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SI Materials and Methods
Sample. A total of 164 children and adolescents aged 9–22 were
recruited through newspaper advertisements, local schools, and
workplaces as part of an ongoing longitudinal study at the Center
for the Study of Human Cognition at the Department of Psy-
chology, University of Oslo (for details, see refs. 1–3). The study
was approved by the Regional Ethical Committee of South
Norway. Written informed consent was obtained from all par-
ticipants older than 12 y of age and from a parent/guardian of
volunteers under 16 y of age. Oral informed consent was ob-
tained from all participants under 12 y of age. Participants had
no self or parent-reported history of neurological or psychiatric
disorders, chronic illness, premature birth, learning disabilities,
or use of medicines known to affect nervous system functioning.
They were further required to be right-handed, speak Norwegian
fluently and have normal or corrected to normal hearing and
vision. Among the initial 164 children and adolescents who met
the inclusion criteria, time or tiredness prevented a subset of
participants to complete the remembering–imagination task (see
below). Of the 107 who completed the task, 4 had no useable T1-
weighted MRI scans, reducing the final sample to 103 for
structural analyses (female, n = 52; age, 9.1–21.9 y; mean, 16.4;
SD, 3.4). All participants scored 85 or above on full-scale IQ
(mean, 111; SD, 10; range, 85–136) (4). There was no significant
effect of sex (t[101] = −0.37; P = 0.71) or age on IQ (r = 0.17;
P = 0.08) or of sex on age (t = 0.26; P = 0.79). Of these 103, 10
did not have usable BOLD scans, reducing the sample to 93 for
the functional connectivity analyses.

Cue-Word Task. The task was modeled on a much-used cue-word
paradigm for probing past and future events (5) (Table S1). The
task was to remember past experiences and envision possible fu-
ture scenarios in response to cue words within 2 y into the past/
future. The participants were asked to retrieve/imagine specific
episodes that could happen, within a time frame of minutes to
hours (no longer than a day), to imagine episodes that they thought
might actually happen to them, and to not recast exact memories
as future scenarios. A practice trial and six tasks was administered.
A cue word was presented on a computer screen together with
a word designating either “past” or “future” by use of E-prime
software. The participants were then asked to think of an episode
that the cue word reminded them of and to press a key when they
had found a relevant episode. They were then given 40 s to think
through the episode and imagine it in as much detail as they could.
The six cue words were chosen to be neutral-positive, easy to

relate to, and open to many possible scenarios. The assignment of
a cue word to each of the two conditions was fixed and equal for all
participants, and the cue words were pairs of thematically similar
words, divided between the two conditions. Theywere presented in
Norwegian in the following order: “bursdag” (birthday-past),
“ferie” (vacation/holiday-future), “skog” (forest-past), “feiring”
(celebration-future), “reise” (travel-past), “sjø” (sea-future). The
emotional valence and intensity of English translations of four of
the words (from both conditions) were checked against the Af-
fective Norms for English Words (ANEW) (6), and all four fell
within the positive affect range of the scale (7.12–8.16) and had an
emotional arousal value ranging from 4.95 to 6.68. The words
“celebration” and “forest”were not found in the ANEW, but were
considered of similar to the equivalents “birthday” and “sea.”
Each past and future episode was immediately rated by the

participants on a one-page questionnaire, asking about the par-
ticipant’s experience during the act of remembering/imagining.

The questionnaire consisted of 11 items (see below). Some of the
items were sampled from the Memory Experiences Question-
naire (7), whereas others were modified or new, made for the
purposes of the present study. The questions regarded the phe-
nomenological experience of the episodes, rated on a five-point
Likert scale (strongly disagree to strongly agree). The ques-
tionnaire yielded a total phenomenology (autonoetic) score
(mean of all items), as well as a perspective score (items 6 and
reversed 8), experiential score (items 2, 5, 9, and 11), and co-
herence score (items reversed 3, reversed 7, 10).
Interitem reliability was tested using Cronbach’s α. For past,

Cronbach’s α was 0.67, 0.70, and 0.59 for each of the three cue
words, whereas corresponding numbers for future were 0.69, 0.73,
and 0.70. Thus, primary scores of interest were autonoetic past,
which was the mean score of all questions related to the three cue
words to which the participants were asked to recall an episode,
and autonoetic future, which was the mean score in response to
the cue-words to which a future episode was imagined.
The questionnaire was answered immediately after each cue-

word task. The questionnaire was presented in Norwegian, in
language adjusted to fit the age range of the participants in the
study. We have not attempted to adjust the English translation in
the same way. Items that are reversed during scoring are marked
with an R.

MRI Scanning and Analyses. Each MP-RAGE was visually inspec-
ted, and the scanwith the highest quality was used for the analyses.
All datasets were processed and analyzed at the Neuroimaging
Analysis Lab, Center for the Study of Human Cognition, Uni-
versity of Oslo. T1-weighted scans were analyzed with FreeSurfer
5.1 (http://surfer.nmr.mgh.harvard.edu/fswiki), yielding continu-
ous measures of area vertex-wise across the cortical mantle, as
well as ICV and hippocampal volume. Hippocampus was esti-
mated based on an automated segmentation procedure (8) that
assigns a neuroanatomical label to each voxel in an MR volume
based on probabilistic information automatically estimated from
a manually labeled training set (8, 9). ICV was estimated by use of
an atlas-based normalization procedure (10). Surface area maps
of the gray matter–white matter boundary were computed for
each subject by calculating the area of every triangle in a cortical
surface tessellation. The triangular area at each point in native
space are compared with the area of the analogous points in
registered space to give an estimate of surface area expansion or
contraction continuously along the cortical surface (11, 12). Maps
were smoothed using a circularly symmetric Gaussian kernel
across the surface with a full width at half-maximum (FWHM) of
20 mm and averaged across participants using a nonrigid high-
dimensional spherical averaging method to align cortical folding
patterns (13). This procedure provides accurate matching of
morphologically homologous cortical locations among partic-
ipants on the basis of each individual’s anatomy while minimizing
metric distortion, resulting in a measure of cortical area for each
person at each point on the reconstructed surface.
Resting-state fMRI analysis of the 100 volumes in time were

carried out using Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC) (14)
implemented in FSL (15, 16) (www.fmrib.ox.ac.uk/fsl). Individual
processing included discarding the first three volumes to let the
scanner reach equilibrium because of progressive saturation,
motion correction, spatial smoothing using a Gaussian kernel of
full-width at half-maximum (FWHM) of 6 mm, and high-pass
temporal filtering equivalent to 150 s.
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FMRI volumes were registered to the subjects’ T1-weighted
skull stripped using FreeSurfer (17) by means of FMRIB’s Linear
Image Registration Tool (FLIRT) (18, 19). The linear alignment
was optimized using a version of FLIRT that has implemented
a boundary-based approach similar to Greve and Fischl (20). The
T1-weighted volume was warped to Montreal Neurological In-
stitute-152 standard space (MNI-152) using FMRIB’s Nonlinear
Image Registration Tool (FNIRT) (21, 22), and the resulting
nonlinear transform was applied to the FMRI data. Next, the
processed functional datasets were temporally concatenated
across subjects to create a single 4D data set and submitted to
group independent component analysis (ICA) using MELODIC.
The between-subject analysis was carried out using dual re-

gression (23, 24), allowing for voxel-wise analysis of resting
functional connectivity. This specific method has been proven
more consistent and reliable than template-matching approaches
in its ability to estimate individual-level resting state networks
from group-level (g)ICA spatial maps (25). The procedure
comprises three steps. First, group-wise spatial ICA is applied to
the temporally concatenated resting-state FMRI data. Here, di-
mensionality estimation was performed by using the Laplace
approximation to the Bayesian evidence for a probabilistic prin-
cipal component (26, 27), resulting in 20 group IC spatial maps.
Second, the dual-regression algorithm (23, 24, 28) is applied to

identify subject-specific time courses and spatial maps. Here,
a set of gICA spatial maps is used in a linear model fit against the
individual FMRI dataset. This results in matrices reflecting the
temporal dynamics of the corresponding RSN for each of the 191
subjects. These time-course matrices are then normalized by
their variance and used in a linear model fit against the in-
dividual FMRI data set. This temporal regression yields subject-
specific spatial maps reflecting degree of synchronization, re-
flecting both amplitude and coherence across space (29, 30).
Here, the full set of 20 gICA maps reflecting various RSNs and
artifact components were included in the dual regression.
Third, the individual functional connectivity maps are collected

across subjects into one 4D file per component, with the fourth
dimension being subject identification, and submitted to voxel-
wise cross-subject statistics. All gIC maps are shown in Fig. S1.
Component number 10 (outlined in the white box) showed high
connectivity values in the precuneus/posterior cingulate/retro-
splenial cortex, as well as the medial prefrontal cortex. This
corresponded very well to the posterior default-mode network.
No other component showed this pattern of connectivity. Other
gICs corresponded either to nonresting-state artifacts or activa-
tion of less interest for the present study and were, thus, not
included in further analyses. One possible exception to this was IC
1, which could resemble a more anterior part of the DMN. Our
a priori hypothesis was that a relationship existed between con-
nectivity of the posterior default-mode network and score on the
cue-word task, based on previous research establishing that the
posterior default-mode network (precuneus, posterior cingulate)
is involved in pro- and retrospective memory processes. Thus,
only the gIC reflecting the posterior default-mode network was
included in the final cross-subject statistics. This had the addi-
tional benefit of minimizing the number of statistical tests per-
formed. However, because IC 1 showed some overlap with the
anterior DMN, a post hoc exploratory analysis was performed for
this component also.

An ICA approach was chosen because data acquired with
resting fMRI does not easily lend itself to standard GLM analysis
(31). In our opinion, an ICA statistical approach is the best
available for identification of resting-state networks. ICA-based
identified resting-state networks have been shown to have high
test–retest reliability (32) and significant heritability (33) and to
be sensitive biomarkers for psychiatric and neurodegenerative
diseases (34, 35).
Noise and artifacts, e.g., from head movement and cardiac and

respiratory pulsations, pose inherent problems in analyses of fMRI
data. Even when various preprocessing steps are used to remove
such effects, some residual noise is likely. By use of ICA, we know
that the component reflecting the posterior DMN is statistically
independent of other components. Previous studies have shown
that approaches like ICA can separate certain sources of noise,
such as respiratory depth, from the signal of interest (36, 37).
Important sources of noise may be picked up in separate com-
ponents, not reflecting relevant neuronal activity. ICA may be
a more powerful approach than conventional regression-based
techniques to identify real activations of interest distinguished
from noise inherent in all fMRI data.
Recently, it has been demonstrated that in-scanner head

motion may substantially impact MRI measurements of resting-
state functional connectivity (38, 39), and this is especially im-
portant to control for in studies of development, where the
amount of motion is likely to vary as a function of age. This
problem may be somewhat reduced by the use of ICA, because
sources of nonresting-state–related activations may be separated
out from the component of interest (40). Kiviniemi et al. (41)
showed that BOLD signal sources representing resting-state
networks was separated from artifact sources by use of ICA,
including motion (26). In addition, we assessed motion by cal-
culating mean relative volume-to-volume displacement, which
summarizes total volume-to-volume translation and rotation
across all three axes. In the current sample, motion was, as ex-
pected, negatively correlated with age (r = −0.34; P < 0.001).
Additional analyses were, thus, performed to test whether mo-
tion affected the results, by including estimated motion as an
additional nuisance covariate in the partial correlation analyses.
Comparing BOLD activation across a wide age range may also

be problematic because of challenges attributable to normali-
zation of activation to the same template if brain size varies
systematically with age. To assess this, we correlated age with total
brain volume and found a low, not significant, correlation (r =
−0.12, P = 0.239). Furthermore, we correlated total brain vol-
ume with the functional connectivity values from the cluster
significantly related to past autonoetic score and found that
these were not related (r = 0.022; P = 0.836). Thus, we believe
that it is unlikely that developmental differences in brain size
unduly have affected the connectivity analyses.

SI Results
Area and connectivity showed negative age correlations. For area,
these did not survive corrections for multiple comparisons, and so
the uncorrected results threshold at P < 0.05 are shown as
background information (Fig. S2). For rBOLD, the corrected
results are shown. As can be seen, the age relationships do not
overlap much with the default-mode component.
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Fig. S1. Results of the 20-component ICA solution. The 10th component was regarded as the one best representing the posterior default-mode network.
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Fig. S2. Correlations between age and local cortical arealization (Left) and functional connectivity (Right).

Table S1. Rating scale for past and future episodes

It was difficult for me to think of this event. (R) 1 2 3 4 5
I remembered/thought of sounds. 1 2 3 4 5
This experience came to me in bits and pieces, not as a coherent story. (R) 1 2 3 4 5
I recognized the setting in which it took place. 1 2 3 4 5
It was almost like being there. 1 2 3 4 5
I saw the event through my own eyes. 1 2 3 4 5
The event was a blending of many similar, related events. (R) 1 2 3 4 5
I viewed this as if I was an observer to the event. (R) 1 2 3 4 5
I saw a lot, for instance faces, thing, colors. 1 2 3 4 5
The order of happenings within the event was clear. 1 2 3 4 5
I had a lot of sensory experiences (sounds, smells, tastes, etc.). 1 2 3 4 5
This event was easy for me to think of. 1 2 3 4 5

1, disagree; 2, partly disagree; 3, neither agree nor disagree; 4, partly agree; 5, agree. Items that are reversed
during scoring are marked with (R).
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