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SI Materials and Methods
Mice and Cell Lines. Rag1−/−, YY1f/f x mb1-Cre, and Rag1−/−YY1f/f x
mb1-Cre mice, all on a C57BL/6 background (1), and Rag1−/−

mice on the C.129 background were maintained at the breeding
colony at The Scripps Research Institute (TSRI) in accordance
with protocols approved by the TSRI Institutional Animal Care
and Use Committee. Breeding pairs of YY1f/f × mb1-Cre mice
were kindly provided by H. Liu and Y. Shi (Harvard University,
Cambridge, MA) (2). Eμ-deleted mice were kindly provided by
F. Alt and C. Guo (Harvard University, Cambridge, MA) (3).
The C57BL/6 murine embryonic fibroblast (MEF) cells were
obtained from K. Mowen (TSRI, La Jolla, CA). E2A−/− prepro-
B cells were cultured as previously described (4). R2K are Abelson-
MuLV derived cells lines from Rag2−/− mice on C57BL/6 back-
ground, and were kindly provided by C. Bassing (University of
Pennsylvania, Philadelphia, PA).

Production and Transduction of CTCF shRNA retroviruses. Retroviral
plasmids containing CTCF shRNA target and control sequences
were generously provided by C. Wilson (University of Wash-
ington, Seattle, WA) (5). B6 pro-B cells were transduced with
viral supernatant using spin infection on day 4 of IL-7 culture, as
previously described (4). The GFP+ CD19+ pro-B cells were
isolated by cell sorting 4 d after retroviral transduction. Knock-
down of CTCF protein and RNA was confirmed by Western blot
and by RT-PCR, as previously described (4).

RT-PCR Analysis. Total RNA was isolated from from freshly iso-
lated pro-B cells from Rag1−/−, YY1−/− Rag1−/−, and Eμ−/− mice
by the TRIzol method (Roche). RNA was reverse-transcribed
using QuantiTect Reverse Transcription kit (Qiagen) and ran-
dom hexamer primers (Roche). The relative transcription levels
were measured by real-time PCR of cDNA samples and were
normalized using β-actin RNA control. For J558 sense-specific
PCR, 300 ng of total RNA was reverse-transcribed using a J558
sense-specific primer (GAGCTTGCTGCACCTCCA) followed
by real-time PCR. The list and sequences of primers used for
real-time PCR are provided in Table S1.

ChIP andChIP-Sequencing.ChIP and ChIP-seq samples were prepared
from freshly isolated Rag1−/− pro-B cells, as previously described
(4). The following antibodies were used for ChIP: anti-YY1
(Abcam; ab12132 and Santa Cruz; H-414), anti-Pax5 (Santa Cruz;
C-20), anti-Pol II CTD (phospho S2) (Abcam; ab5095) and
H3K4me3 (Active Motif). The relative binding of YY1 and Pax5
were measured by real-time quantitative PCR (qPCR) of ChIP
samples and were normalized using actin control. The list of pri-
mers is shown in Table S2. For the ChIP-seq, input and
immunoprecipitated DNA was given to the Scripps DNA Array
Facility, where it was prepared for massively parallel sequencing on
Illumina Genome Analyzer IIx. The sequencing libraries were
prepared using 10 ng DNA and using protocol as previously de-
scribed (4).

ChIP-Seq Analysis. The Bowtie algorithm was used to map ex-
perimental and input control fastaq tags to the mm9 genome.
Duplicated reads were removed before mapping. All valid
alignments were reported using the most exhaustive search set-
tings with a maximum of two mismatches allowed within the seed
region of each tag (6). Tags mapping uniquely to the genome,
defined as reads where the best alignment score occurs at only
a single locus in the mm9 genome, were extended 300-bp up-

stream or downstream from the alignment start site, depending
upon the strand orientation of the mapping. All reads mapping
with their best alignment score at multiple sites in the genome
were discarded unless all of those sites resided within LINE el-
ements, Ig regions, or T-Cell receptor regions.
To identify ChIP-seq peaks, the mm9 genome was divided into

nonoverlapping 25-bp bins, and the number of experimental and
input control tags mapping to each bin were counted. Peak
probabilities at each bin were calculated using the Poisson dis-
tribution where a dynamic λ-parameter is chosen to correct for
potential biases in the background distribution of control tags
stemming from sequencing bias, mapping bias, chromatin struc-
ture, and other sources of bias as described in the MACS algo-
rithm (7). The dynamic λ-parameter was chosen at each bin from
the largest of the total average of control tags per bin, or the
average control tags per bin in a 1-, 5-, or 10-kb window sur-
rounding each bin. This parameter was finally corrected for the
difference in the number of experimental vs. control tags to
calculate a final peak probability. Peaks are formally defined as
bins with an enrichment of experimental tags at a probability less
than 1 × 10−5 according to the Poisson probability.

Directional RNA-Sequencing and Library Preparation. Ten micro-
grams of total RNA from freshly isolated Rag1−/− pro-B cells was
depleted of ribosomal RNA (rRNA) using RiboMinus (In-
vitrogen) kit. The depletion was verified using Agilent 2100 Bi-
oanalyser. Approximately 200 ng of Ribo-minus–treated total
RNA was prepared for Next Generation Sequencing using a
slightly modified version of the Illumina protocol (Directional_
mRNA-Seq_SamplePrep_Guide_15018460_A.pdf), in which
12 cycles of PCR were performed instead of 15 and standard
Truseq adapters and Truseq barcoded primers were used instead
of the v1.5 adapters and primers described in the guide. A final
size selection was performed using agarose gel to capture a li-
brary with insert sizes ranging from 50–150 bases in length
suitable for 40-base single-read sequencing. The library product
was purified from agarose using standard oligo purification col-
umns. The prepared library was then loaded onto an Illumina
HiSeq v1.5 single-read flowcell, standard-cluster generation was
performed on a Cbot and sequenced for 40 bases of the insert
and 7 bases of the index read using standard HiSeq sequencing
reagents. After sequencing, reads were processed using CASA-
VA 1.8 and demultiplexed based on index sequences.
For preparation of libraries for target selection on Agilent

SureSelect DNA Capture Arrays, we followed the procedure
described above except that we selected insert sizes to be 150–200
bases in length. In addition, after the first round of gel purifi-
cation, eight additional cycles of PCR was performed, followed
by another gel-purification step, then 12 more cycles of PCR
followed by Ampure XP bead purification. cDNA was hybridized
to arrays using Agilent protocols. After elution of target from the
arrays, the sample was PCR-amplified for 18 additional cycles
(based on Agilent’s protocols). The library was gel purified be-
fore loading onto the flow-cell for sequencing the 100-bp reads.

RNA-Seq Analysis. The initial data analysis of 40-bp and 100-bp
RNA-seq was performed using the Genome Analyzer Pipeline
Software (Casava 1.8.1) including the image analysis, base calling,
and alignment. The reads were adaptor-trimmed using Flicker
3.0, which is an Illumina proprietary early access software. TopHat
(http://tophat.cbcb.umd.edu), a splice junction mapper for RNA-
Seq reads, was used for read alignment to the Mouse genome
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Build version mm9. BEDtools v2.13.3 was used to convert the
output BAM file to BED12 format. Reads to Chromosome 12
were extracted and partitioned by plus- and minus-strand reads.
The junction reads were split and any segments >25 bp were
retained. The mapped reads were then sorted and the duplicates
with the same start and end positions were removed. Finally, the
BED files were converted to BEDgraph files using the BEDtools
function genomeCoverageBed.

Heat-Shock and DRB Treatment of Pro-B Cells. Freshly isolated
Rag1−/− pro-B cells were subjected to heat shock at 45 °C for
30 min, or were incubated with 100 μM dichloro-1-β-D-ribo-
furanosylbenzimidazole (DRB) for 3 h. Cells were immediately
harvested for RNA or for chromosome conformation capture (3C)
lysate. Cells were greater than 90% viable at the time of harvest.

The 3C Analysis. The 3C analysis was performed as previously
outlined using HindIII to digest cross-linked chromatin (4). Di-
gestion efficiency was calculated as described in Hagège et al.
using primers described previously (8). Only samples with HindIII
efficiencies greater than 80% were included in the 3C assays. We
used a control template containing all possible ligation products to
correct for differences in PCR efficiency between different tem-
plates. The control template contained equimolar amounts of the
BAC clones spanning the Pax5-activated intergenic repeat (PAIR)
4 (RP23-101G12), PAIR6 (RP23-354D10), 3′RR (RP23-149L24),
and DH (RP23-270B12) portions of the Igh locus and PCR am-
plification templates of the Calreticulin (CalR) locus. To compare
results from different cell types or cells treated with different
retroviral shRNAs, the results were normalized to the ligation
frequency of two restriction fragments in the CalR locus. Primers
are provided in Table S3. Statistical analysis is shown in Table S4.
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Fig. S1. RNA-seq analysis of Rag1−/− pro–B-cell RNA. (A) Levels of sense and antisense transcripts throughout the VH region of Igh locus are shown from the
first RNA-seq. (B) Levels of sense and antisense transcripts throughout the VH region of Igh locus from the RNA-seq performed with the array-enriched RNA. (C)
ChIP-seqs for H3K4me3, Pol II, and sense RNA in the Eμ region of the Igh locus. (D) ChIP-seqs for H3K4me3, Pol II, and sense RNA in the PAIR regions.
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Fig. S2. RNA-seq analysis of the middle of the VH locus showing other regions of antisense transcription. The two more minor regions of antisense RNA, in the
proximal J558 region and in the J606 region, can be seen. Both the original RNA-seq and the Agilent array-enriched RNA seq are displayed. ChIP-seq data for
H3K4me3 shows high level at the start of the J606 antisense. Interestingly, there are high peaks of cohesin/CTCF flanking the J606 and J558 antisense tran-
scription, but the level of CTCF/cohesin is lower over the highly transcribed regions. Thus, the CTCF/cohesin complex may form domains or boundaries that
regulate other antisense transcription.
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Fig. S3. Sense transcripts are expressed throughout the VH locus. (A) Levels of sense transcripts throughout the VH region of Igh locus are shown from the
RNA-seq performed with the array-enriched RNA. The red asterisk shows the peak that was absent in the nonenriched RNA-seq and was not expressed when
tested by RT-PCR. (B) Close-up pictures of different regions of Igh locus showing sense transcripts from the proximal, middle, and distal VH region. The scale is
set to 25 to help visualize the lower level peaks in the proximal and middle regions, but which will truncate the taller peaks. Pseuodogenes are shown in red. It
can be seen that transcripts are rare from VH genes in the middle portion of the VH locus other than relatively high levels of reads at SM7 genes. The peaks are
the highest in the J558 portion of the locus, and occasionally multiple sets of peaks are present around the coding region.
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Fig. S4. The 3C analysis showing the interaction between CTCF/DFL and CTCF/3′RR. (A) Schematic diagram showing the position of CTCF/DFL and CTCF/3′RR
region in Igh locus. (B) Cross-linking frequency between CTCF/DFL and CTCF/3′RR was measured using the CTCF/DFL Taqman probe in E2A−/− prepro-B cells,
Rag1−/− pro-B cells, thymocytes and MEFs. Data are presented as mean ± SEM, n = 2–3. (C) Cross-linking frequency between CTCF/DFL and CTCF/3′RR in
YY1−/−Rag1−/− pro-B cells compared with Rag1−/− pro-B cells. Data are presented as mean ± SEM, n = 3. (D) Cross-linking frequency between CTCF/DFL and
CTCF/3′RR in the A-MuLV transformed Rag2−/− cell line R2K transduced with control (scramble) or CTCF targeting shRNA retroviruses. Data are presented as
mean ± SEM, n = 4.
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Fig. S5. Model of 3D changes in the architecture of the Igh locus. In prepro-B cells, the Igh locus has been proposed to be in a multirosette structure. CTCF is
likely at the base of the loops of the rosettes. Pax5 is not bound to PAIR elements, and there is no germ-line transcription. In the pro–B-cell stage, Pax5 binds to
the PAIR elements, PAIR transcripts are made from PAIR4 and PAIR6, as well as from other antisense promoters, and the sense promoters of many VH genes. Eμ
is constantly being transcribed because of sense germ-line transcription, and thus is likely always in a transcription factory, and D-JH is within 2 kb of Eμ. We
propose that the creation of transcription-mediated long-range interactions at transcription factories is a key role of noncoding antisense and sense tran-
scription, and that the antisense transcription might therefore initially alter the 3D conformation of the Igh locus, bringing the distal part of the locus close to
Eμ. This process could be followed by additional stochastic and dynamic interactions from the many sense and antisense germ-line promoters throughout the
Igh locus moving in and out of transcription factories, further compacting the locus, and bringing VH genes throughout the locus into close proximity to the DJH
region to which one VH gene will rearrange. Our previous studies have shown that CTCF plays an architectural role in the general 3D structure of the Igh locus
and acted as negative regulator of antisense transcription from distal VHJ558 intergenic region. We propose that CTCF is critical for the formation of the
multilooped rosette-like structure that is present in prepro-B cells as well as in pro-B cells. We suggest that this basic architectural role of the CTCF/cohesin
complex is distinct from the role that it may play in the 3D structure of the Igh locus specifically in pro-B cells. We have previously shown that there is increased
cohesin binding to CTCF sites within the VH locus in pro-B cells. These CTCF/cohesin complexes may act in concert with transcription factors such as Pax5 and
YY1 to produce full locus compaction, in part by regulating the extent of noncoding transcription. The CTCF sites at PAIR elements are in between the start site
of transcription and the Pax5 and E2A binding sites in the promoter. Given that knockdown of CTCF increases antisense transcription, we propose that the
CTCF/cohesin complexes act as insulators there, and regulate the level of PAIR antisense transcription. This insulator role would be in addition to the archi-
tectural role of CTCF/cohesin complexes.
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Table S1. Primers used for RT-PCR

Name Primer sequence (5′ to 3′)

PAIR4 (1) F: TCCATGTTAGTGGTGGCAGA
R: GTGACGACGGCTCATGACTA

PAIR6 (1) F: TCCATGTTAGTGGTGGCAGA
R: TCTGCAGTGTGTGACGACAG

J558 5′Int (2) F: ATTCCCCTCCCAATAGGAAA
R: TGTCAATCACAATGGGCATC

J558 3′Int (2) F: GCCAATAGGAAAGCAGGTGA
R: TGGAAAAGTTGCAGTCAATCA

J558 sense (2) F: ATGGGATGGAGCTGGATCTT
R: GACACACTCAGGATGTGTTTGTAG

J606 F: CACACATTATCTGTGAGTAGAGATT
R: GGGTGACATCTCTGACTACTCT

μ0 (3) F: TTAACCGAGGAATGGGAGTG
R: GGTGGGGCTGGACAGAGTGT

HSP70 F: CAGACTCTTTGCACTTGATAGCTG
R: CACAGTGCTGCTCCCAACATTAC

Pax5 F: GTCCCAGCTTCCAGTCACAG
R: AATAGGGTAGGACTGTGGGC

18s RNA (4) F: TTGACGGAAGGGCACCACCAG
R: GCACCACCACCCACGGAATCG

β-Actin F: TGTTACCAACTGGGACGACA
R: GGGGTGTTGAAGGTCTCAAA

1. Ebert A, et al. (2011) The distal VH gene cluster of the Igh locus contains distinct regulatory elements with pax5 transcription factor-dependent activity in pro-B cells. Immunity 34(2):
175–187.

2. Bolland DJ, et al. (2004) Antisense intergenic transcription in V(D)J recombination. Nat Immunol 5(6):630–637.
3. Bolland DJ, et al. (2007) Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu. Mol Cell Biol 27(15):5523–5533.
4. Rhinn H, et al. (2008) Housekeeping while brain’s storming Validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury. BMC Mol Biol 9:

62.
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Table S2. Primers used for ChIP assay

Name Closest VH gene Primer sequence (5′ to 3′)

hs7 (1) F: TCTGCGCCTGCGTAAGAGGA
R: GAACAGGAACTGCGACTGGAG

hs6 (1) F: AGCGTCTGCGTGGTGTGTG
R: TACATCTGCCTCAGCAGCTCAG

Eμ (1) F: GCTGCAGGTGTTCCGGTTCTGATCGGCC
R: GGAATGGGAGTGAGGCTCTCT

CTCF/DFL (1) F: GAGGGTTGTCACAGTTGACAC
R: CATCTTTCTGAAGCTCACACTAC

VH1 (1) 7183.4.6 F: GGCTGTGTCCTCAGTCTGCA
R: CTAAAACCTCCTGCAGAGCAC

VH3 (1) 7183.14.25 F: TCTAATTGTACAGGCTGTAACTC
R: CTCAAACTAAAACCTGCAGAGC

VHA SM7.4.63 F: CACGCCAGTGAAGACGTTCACTAC
R: GCTGCCTGGAACTGAGATGACAG

VHB J606.1.79 F: CACAACATGAACCAGTGCCAGTC
R: CCGAGCGCACCCTAAGAGAAC

VHC J558.8.98 F: GAGTGTGACTGCAGGATCACCAG
R: CACCAAAGCACAAGAGCTTCCC

VHD 3609.3.139 F: CACACCACCCATATAGACAGCTGCAT
R: GTTTGGGCTGGTTCTCAGCTCTG

J558 5′Int (2) F: ATTCCCCTCCCAATAGGAAA
R: TGTCAATCACAATGGGCATC

J558 3′Int (2) F: GCCAATAGGAAAGCAGGTGA
R: TGGAAAAGTTGCAGTCAATCA

PAIR4/6/11 (3) F: AGAATGTCAGCTTACCCATTCAA
R: AATCCTGTCACAGGAGTTCCA

PAIR7/12/2 (3) F: CATTCAAGAACTGAAGGAGAGC
R: TGGTAGTCTTGCCACAGGAG

VH10 (1) J558.69.170 F: CAGCATCTCTCTGCTGACCA
R: GAACCAAGTAAGCACACTCTTCAG

γ-Actin F: AGGCATGGAGTCCTGTGGTATC
R: AGCCACAGGTCCTAAGGCCAG

CD19 F: GATTTGGAAGAGTGCCTGCA
R: GCCTGCCTCCTACTAAGGTA

BLNK (3) F: ACACAACGCACAGTAATCAGC
R: CCTGGACTTCCTGGGGAGCAG

HSP70 F: CAGACTCTTTGCACTTGATAGCTG
R: CACAGTGCTGCTCCCAACATTAC

1. Degner SC, Wong TP, Jankevicius G, Feeney AJ (2009) Cutting edge: Developmental stage-specific recruitment of cohesin to CTCF sites throughout Ig loci during B lymphocyte de-
velopment. J Immunol 182(1):44–48.

2. Bolland DJ, et al. (2004) Antisense intergenic transcription in V(D)J recombination. Nat Immunol 5(6):630–637.
3. Ebert A, et al. (2011) The distal VH gene cluster of the Igh locus contains distinct regulatory elements with pax5 transcription factor-dependent activity in pro-B cells. Immunity 34(2):

175–187.
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Table S3. Primers used for 3C assay

Name Primer sequence 5′ to 3′ Mm9 location

Ligation control primers
CalR fragB (1) F CCCAAACCACCACTACCATTACA chr8: 87363228–87363250
CalR fragA F GATGAACTGCCCTATCCTGAGTC chr8: 88183257–88183279

TaqMan probes used
for 3C assay
CTCF/DFL (2) TCTCAGTCTAGGGCTGCTGAGTGATTCC chr12: 114723017–114723044
Eμ* TGGCTTACCATTTGCGGTGCCTGGTTT chr12: 114664858–114664884

3C interaction primers
A TTCTGAGGACCAGGAAGGAACCA chr12: 117037330–117037352†

PAIR6 CATTTCTGAATGTAGTCGAATTATACTC chr12: 116643843–116643870
B GCCAGATCTCAAGCCTGCCACACCTC chr12: 116610548–116610573
PAIR4 CATGCCAAAAACACTACATAAAGTTG chr12: 116498042–116498068
C GATCACTATACTTGCTGGTCTGGTGCAATG chr12: 116490467–116490496

chr12: 116633996–116634025
Eμ [T2(2P)]* TCCACACAAAGACTCTGGACCTCT chr12:114664888–114664911
CTCF/3′RR (SD120) (2) CTCCACAATGACCACAGCGT chr12:114459642–114459661

*Primer and probe sequences were kindly provided by Amy Kenter (University of Illinois, Chicago, IL)
†Primer A also binds to two other sites which are ∼3–8 kb away from the HindIII restriction site. Therefore, it cannot be amplified in
TaqMan PCR.
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Table S4. Statistics

Figure comparison For: P value

Fig. 2A
Rag−/− vs. YY1−/− RAG−/− PAIR4 0.0097

PAIR6 0.0097
J558 5′Int 0.0473
J558 3′Int 0.0462
J558 Sense 0.1932
J606 0.036

Fig. 3B
Pro-B vs. prepro-B PAIR6 0.0009
Pro-B vs. Thy PAIR6 0.031
Pro-B vs. MEF PAIR6 0.0418
Pro-B vs. prepro-B PAIR4 0.01
Pro-B vs. Thy PAIR4 0.0325
Pro-B vs. MEF PAIR4 0.0027

Fig. 3C
Rag−/− vs. YY1−/−Rag−/− PAIR6 0.0235
Rag−/− vs. YY1−/−Rag−/− PAIR4 0.0832

Fig. 3D
CTCF vs. control shRNA PAIR6 0.1139
CTCF vs. control shRNA PAIR4 0.1504

Fig. 3E
RAG−/− vs. Eμ J558 5′Int 0.28
RAG−/− vs. Eμ PAIR4 0.235

All were analyzed by a two-tailed t test.
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