
Supporting Information

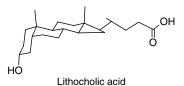

Vogel et al. 10.1073/pnas.1215060109

Fig. S1. Regulatory pathway of lithocholic acid (LCA). LCA is a secondary bile acid formed by bacteria in the gut from its precursor chenodeoxycholic acid (CDCA). It is a rare example of a toxic endobiotic that can lead to cholestasis and that is efficiently detoxicated by conjugation with taurine or glycine and sulfation at C-3 by the sulfotransferase SULT2A1. LCA induces its own metabolism by activating nuclear receptors like FXR, thereby inhibiting the synthesis of bile acids and promoting the transcription of genes encoding for sulfotransferases. LCA also activates the vitamin D receptor in a concentration-dependent manner and thereby induces its own detoxification by CYP3A enzymes. Perhaps MDM4 has the role of an intracellular lithocholic acid sensor that initiates programmed cell death at pathological LCA concentrations.

Table S1. Dissociation constants for bile acids and derivatives from MDM4

~	-	_		_		-		Additional	K _D
Common name	<i>R</i> ₁	R ₂	R ₃	R ₄	R ₅	R ₆	Conjugate	feature	[µM]
Lithocholic acid	OH	Н	н	Н	Н	CH ₂ CH ₂ COOH	—	—	12
5β-Cholanic acid-3-one	==0	Н	н	Н	н	CH ₂ CH ₂ COOH		—	80
(Acetyloxylithocholic acid)	OAc	Н	Н	Н	Н	CH ₂ CH ₂ COOH		—	110
Lithocholic acid 3-sulfate	······OSO ₃ H	н	Н	н	н	CH ₂ CH ₂ COOH		—	210
5,6-Dehydrolithocholic acid	OH	_	н	н	н	CH ₂ CH ₂ COOH	_	Δ^5	400
Ergosterol	——ОН	_	_	н	Н	CH ₂ CH ₂ COOH	—	Δ^5 , Δ^7	nb*
Taurolithocholic acid	OH	н	Н	н	Н	CH ₂ CH ₂ COOH	Taurine	_	200
Taurolithocholic acid-3-sulfate	······OSO ₃ H	Н	Н	Н	н	CH ₂ CH ₂ COOH	Taurine	_	120
Hyodeoxycholic acid	OH	OH	Н	н	н	CH ₂ CH ₂ COOH		—	nb*
Hyodeoxycholic acid methyl ester	OH	OH	н	Н	н	CH ₂ CH ₂ COOMe	—	—	nb*
5β-Cholanic acid-3α-ol-6-one	OH	==0	н	Н	н	CH ₂ CH ₂ COOH		—	nb*
Chenodeoxycholic acid	OH	н	OH	н	н	CH ₂ CH ₂ COOH		—	280
5β-Cholanic acid-3,7-dione	O	н	==0	н	н	CH ₂ CH ₂ COOH		—	nb*
Taurochenodeoxycholic acid	OH	н	OH	н	н	CH ₂ CH ₂ COOH	Taurine	_	280
Glycochenodeoxycholic acid	OH	н	OH	н	н	CH ₂ CH ₂ COOH	Glycine	—	310
Ursodeoxycholic acid	·······OH	н	——ОН	н	н	CH ₂ CH ₂ COOH	_	_	nb*
Deoxycholic acid	OH	н	Н	н	OH	CH ₂ CH ₂ COOH	—	_	240
8α -Hydroxytaurodeoxycholic acid [†]	OH	Н	Н	н	OH	CH ₂ CH ₂ COOH	Taurine	·······OH at C-8	nb*
Taurodeoxycholic acid	OH	Н	Н	Н	OH	CH ₂ CH ₂ COOH	Taurine	—	250
Glycodeoxycholic acid	OH	н	Н	н	OH	CH ₂ CH ₂ COOH	Glycine	—	300
Cholic acid	OH	Н	OH	н	OH	CH ₂ CH ₂ COOH		—	1,100 [‡]
Dehydrocholic acid	==0	н	0	н	O	CH ₂ CH ₂ COOH	_	—	nb*
Glycocholic acid	OH	н	OH	н	OH	CH ₂ CH ₂ COOH	Glycine	_	1,500 [‡]
Taurocholic acid	OH	Н	OH	Н	OH	CH ₂ CH ₂ COOH	Taurine	_	nb*

								Additional	K _D
Common name	<i>R</i> ₁	R ₂	R ₃	<i>R</i> ₄	R ₅	R ₆	Conjugate	feature	[µM]
7-Oxodeoxycholic acid methyl ester	OH	Н	==0	Н	OH	CH ₂ CH ₂ COOMe	_	_	nb*
12-Oxochenodeoxycholic acid	OH	Н	OH	Н	==0	CH ₂ CH ₂ COOMe	_	—	nb*
Cholesterol	——ОН	н	Н	OH	н	Isopropyl	_	_	nb*
5β-Pregnane-3α,20α-diol	OH	н	н	Н	н	ОН	_	_	nb*
5β -Pregnane- 3α , 17α , 20α -triol	OH	н	Н	н	н	ОН	—	OH at C-17	200

*No binding event detectable by change of fluorescence anisotropy within concentration range.

[†]Compound AE-562/12222313 from Specs with unknown stereochemistry at C-5, C-9, and C-14. [†] K_D values are calculated from extrapolated IC₅₀ values.

PNAS PNAS