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SI Results

Sensitivity of the Decoding Performance to Visual Stimuli. We per-
formed an additional ridge decode analysis with all visual cue onset
intervals (0-220 ms after target appearance) removed and com-
pared the result to the original ridge decoding results obtained
without cue onset removal. Cue-onset removal shortened the data
set by 16%/20% (monkey R/G) but without eliminating much of
the hand trajectory toward the target because the reaction time
(the duration from target appearance to movement onset) is
known to be significantly longer than 220 ms (1). In monkey R, the
average decoding performance with visual cue—onset intervals
removed was R? = 0.45 + 0.05, and it was R? = 0.45 + 0.05
without cue-onset removal. The difference in R? is not signifi-
cant (two-sided sign test; P = 0.46). In monkey G, the average
decoding performance with visual cue—onset intervals removed
was R? = 0.38 + 0.06, whereas it was R> = 0.36 + 0.06 with cue
onsets not removed. Although the difference is significant in
monkey G (two-sided sign test; P = 1.31 x 1077), the small
magnitude of the difference still is negligible. Because the data
segments after cue-onset removal are shorter than the original
segments before cue onset removal, the two performance re-
sults cannot be compared directly. Despite this limitation, the
negligible difference found suggests that the cue onset does not
have a strong detrimental effect on decoding performance.
Because the abrupt appearance of the visual target in an oth-
erwise completely dark workspace represents a stronger visual
stimulus than typically occurring in natural environments, it is
likely that the control signals extracted from PPC neural pop-
ulations are immune to changes occurring in the visual work-
space under realistic contrast conditions.

Comparing Brain-Control Performance with Motor Cortex Results.
Because, to our knowledge, this is the only study that relied
on PPC signals for continuous 3D cursor brain-control, it would
be instructive to compare the results obtained here with a 3D
brain-control study relying on motor cortical populations of
neurons (2). The overall success rates reported in the two
studies were in the same range. For example, the “coadaptive
task” of Taylor et al., with a 2-cm target radius (table 2 in ref.
2), was reasonably close to our experimental design, with sim-
ilarities in workspace configuration and accuracy requirements.
Both tasks were performed in a cubic 3D workspace of com-
parable dimensions (coadaptive task, cube edge length: 12.25
cm; this study: 10 cm) and required the monkey to move the
cursor center to within 3 cm of the target center. Under these
conditions, Taylor et al. reported success rates of 86 + 8%
and 47 + 21% (monkey M, O), whereas we report comparable
89 + 9% and 54 + 9% (monkey R, G; mean + SD)
average performance. Notice, however, that numerous signifi-
cant differences between the tasks remain: task timing, de-
coding algorithms used, and the neuronal population available
for decoding were different, and, in addition, the study
by Taylor et al. was based on a center-out task, whereas this
study relied on a point-to-point reaching task. These differ-
ences in experimental variables make the quantitative com-
parison of M1 and PPC in brain-control tasks difficult.
Nevertheless, the results reported from PPC are qualitatively
similar to M1.

S| Materials and Methods

Model Assessment. The offline reconstruction performance of each
decoding algorithm was quantified using the coefficient of
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determination, R*. Separate R” values for position, velocity,
and acceleration in x, y, and z directions were determined, and
results for the three degrees of freedom (df) were combined
to provide composite R? values for position, velocity, and
acceleration, respectively.

Optimal Lag Time. The OLT (the temporal offset between in-
stantaneous movement state and instantaneous neural repre-
sentation where tuning is maximal) can vary considerably for PPC
neurons, ranging from sensory (38, 39), where the behavior leads
the neural representation, to instantaneous, to motor (23), where
the neural representation leads the movement. For a motor
prosthetic, only causal neural representations generating motor
behavior are of interest, but because the precise OLT for the
neurons in the population is unknown, one single 90-ms binning
interval (Kalman filter) may not be sufficient to capture a neu-
ron’s firing at its optimal lead time. To optimize the decoding
success, the optimal temporal location of the binning interval was,
therefore, determined by shifting it iteratively from 45 ms (first
possible causal 90ms bin) to 125 ms in 10-ms increments. The
OLT resulting in the most accurate trajectory reconstruction was
chosen for decoding. The analysis was performed for the entire
population.

VR Task Details. All experiments were conducted in a VR en-
vironment (3) providing closed-loop, real-time visual feed-
back. The virtual workspace scaled 1:1 with the monkey’s
physical workspace: the stereoscopic rendering considered
viewing distance and eye separation to provide realistic visual
disparity, object size scaled with depth, and transparency al-
lowed occluded or intersecting objects to be perceived. The
head-fixed monkey sat in a dark room facing a mirror oriented
at 45° presenting the image to him from an overhead mounted
downward-facing monitor. The mirror prevented the monkey
from observing his own limbs (Fig. 14). Hand position was
recorded at 100-Hz sampling rate using an infrared 3D motion
capture system (OPTOTRAK 3020; Northern Digital). Three-
dimensional shutter glasses (NuVision 60GX; MacNaughton)
and a CRT monitor were used for 3D stereoscopic visualiza-
tion. Eye position was monitored at a 120-Hz sampling rate
(ETL200; ISCAN).

The virtual workspace consisted of a 20 x 20 x 20 cm cube with
the possible reach-target locations arranged in a 3 X 3 X 3 cubic
grid (edge length 10 cm), centered within the workspace. Targets
were presented by a green, semitransparent sphere (diameter,
32 mm), and the monkey’s cursor was represented by a solid
white sphere (diameter, 31 mm).

Ridge Regression Filter Details. The least-squares solution for g
yields the minimum variance, unbiased estimator. Zero-bias
estimators, however, often suffer from high mean squared error
(MSE) because of a large variance component of the error. The
ridge regression, a variant of the ordinary multiple linear re-
gression, was, therefore, used to estimate the movement state.
The ridge regression reduces the variance component of the
error, while allowing a small increase in the bias (4) by adding a
complexity term to the optimization problem. The complexity
term penalizes coefficients in § for having large weights (5),
such that:
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where M is the number of training samples used in a session. The
regularization parameter, A, was chosen iteratively to minimize
the MSE. A gradient descent algorithm was used to find the op-
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timal A iteratively. For a given value of A, a unique solution for
the ridge coefficients can be expressed in matrix notation, when
estimating the 3D cursor position:

B = (R'R + 1) 'R X, [S2]

where R € RV is the standardized firing rate matrix sampled at four
lag time steps, X € R is the mean-subtracted 3D position matrix,
and g€ RV are the model coefficients unique to a particular .
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Fig. S1. PPC recording array arrangement. Four arrays, each containing 32 electrodes, were implanted stereotaxically using MRI to guide the implantation. In
both animals, all arrays were in the left hemisphere, i.e., contralateral to the hand used. The short electrode arrays (S1, S2) were designed to record neurons
from the cortical surface (electrode lengths are between 1.2 and 1.8mm). The long electrode arrays (L1, L2) contained a limited number of long electrodes
allowing to record neural activity from PRR in the medial bank of the intraparietal sulcus (electrode lengths: 16 electrodes between 4.7 and 7.1 mm, and
16 electrodes between 1.5 and 3.9 mm). Seventy-five percent of all electrodes, therefore, targeted the cortical surface. (A) Three-dimensional reconstruction of
monkey R’s brain. The arrays are shown at the approximate surface locations. The stereotaxic coordinates were: L1: —5.7 lateral (L)/-9.0 posterior (P)/oriented
5° toward midline; L2: —8.5 L/-5.7 P/oriented 30° toward midline; S1: —10.0 L/—1.9 P/oriented surface-normal; S2: —8.0 L/1.4 anterior (A)/oriented surface-
normal. The insertion angles for arrays L1 and L2 were chosen to target PRR in the medial bank of the intraparietal sulcus. (B) Three-dimensional reconstruction
of monkey G's brain with approximate array implant locations. The stereotaxic coordinates were L1: —4.1 L/~10.0 P/oriented 4° toward midline; L2: =7.0 L/-6.6
P/oriented 18° toward midline; S1: —8.0 L/—1.5 P/oriented surface-normal; S2: —8.4 L/4.1 A/oriented surface-normal. (All units are mm.)
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Fig. S2. Offline ridge filter 3D trajectory reconstruction under free gaze. Position reconstruction (black) of a previously recorded sequence of reaches (red) to
8 targets (blue). @, discrete reconstruction points resulting from the 90-ms sampling rate used. In comparison with Kalman reconstructions of trajectories (e.g.,
Fig. 2A), the trajectories appear to be slightly less accurate and noisier, as confirmed by the R? results in Tables 1 and 2.
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Fig. $3. To quantify the decoding efficiency, we calculated neuron-dropping curves describing how the decoding performance varied as a function of the PPC
ensemble size. The Kalman filter decode was used to construct the curves. (A) Neuron-dropping curves, which plot R? for decoding cursor position as a function
of ensemble size for monkey R (black) and G (gray), for best-day performance (solid) and average performance across all sessions (dashed). (B and C) Neuron-
dropping curves for velocity and acceleration, respectively. The solid curves represent velocity and acceleration performances obtained on the day of the best
position-decoding performance, whereas the dashed curves show the average across all recording days (the curve for monkey R partially occluded by the best-
day curve). The dotted curves for velocity and acceleration (monkey R only) represent the best achievable velocity and acceleration-decoding accuracies, which
were obtained during recording sessions different from the session when best position-decoding performance was reached. In monkey G, the best position-,
velocity-, and acceleration-decoding accuracy was achieved on the same day. Note that the maximum number of neural units considered to calculate average
performance was constrained to 50 (monkey R) and 32 (monkey G), the smallest ensemble size of any of the sessions reported.
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Fig. S4. Online 3D brain-control trajectory summary. (A) Orthographic summary plot of trajectories to all 27 targets, allowing a qualitative assessment of the
trajectories. Unlike in a center-out task, where reaches are limited to relatively few directions and to a fixed amplitude, trajectories could point in many
directions and had varying amplitudes. To summarize a set of such diverse trajectories in a single plot, all brain-control reaches were normalized for direction
and amplitude. All trajectories were first reoriented such that the beginning and endpoint were located on a common axis: the direction of all trajectories
in the left graph is to the right. To show the third df of the 3-dimensional trajectories, we then rotated the view by 90° such that all trajectories pointed into
the page, resulting in the right graph with the third df showing, instead of the second. (B) For comparison, the five color-coded trajectories in A are plotted
against time.
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Fig. S5. Comparison of same-day hand-control and brain-control performance. In contrast to Fig. 4A, where trajectory straightness was normalized to fa-
cilitate the comparison of brain-control performance between animals R and G, this figure shows the nonnormalized behavioral metrics, allowing us to
quantitatively benchmark the degree of task proficiency under brain control relative to hand control, which serves as the most natural performance reference
on which a prosthetic device can be measured. In monkey R, the time to target (Upper) decreased more rapidly under brain control (m = —-0.03261; 95%
Cl: —=0.05157/-0.01365) than under hand control (m = —=0.01195; 95% CI: —0.02355/—3.471 x 10~%). On the first day, monkey R acquired targets on average ~1.55
times slower under brain control than under hand control, whereas on day 19, he was only 1.22 times slower, a 21% reduction of the time-to-target ratio for
brain control vs. hand control. Simultaneously, trajectory straightness (Lower) increased significantly (m = 0.003599; 95% Cl: 0.002229/0.004968). In contrast,
trajectory straightness under hand control did not change significantly (m = —0.003634; 95% Cl: —0.00759/3.23 x 107%). The trajectory straightness ratio for
brain control vs. hand control improved from 0.1600 measured on the first day to 0.3796 measured on day 19, a >100% improvement. To perform a fair
comparison between point-to-point hand-control reaches and individually rewarded brain-control reaches, the first reach in all hand-control sequences was
isolated and used for comparison with the individually rewarded brain-control reaches.
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Reach-Control

Movie S1. Three-dimensional reach control. Each monkey guided a cursor (white) in a 3D VR display to a reach target (green). In reach-control mode, the
monkeys used their hand to control cursor movement. The movie faithfully reproduces the visual workspace as perceived by the monkey while performing two
successful sequences of reaches to six targets each. Although the monkey was performing in a stereoscopic true 3D workspace, the 2D movie limits workspace
presentation to a monoscopic view, thus making size scaling with depth the only readily perceivable depth cue in the movie. The inset shows a side view of the
monkey’s limb with the infrared motion tracking device attached to the hand. The recorded reach sequences and simultaneously obtained neural signals from
PPC were used to identify the decoding algorithm used for subsequent brain-control reaches.

Movie S1

Brain-Control

Movie S2. Brain control. The decoding algorithm identified from a set of reach-control sequences was used for brain control where cursor movement was
governed by the monkeys’ cortical signals. Under brain control, the monkeys were rewarded for individual reaches. The movie shows a set of 12 consecutive
successful brain-control reaches from the monkey’s perspective, performed by monkey R using the Kalman filter algorithm. Notice that although the cursor was
under direct cortical control, the monkey performed limb movements (small movie inset). Monkey R chose to move his limb even during the reward break
when no reach target was present. Importantly, during this phase, cursor movement appeared to remain synchronized with hand movement, suggesting that
PPC provided accurate control signals not only when the monkey was fully engaged in the task but also during moments of distraction, such as reward.

Movie S2

Brain-Control

in absence of
limb movement

Movie S3. Brain control in the absence of limb movement. To test whether PPC can generate prosthetic control signals in absence of sensory feedback from
the limb, the animal was encouraged to perform brain-control reaches without moving the limb. The movie shows a set of 10 selected successful brain-control
reaches, demonstrating that PPC neural activity does not depend on sensory feedback from the limb to generate cursor control commands. This result suggests
that the PPC of patients suffering from paralysis will be able to provide neural signals suitable for control of a prosthetic assist device.

Movie S3
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