Supporting information

Qiao et al. 10.1073/pnas.1207528109

SI Materials and Methods

Bone Marrow Chimeric Mice. For bone marrow (BM) transplantation experiments, the recipient mice were lethally irradiated with 960 rads 24 h before receiving BM transfers. Total BM cells were harvested from the femurs and tibias of donor mice (2–3 mo of age) and depleted of mature T cells, B cells, and MHC class II⁺ lymphocytes by using a mixture of antibodies containing anti-CD4 (RL172), anti-CD8 (TIB105 and TIB210), anti-CD19 (1D3), and anti-MHC class II (M5/114) followed by complement-mediated lysis. BM cells from two different types of donor mice were mixed at the indicated ratio. Each recipient mouse received 4–6 × 10⁶ cells in 200 µL of 1× PBS via tail vein injection. All BM chimeras were reconstituted for 4–6 wk before the analysis of T-cell development and function.

Flow Cytometry. Cells were preincubated with the anti-Fc γ R mAb 2.4G2 to block nonspecific antibody binding before they were stained with the FITC-, PE-, PerCP-, PE-Cy7-, APC-, APC-Cy7- or biotin-conjugated antibodies as listed in *Materials and Methods*. Events were acquired on a FACSCanto (BD) flow cy-tometer, and the data were analyzed with the FlowJo software (Tree Star).

Th1 Differentiation. CD4 cells were purified from single-cell suspensions of splenocytes from chimeric mice with antimouse CD4

microbeads (Miltenyi Biotec). CD4 T cells $(1 \times 10^{6}/\text{mL})$ were stimulated with 5 µg/mL plate-bound anti-CD3 ϵ (145-2C11) for 5 d with 1 µg/mL anti-CD28 (37.51), 3.5 ng/mL IL-12 (Roche), 10 µg/mL anti-IL-4 (11B11) and 50 units of IL-2 (Roche).

Cytokine Intracellular Staining. Differentiated Th1 CD4 T cells were stimulated with 50 ng/mL phorbol myristyl acetate and 1.5 μ M ionomycin (Calbiochem) for 5 h. Monensin (Sigma) at 3 μ M was added during the last 3 h of stimulation. Activated Th1 cells were stained with anti-CD45.1 and anti-CD45.2 antibodies. Cells were then fixed in 2% (wt/vol) paraformaldehyde for 30 min at room temperature and permeabilized with 0.2% (wt/vol) saponin (Sigma), followed by staining with anti–IL-4 and anti–IFN- γ for flow cytometry.

PLZF Intracellular Staining. PLZF staining was done using the Foxp3 staining buffer set (eBioscience) and following the protocol according to the company, except that anti-Foxp3 mAb was replaced by antimouse PLZF mAb.

Statistical Analysis. The two-tailed Student t test was used to analyze the statistical significance of the difference between groups as indicated. A P value smaller than 0.05 was considered statistically significant.

Fig. S1. Nur77^{GFP} expression in T- and E-CD4 T cells. (*A*) Generation of Nur77^{GFP} E- and T-CD4 T cells. To produce Nur77^{GFP} E-CD4 T cells, Nur77^{GFP} BM cells (CD45.2⁺) were cotransferred with WT BM (CD45.1⁺CD45.2⁺) into B6.5JL hosts (CD45.1⁺) [Nur77^{GFP}+WT→B6] (E-BMT). For Nur77^{GFP} T-CD4 T cells, Nur77^{GFP} and Tg BM cells were cotransferred into lethally irradiated MHC class II-deficient hosts resulting in [Nur77^{GFP}+Tg→Aβ^{-/-}] T-BMT. E- and T-CD4 T cells that were originated from Nur77^{GFP} BM were compared for their GFP expression. (*B*) CD5 expression of cells analyzed in Fig. 1C. (*C*) GFP⁺ DP dull cells were gated from E- (shaded) and T-BMT (line) and CD5 levels were compared. (*D*) TCR β b but not TCR β hi DP thymocytes from T-BMT mice express higher GFP than that of E-BMT mice. Shaded and line histograms indicate cells from E- and T-CD4 T cells was compared. Shaded and line histograms indicate cells from E- and T-BMT mice.

Fig. S2. The development of T-CD4 T cells with RASA1 deficiency. (*A*) RASA1 deficiency induces $CD69^{hi}$ cells. [RASA1^{-/-}+WT→B6] E-BMT and [RASA1^{-/-}+Tg→Aβ^{-/-}] T-BMT were constructed and DP dull populations were gated and compared for CD69 and CD24 expression. Numbers show the percentage of gated CD69^{hi} cells in the DP dull population. (*B*) Splenic cells from the same chimeras in *A* were used to assess peripheral CD4 and CD8 T-cell percentages. Shown are mean \pm SD. (C) Representative CD44 and CD62L expression of splenic CD4 T cells from RASA1^{-/-} BM chimeras.

Fig. S3. iNKT cell development was severely reduced in the absence of RASA1 or RasGRP1. Total thymocytes and splenocytes from indicated mice were analyzed to examine iNKT cells using TCRβ and PBS-57-loaded CD1d-tetramers. Numbers indicate the percentages of iNKT cells among total thymocytes or splenocytes. Data are representative of five pairs of mice.

DN A C

Fig. S4. Deficiency of ITK did not affect effector phenotype of T-CD4 T cells. (A) ITK deficiency reduces CD69^{hi} cells. $[ITK^{-/-}+WT\rightarrow B6]$ E-BMT and $[ITK^{-/-}+Tg\rightarrow A\beta^{-/-}]$ T-BMT were constructed and DP dull populations were gated and compared for CD69 and CD24 expression. Numbers show the percentage of gated CD69^{hi} cells in the DP dull population. (*B*) Summary of splenic CD4 and CD8 T-cell percentages. Shown are mean \pm SD. (C) Representative CD44 and CD62L expression of splenic CD4 T cells from ITK^{-/-} BM chimeras.

() <

Fig. S5. Effector function of T-CD4 T cells is not affected by the strength of TCR signaling. Summary of the percentages of IFN- γ - or IL-4-producing cells in the experiments of Fig. 5. Shown are mean \pm SD.

DNAS

<

Fig. S6. $TCR\beta^+$ CD69^{hi} DP from wild-type Nur77^{GFP} (WT) and Nur77^{GFP}/A $\beta^{-/-}$ (MHCIIKO) mice were compared for Nur77 levels. Histograms show postselected $TCR\beta^+$ CD69^{hi} DP cells. Two pairs of mice are represented.