-
tivity matrices (aggregated over all conditions) separately for
each task block. Resulting connectivity matrices were tested for
reliability, using the intraclass correlation coefficient (ICC) for
each subject. The test showed very high consistency in the con-
nectivity matrices across task blocks and the ICC varied across
subjects between 0.89 and 0.98 [F(2,414, 26,554) ~ 9.14-51.65;
all P < 0.001].

Second, the concatenation of the relevant time-series segments
might cause spikes in the newly generated time series that could
cause spurious correlations. To investigate this effect we com-
pared the absolute difference of two volumes made adjacent by
concatenation with the absolute signal difference at two naturally
adjacent volumes. To this end we performed a nonparametric
permutation analysis. For each subject, the averaged difference
for the concatenated volumes was compared with 10,000 randomly
chosen nonconcatenation differences. The P value was calculated
as the amount of occurrences a difference at a nonconcatenation
gave an equal or higher value than a difference at a concatenated
point. For all subjects, this resulted in P values with P > 0.3,
indicating that the concatenation does not induce more spikes in
the signal than expected from a chance distribution.

Third, due to the average error rate of ~20%, concatenated time
series of incorrect trials consisted of fewer time points than those
of correct trials. This might potentially influence the correlation
estimates and lead to, e.g., lower correlations in the incorrect
conditions. To test this effect, we compared the mean connec-
tivity as the average over all entries of the adjacency matrix be-
tween all conditions (i.e., color/motion, correct/incorrect), using an
ANOVA. No significant differences in mean connectivity were
found [F(3, 32) = 0.56, P = 0.65].

Fourth, we find converging evidence for our results, using a
slightly different analysis approach (B-series correlation). A com-
monly used alternative to our time-series concatenation approach
is to model each trial of interest with a separate predictor in a
GLM and concatenate the resulting p-coefficients to a so-called
B-series (11-13). The correlation analysis is then applied on the
pB-series. Applying the same inverse modeling approach as for the
concatenation approach, we could classify color vs. motion prep-
aration with an accuracy of 84.2% motion correct vs. incorrect
with 72.2% accuracy and color correct vs. incorrect with 61.1%
accuracy. Note, however, whereas this can be seen as converging
evidence for our results, it might not be regarded as a fair com-
parison of both analysis approaches. The p-time series is sub-
stantially shorter (only one p per trial) and differences in the
classification accuracy might be due to higher power in the raw
time-series approach.

Stability of the Core Across Task Conditions. One of our main
findings is the enhanced closeness of task-relevant visual areas to
the network core. However, because the k-core decomposition
was applied to the averaged connectivity matrices across all con-
ditions, it is important to show that changes in core closeness
cannot be attributed to changes in the core structure itself. To this
end, we performed the k-core decomposition with all conditions
separately. As the results show, the core remains highly stable
across conditions (Fig. S3). This is in line with the observation that
incorrect trials are not characterized by a global reduction in
connectivity, but rather by specific core—periphery interactions.

Graph Theory Formulas. Network measures were calculated with
networkX (http://networkx.lanl.gov), and a detailed description
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of all formulas can be found elsewhere (7). N is the set of all
nodes in the network and 7 is the number of nodes. w;; is the
connection weight between i and j (i,j € N).
Local weighted degree. The weighted degree of a node i is the sum
of all edge weights connected to that node:

ki = ZWU
jeNn
Global degree.
1
k== k.
n ieN
Average shortest path length.
1 1 . odi
L=tiyoly Z,ew_,;lu
nien nien -

where dj; is the shortest path length between nodes i and j. For
the path length calculation of weighted networks the connection
weights w;; were transformed to distances, using the inverse
transform wd; = 1/w.

Local clustering coefficient. The clustering of each node i is the
fraction of possible triangles that exist around i,

2t;

Q:h@—m

where #; is the number of triangles around node i, and
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where C; is the local clustering coefficient.
Assortativity.
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Modularity. Modularity was calculated using an iterative algorithm
(14). The results were averaged over 100 repetitions,

1 v
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where m; is the module containing node i, and &, = 1 if
m; = m; and 0 otherwise. The concept of finding modules by
modularity optimization is fundamentally different from the
concept of k-shell decomposition. Optimizing the modularity
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function will yield a network structure of densely connected nodes
within a module and sparse connections between modules. In
contrast, k-shell decomposition will find a densely connected
“core” that is well connected to the periphery, but the periphery
is mostly sparsely interconnected with many connections crossing
the core.

Efficiency global.

1 1
nn-1) i#}'ZeNdij.

E glob =

Efficiency cost.

Ecost = Eglob_K7

where the wiring costs K are determined as the sum of edge
weights between the connected nodes, divided by the maximum
possible value of edge weights (15).

Efficiency local.

1 1
Eocal = ——— -
oca nGi(nGi - l) =) djﬁk

where ng; is the number of nodes in the subgraph G..
Efficiency nodal.

1 1
Enodal(i) = ——= —.
nodas (n _ 1) ]; dl]
Small-world scalar.
S — C/ Crand‘
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C and [ are coefficients of the tested network (clustering and
average shortest path length) and C,,,q and /;,ng are the respective
values of a randomized version of the original network with the
same degree distribution (16, 17). Cyang and /;ang Were obtained by
calculating the average values of 100 randomizations.
Betweenness centrality.

1 n
BC =
l (n—l)(n—Z)S;NgSt

where n'y, is the number of shortest paths from s to ¢ that pass
through i/ and g, is the total number of shortest paths from s to ¢.
Current flow betweenness centrality. In contrast to betweenness
centrality, which uses shortest paths, current-flow betweenness
centrality (18), also known as random-walk betweenness centrality
(19), uses an electrical current model for information spreading.
Given a supply b, the throughput of a node ieN is defined to be

W = 5 (—|b<i> +y |x<e*>|>.

Current flow betweenness centrality is defined by

1 .
D=3 2

s,teN

CFBC; =

Eigenvector centrality. Eigenvector centrality is an extension of the
degree centrality measure. Instead of counting the amount of
neighbors, the eigenvector centrality of a node is defined pro-
portionally to the sum of importance of its neighbors (20). We
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used the eigenvector centrality implementation of Networkx (21),
which uses the power method to find the eigenvector for the
largest eigenvalue of the adjacency matrix.

Closeness centrality. Closeness centrality (20) is a centrality mea-
sure that reflects the inverse average distance to all nodes in the
network,

CLG = &,
l;

where

PageRank. The PageRank algorithm (22) is an iterative pro-
cedure that was developed in the context of web searching to
find how often a node will be visited during random network
traversal,

PR (1))
O(nj)

1-2
PR; = —=+1 >
ni M (n;)

where M(n;) is the set of nodes that link to n;, PR(#;) denotes the
PageRank of node v;, and O(r;) is the out degree of the pre-
decessor node n;. The PageRank algorithm was originally de-
signed for directed graphs. Here we apply it to undirected graphs
with default 2 = 0.85, where the out degree equals in degree
equals degree.

Vulnerability. The vulnerability (23) is a measure of centrality.
Vulnerability at a node #; is the relative change in the sum of
distances between all node pairs when excluding that node,

I/i = LG _LH7
Lg
where L is the sum of distances between all nodes including
n; and Ly is the sum of distances between all nodes without #;.
Core closeness. Core closeness is an extension of closeness centrality
informed by the network’s core—periphery structure. Closeness
centrality is calculated for a node in the periphery P with respect
to the core C.
The core closeness of a node i € P and i ¢ C is given by

CCLiep = 7.

where

L= dj.

jec

Core centrality. Core centrality is an extension of betweenness
centrality informed by the network’s core—periphery structure. It
reflects the number of shortest paths with start and end points in the
periphery that pass through the core. The concept of core centrality
is analogous to the previously introduced rich-club centrality (24),
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3. Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain
mapping. Proc Nat/ Acad Sci USA 103:3863-3868.
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where C and P are distinct subgraphs of the graph G. n<, is the
number of shortest paths from s to ¢ € P that pass through C and
gF is the total number of shortest paths from s to ¢ € P.

Correlation of Graph Theory Metrics. In this study we use a large
selection of different graph metrics of which several are based on
similar concepts (e.g., centrality) and therefore might be highly cor-
related. To explore these relationships we calculated the Pearson
cross-correlation of the used local graph metrics separately for all
conditions (Fig. S14). The resulting correlation coefficients varied
between —0.3 and 0.7. As shown before (25), the intercorrelation
of the graph metrics differed between experimental conditions,
which confirms previous findings (26) that, depending on the net-
work topology, these graph metrics differ in their ability to extract
complex network characteristics. However, a subset of graph met-
rics appeared to be highly correlated, namely degree, efficiency
nodal, eigenvector centrality, closeness centrality, and PageRank.
Also, betweenness centrality and current flow betweenness cen-
trality showed a moderate correlation.

To further explore whether the intercorrelation had an effect on
the classification analysis, we tested the ability of different graph
metrics to distinguish between color and motion preparation. To this
aim, we applied the classification analysis to individual local graph
metrics. As the results showed (Fig. S1B), none of the highly cor-
related metrics was able to distinguish between color and motion
preparation. Importantly, all metrics that contributed to the pre-
diction of the combined model also resulted in significant classifi-
cation accuracies when regarded in isolation (including betweenness
centrality and current flow betweenness centrality). The results also
show that the integration into one statistical model leads to a further
increase in classification performance, highlighting the advantage of
our inverse network modeling approach.

Although our study employs a large set of graph theoretical
metrics, no measures were used that quantify the efficiency of
physical embedding of complex networks (27, 28). Future studies
might therefore also consider using these measures to investigate
network changes. Also, most of the graph metrics used are based
on the concept of shortest paths, whereas recent studies in-
troduced metrics to investigate information flow using random
walks between any two nodes and emphasize the role of non-
shortest paths for brain communication (29-31). These metrics
have been shown to reveal changes in brain structure after stroke
(32) and might be worth applying to fMRI in future studies.

Influence of Head Movement. It has been shown that head move-
ment can have an impact on functional connectivity estimates
(33). In our investigation it is especially important to ensure that
there are no condition-specific head movements that might act as
a confound for the classification analysis. To this end, we com-
pared the root-mean-square (rms) of the estimated translation
parameters (33) across conditions. An ANOVA found no sig-
nificant differences [F(3, 32) = 0.07; P = 0.97]. Also a more
detailed analysis of the frequencies of different displacements
revealed no differences between conditions (Fig. S2).
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(A) Correlation of local graph metrics. (B) Classification accuracy for all local graph metrics separately and combined in one statistical model.
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Fig. S2. Frequency distribution of condition-specific mean head motion, averaged across all subjects.
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Table S1. Center coordinates and core/periphery allocation of all 70 network nodes
Coordinates

Node Anatomical region Lat. X y z Module
1 Inferior frontal junction L -53 3 39 Core

2 Inferior frontal gyrus L -48 22 14 Core

3 Postcentral sulcus L -43 -28 35 Core

4 Inferior precentral sulcus L -38 5 24 Core

5 Posterior insula L -34 -13 8 Core

6 Superior precentral sulcus L -32 -10 52 Core

7 Caudate nucleus L -7 9 4 Core

8 Medial superior frontal gyrus L -6 2 66 Core

9 Medial SFG/cingulate gyrus B 0 14 a4 Core
10 Cingulate gyrus B 2 33 19 Core
11 Posterior cingulate gyrus R 8 -36 42 Core
12 Cerebellum R 18 -69 -31 Core
13 Superior frontal gyrus R 21 1 70 Core
14 Parahippocampal gyrus R 22 -38 -14 Core
15 Superior frontal sulcus R 23 10 51 Core
16 Superior precentral sulcus R 25 -14 57 Core
17 Deep FO/anterior insula R 34 25 3 Core
18 Middle frontal gyrus R 34 24 34 Core
19 Postcentral sulcus R 43 =22 41 Core
20 Angular gyrus R 44 -46 36 Core
21 Frontal operculum R 46 6 6 Core
22 Postcentral gyrus R 46 -26 62 Core
23 Inferior frontal junction R 50 4 36 Core
24 Inferior frontal gyrus R 52 39 2 Core
25 Postcentral sulcus L -63 -20 29 Periphery
26 Supramarginal gyrus L -57 -38 45 Periphery
27 Superior temporal gyrus L -56 -40 14 Periphery
28 Anterior occipital sulcus (~hMT) L -53 =72 -6 Periphery
29 Inferior temporal gyrus L -52 -56 =22 Periphery
30 Lateral occipital cortex L —48 -72 16 Periphery
31 Lateral occipitotemporal sulcus L -48 -26 -19 Periphery
32 Intraparietal sulcus L -38 -52 42 Periphery
33 Inferior frontal gyrus L -38 40 0 Periphery
34 Fusiform gyrus L -34 -61 -5 Periphery
35 Cerebellum L -33 -84 -30 Periphery
36 Hippocampus/parahippocampal gyrus L -30 -10 =22 Periphery
37 Intraparietal sulcus L -29 -88 32 Periphery
38 Occipital pole L -26 -97 -5 Periphery
39 Lateral occipital cortex L -26 -83 13 Periphery
40 Intermediate frontal sulcus L -26 60 6 Periphery
41 Middle frontal gyrus L -22 48 28 Periphery
42 Postcentral gyrus L =21 -38 72 Periphery
43 Parieto-occipital fissure L -20 -63 28 Periphery
44 Fusiform gyrus (~V4) L -16 -80 -14 Periphery
45 Superior parietal lobule L -14 -62 52 Periphery
46 Parieto-occipital fissure B -4 -84 43 Periphery
47 Occipital pole B -2 -98 0 Periphery
48 Cuneus B 4 -68 6 Periphery
49 Cingulate sulcus, marginal ramus R 12 —44 68 Periphery
50 Orbitofrontal cortex R 14 18 -18 Periphery
51 Transverse occipital sulcus R 16 -84 26 Periphery
52 Frontomarginal gyrus R 17 60 -15 Periphery
53 Parieto-occipital fissure R 19 -81 49 Periphery
54 Intraparietal sulcus R 22 -64 38 Periphery
55 Occipital pole R 22 -94 4 Periphery
56 Collateral sulcus (~V4) R 24 -74 -6 Periphery
57 Parahippocampal gyrus R 28 -16 =24 Periphery
58 Superior parietal lobule R 35 -50 59 Periphery
59 Orbitofrontal cortex R 38 29 -19 Periphery
60 Lateral occipital cortex R 38 -74 18 Periphery
61 Fusiform gyrus R 40 -54 -9 Periphery
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Table S1. Cont.

Coordinates

Node Anatomical region Lat. X y z Module
62 Cerebellum R 40 -74 -24 Periphery
63 Intraparietal sulcus R 43 -67 43 Periphery
64 Lateral occipital cortex (~hMT) R 47 -82 -2 Periphery
65 Cerebellum R 47 -49 -30 Periphery
66 Angular gyrus R 48 -52 14 Periphery
67 Parietal operculum R 54 -20 18 Periphery
68 Superior temporal sulcus R 58 -12 -10 Periphery
69 Postcentral gyrus R 60 -18 44 Periphery
70 Temporoparietal junction R 65 -38 27 Periphery

B, bilateral; FO, frontal operculum; L, left hemisphere; Lat., lateralization; R, right hemisphere; SFG, superior
frontal gyrus.

Table S2. Values of discriminative local graph measures for correct and incorrect color and
motion preparation within the relevant nodes

Correct Incorrect
BC CFBC C CCL BC CFBC C CcCL
Color
V4 L 0.015 — 0.781 0.503 0.003 — 0.510 0.146
V4 R 0.010 — 0.729 0.476 0.006 — 0.519 0.167
hMT L 0.010 — 0.336 0.368 0.019 — 0.789 0.434
hMT R — 0.019 0.365 0.366 — 0.029 0.767 0.415
Motion
V4L 0.003 — 0.410 0.201 0.026 — 0.789 0.418
V4 R 0.011 — 0.419 0.291 0.019 — 0.767 0.373
hMT L 0.013 — 0.794 0.475 0.007 — 0.326 0.220
hMT R — 0.029 0.810 0.455 — 0.025 0.358 0.202

BC, betweenness centrality; C, clustering coefficient; CCL, core closeness; CFBC, current flow betweenness centrality.
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