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Data. Projection and resolution. All data used in the simulations and
the subsequent analyses are in Goode’s Homolosine Equal-Area
projection. The spatial resolution of the maps is 5 km.

Year 2000 urban map. We extract urban extent circa 2000 from
National Aeronautics and Space Administration Moderate
Resolution Imaging Spectroradiometer (MODIS) land-cover
product v5 (1), which provides a conservative estimate of global
urban land cover and is significantly lower than those from the
Global Rural-Urban Mapping Project (GRUMP) dataset (2).
We resample the global urban land-cover map to 5-km resolu-
tion from its native resolution of 463 m.

Region maps. We use 16 regions broadly based on the United
Nations world regions (Table S1). We deviate from the United
Nations regions when one country is economically dissimilar [as
measured by per capita gross domestic product (GDP) and total
output] to other countries in its assigned region and economically
more similar to a neighboring region. We treat China and India as
individual regions because of the size of their population,
economy, and land area.

Population density. We use population densities from GRUMP to
create the population density driver map (3). We first reproject
the original GRUMP map to Goode’s Homolosine using bilinear
interpolation. Next, we carry out a zonal analysis and calculate
the mean population density for each pixel using a 5 X 5 window.
The window corresponds approximately to the size of a pixel in
the final map with 5-km resolution. We resample the resulting
mean map to 5 km using nearest neighbor.

Methods. Estimating amount of new urban land (2000-2030). We esti-
mate the amount of new urban land in each region by 2030 in
a Monte-Carlo fashion based on present empirical distribution of
regional urban population densities and probability density
functions of projected regional population and GDP values for
2030. The steps involved are detailed below.

Probabilistic regional population estimates for 2030. We use United
Nations World Population Projections 2008 revision as the
starting point to derive probabilistic estimates of the total and
urban region populations in 2030 (4). We use the uncertainty
estimates reported in US National Research Council report
Beyond Six Billion (5). Although the report uses the United
Nations population projections from 1998 revision, this is the
only available comprehensive estimate of uncertainty in any
world population projections. We considered using the country-
level or region-level probabilistic projections from the In-
ternational Institute for Applied Systems Analysis (6). However,
at the time of the analysis, these projections for all of the regions
across the world were not yet available. We also considered the
approach of the Intergovernmental Panel on Climate Change
(IPCC) where future population is bracketed by high and low
estimates. We refrain from this approach because: (i) the dis-
tribution between the low and high variants and even beyond
them are unspecified, (i) it does not address uncertainty in
fertility and mortality, and (iii) the variants may become prob-
abilistically inconsistent when aggregated over countries or re-
gions (5, 7). The method used in the National Research Council
report addresses these concerns and generates methodologically
consistent estimates across the world.

We use the uncertainty ranges reported for selected country,
regions, and the world in tables F.3 and F.5 of the appendix F of
the report. Based on the information in these tables, we fit dis-
tributions to the resulting future population distributions. We
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fitted generalized logistic distribution to urban population in 2030
for each region with different parameters. The fitted probability
density function (PDF) and the 2.5% and 97.5% quartiles by
region are shown in Fig. S3.

The regions used in the report do not correspond exactly to the
regions in our study. However, the differences are minor and,
therefore, we apply the uncertainty range estimates for each
region/country in the report to the closest corresponding region/
country in our study (Table S1). For example, we use uncertainty
ranges reported for Latin America/Caribbean region in the report
for both South America and Central America in our study.

To get 1,000 urban population estimates for 2030 for each
region, we randomly draw 1,000 values from the corresponding
PDF of total population projection and multiply them by the
corresponding regional estimate of the urban proportion of the
population from the United Nations Urbanization Prospects 2009
Revision (8). We assume the urban proportion estimates given in
the 2009 Revision are the same across all population estimates.
Probabilistic regional GDP estimates for 2030. To develop region-level
probabilistic GDP projections, we use country-level GDP pro-
jections used by the IPCC for their four narrative storylines in the
Special Reports on Emissions Scenarios (9). We aggregate the
country-level projections to obtain corresponding projections for
the regions in our study. We use the lowest and highest of the
projected region-level GDP estimates as the minimum and max-
imum values of a uniform distribution in the absence of any in-
formation as to the likely distribution of projected GDP estimates.
Although this approach suffers from some of the same drawbacks
listed above in the context of variant-based population projections,
the estimates we use are the best available projections to account
for the uncertainty in the absence of more information about the
likely patterns of region-level GDP change.

We draw 1,000 values from the resulting region-level uniform
GDP distributions for 2030 and divide them by 1,000 values drawn
from the region-level population projections for the same year.
This process gives us 1,000 estimates for per capita GDP by region
for 2030.

Spatial distribution of urban population density by region. We next ex-
tract the spatial distribution of urban population densities circa
2000 used in both calculating the average per capita urban land
and allocating the projected urban population estimates across
each region. We overlay the initial urban extent layer with the
population density layer. We then create empirical frequency
distributions of population density of urban pixels by region.
Relationship between per capita GDP and per capita urban land. From
the spatial distributions, we calculate the average per capita urban
land circa 2000 for each region. Because our projection is equal
area, we multiply the population density value of each pixel by 25
km? to get an estimate of the population in each pixel. Then we
plot the average per capita urban land estimate of each region
versus per capita GDP estimates for 2000 from the United Na-
tions Statistics Division (10). We fit a linear model whose slope
serves as a globally averaged estimate of the change in per capita
urban land for a unit change in per capita GDP (Fig. S4). Al-
though the spread is wide, the slope is positive, indicating an
increasing trend in per capita urban land with increasing per
capita GDP. We then estimate per capita GDP at 2030 for each
region using probabilistic projections of region-level GDP and
population at 2030.

Estimates of urban expansion from 2000 to 2030. To calculate the
urban-land expansion by region because of only the urban pop-
ulation increase, we take a value from the set of 1,000 urban
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population estimates. Then we draw one value from the empirical
urban population density and subtract it from the urban pop-
ulation estimate. We continue with this process until all estimated
urban population is allocated across space. We repeat this for
each 1,000 urban population estimate and eventually obtain 1,000
estimates of urban land expansion needed to accommodate the
projected increase in urban population assuming the population
density distribution across space will not change substantially
through 2030.

To incorporate the increase in per capita urban land because of
the increase in per capita GDP we use the relationship in Fig. S4.
First, we calculate the region-level estimates for per capita urban
land for 2030. We divide the urban expansion estimated solely by
allocating the projected urban population across space by the
projected urban population. Then, we use these estimates, the
region-level estimates for per capita GDP, and the relationship
we derive between per capita GDP and per capita urban land to
get 1,000 estimated values for the per capita urban land for each
region at 2030 (Fig. S5).

Although we incorporate the spatial variability in urban pop-
ulation densities into our analysis, we also assume that the dis-
tribution of urban population density will remain constant
through 2030. We incorporate this variability in our estimates,
which allows us to use more of the spatial information that is
available to us. This process allows us to develop a range of likely
variability in future urban expansion rather than come up with
a mostly likely point estimate. More importantly, it allows us to
allocate the estimated urban expansion across space. A com-
plementary approach, adopted by Angel et al. (11), is to ignore
the spatial variability in densities but to produce an estimate for
urban expansion for different scenarios based on how urban
densities are expected to change over time.

Spatial Simulations. The urban land-use change model we use is
derived from GEOMOD, a spatially explicit grid-based land-use
and land-cover change model. GEOMOD has been fully de-
scribed in the literature (12) and been applied extensively (13,
14). Our study is the first to use the model’s framework in a
probabilistic analysis of land change and in a primarily urban
land change context. GEOMOD simulates the change between
exactly two land categories (e.g., “urban” and “nonurban”). The
input maps are an initial land-cover map, and several “driver”
maps such as proximity to roads and elevation. Through statis-
tical analysis of the empirical patterns created by the overlay of
the initial land-cover map with the driver maps, a map that shows
the overall suitability of each grid cell for change is generated.
The model also reads from a text file the number of grid cells of
each category at a final time. Based on these inputs, the model
allocates the net change in each land cover category between the
initial and final time points across the study area and, thus,
simulates the spatial pattern of land change across the landscape.

We select GEOMOD as the platform to build our land change
model because it can be calibrated with input maps from a single
year. This functionality of the model is important for this study
because the available global urban land-cover maps are from
a single point in time only (e.g., GRUMP circa 1995, but MODIS
circa 2000) and these maps are not compatible with each other
(15). Absent a time-series of global urban land-cover maps, we
use GEOMOD framework to generate multiple realizations of
global urban expansion patterns out to 2030.

We have significantly modified the original GEOMOD model to
create the model we use in this study and call the modified model,
URBANMOD. The most significant changes are detailed below:

i) GEOMOD’s allocation algorithm prioritizes candidate pixels
according to their suitability values. Starting from the pixels
with the highest suitability value, it allocates new urban
growth until all pixels with that suitability value are con-

Seto et al. www.pnas.org/cgi/content/short/1211658109

verted. It then proceeds to the pixels with the next highest
suitability value and so on (12). Although this approach
works satisfactorily for relatively small areas when applied
at very large regional or continental scales, it does lead to
unrealistic clustering of new urban areas in only the locations
with the highest suitability. It is more realistic to assume that
urban development will take place in proportion to its ob-
served distribution across grid cells with different suitability
values rather than allocating as much development as possi-
ble in wholesale manner starting with those grid cells with
the highest suitability value in strict hierarchical order.

ii) When a large number of undeveloped grid cells are tied for
the selection of the next grid cell to be developed, GEO-
MOD employs an algorithm in which it allocates develop-
ment among the ties grid cells in a uniform fashion. When
large regions are tied this approach leads to an artificial salt-
and-pepper pattern of urban grid cells. We modify this as-
sumption so that the new model allocates urban grid cells
randomly among the tied locations.

iif) We modify the model so that it takes multiple estimates of
magnitude of urban expansion and consequently generates
a probabilistic urban growth map rather than a single deter-
ministic urban expansion map.

We use URBANMOD to spatially allocate the projected urban
expansion derivation of which is detailed in the previous section.
We conduct the simulations on IBM iDataplex cluster (Eos) of
the Texas A&M University Supercomputing facility.

URBANMOD Data Requirements. URBANMOD requires an initial
urban map, a region map, as well as an exclusion mask and driver
maps. See Data for initial urban maps and region maps. The
justification, sources, and derivation of the exclusion masks and
the driver maps are detailed below.
Exclusion mask. In addition to driver maps, we use a map that allows
masking out areas off limits to urbanization. As a conservative
assumption, we mask out protected areas (PAs) to prevent in-
filtration of urban pixels. To create the mask map, we use In-
ternational Union for Conservation of Nature (IUCN)-
designated PAs from the World Database on Protected Areas
2010 database (16). Some PAs in the database do not have
polygons but have centroid coordinates and area information.
For those PAs, we create a circular buffer around the centroid
approximating its spatial extent. We then use this initial polygon
layer to create the final raster [UCN-PA layer with a resolution
of 5,000 m in Goode’s Homolosine projection. To create the
exclusion mask, we combine this layer with the inland water
mask we extract from the land cover driver map. A few urban
pixels in the initial urban maps may fall into the existing TUCN-
PA. We assume there will be no growth around those urban
areas that are within an ITUCN-PA.
Driver maps. The model takes maps of four factors that are assumed
to have primary influences on where urban change is likely to occur.
Slope. Slope is generally accepted as a major factor influencing
land-change processes, including urban land expansion. Ceteris
paribus, gently sloped land is more preferable over land that is
steeper. The slope map is derived from new Shuttle Radar To-
pography Mission (SRTM)-derived digital elevation model
(DEM) and The Global Land One-kilometer Base Elevation
(GLOBE) dataset (17, 18). The SRTM data covers the globe
from 60° N to 56° S and, consequently, these data are not
available for most of Scandinavia, northern Russia, and northern
Canada. In these regions, we supplement the SRTM data with
GLOBE to get the DEM information for these regions as well.
We use 1-km resolution versions of both datasets. Once we
generate a seamless DEM for all of the global land mass, we
reproject it to Goode’s Homolosine and we derive the slope
map. We resample the resulting slope map to 5-km resolution.
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Finally, because URBANMOD takes input maps with discrete
categories only, we reclassified the map to discrete categories.
Weighted distance to roads. The global roads map comes from the
major road networks layer of the VMAPO vector-based global
coverage product (19). The weight used to create this driver map is
the slope map. The calculation of distances requires equidistant
projections. However, there is no globally consistent equidistant
projection. Therefore, we calculate the weighted distances to roads
for each region separately, in each case using a suitable equidistant
projection. Because there is no single projection that allows for
accurate global distance-related analysis, each continent has to be
projected separately. Therefore, we first project each region sep-
arately to an appropriately parameterized equidistant conic pro-
jection. After calculating the distances, we reproject back to
Goode’s Homolosine projection and discretize the resulting re-
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Fig. S1.

gional weighted distance maps. We assume the road network re-
mains the same throughout the simulation period. This is likely to
be an underestimate of the road network through 2030.

Population density. We use regional discretized population density
maps based on the global map derived from the original GRUMP
data (see Data).

Land cover. We convert the VMAPO vector-based land cover
product (19) to raster, reprojected it to Goode’s Homolosine, and
resample to 5 km. The reason we use VMAPO product instead of
MODIS v5 as we did for urban extent is that URBANMOD re-
quires the initial data of the land cover to be simulated to be co-
located with data from the driver maps. Although the initial urban-
extent map overlays with the other three driver maps, this would
not be the case for the land cover driver map had we used MODIS
v5 product to create it.
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Fig. S2. Probability of urban expansion in 39 high fertility African countries, 2030. Future urban expansion is expected to concentrate in a few areas primarily
around existing large urban centers and along the northern borders of Lake Victoria.
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Fig. S5. One realization of per capita urban land in 2030 for Central America (CAM). First, the change in per capita urban land because of increase in urban
population is estimated (a), ceteris paribus; then, an overall estimate for per capita urban land for 2030 is derived assuming the change in per capita urban land
will, on average, be equal to the slope of the regression line (b), ceteris paribus.

Table S1.

Regions defined in model

Abbreviation

Composition of regions defined in the model

Included United
Nations regions

Plus

Minus

Central America

China
Eastern Asia
Eastern Europe

India
Mid-Asia
Mid-Latitudinal Africa

Northern Africa
Northern America
Oceania

South America
Southeastern Asia
Southern Africa
Southern Asia
Western Asia
Western Europe

CAM

CHN
EAS
EEU

IND
MAS
MLA

NAF
NAM
OCE
SAM
SEA
SAF
SAS
WAS
WSE

Central America,
Caribbean

Eastern Asia

Eastern Europe

Central Asia
Western, Middle,
Eastern Africa

Northern Africa
Northern America
Oceania
South America
Southeastern Asia
Southern Africa
Southern Asia
Western Asia
Western, Southern,
and Northern
Europe

China, Hong Kong, Macao

Taiwan

Kazakhstan, Estonia, Lithuania,
Latvia, Albania, Bosnia-Herzegovina,
Croatia, Macedonia, Montenegro,
Serbia

India

Mongolia

China, Hong Kong, Macao, Mongolia

Kazakhstan

India
Estonia, Lithuania, Latvia, Albania,
Bosnia-Herzegovina, Croatia,
Macedonia, Montenegro, Serbia

Our regional breakdown broadly follows United Nations (UN) regional categorization. In a few instances, we removed countries from the UN regions they
belong to (Minus) and included them in other UN regions (Plus). If a region as defined in the model does not include a UN region or has no removals or
inclusions these are signified with an — in the table. See S/ Materials and Methods for criteria on composing the regions defined in the model.
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