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SI Text
SI Methods. Role of substrate on droplet freezing. Water droplet
freezing was investigated on PMMA, titanium, and copper sur-
faces. The salient nature of the temperature variations in super-
cooled sessile droplets (using thermocouple T1, see Fig. 4) are
shown in Fig. S1, which only plots the measurements on PMMA
and copper substrates as a function of time during the entire
freezing process.

From this figure, the different freezing stages can be clearly
recognized. The first recalescent stage is too fast (lasts 20 ms�
3 ms) to be captured in detail by the time resolution of the ther-
mocouple and appears as the first temperature jump in Fig. S1 A
and B. During this stage of freezing, only a fraction of the liquid
volume freezes into an ice scaffold while the latent heat of freez-
ing is almost entirely absorbed by the resulting ice-water mixture.
The absorption of the released latent heat mainly by the ice-water
mixture is evident in the similarity of the time needed for the first
stage (recalescent) freezing and the measured droplet tem-
perature at the end of it (see Fig. S1 A and B), regardless of
the substrate thermal conductivity. Therefore, at the end of
the first stage a simple heat balance (1) results in mI∕mW ¼
½cW∕ðΔhm − cIÞ�ΔT ≈ 0.22, where m and c denote the mass and
specific heat capacity; subscripts I and W respectively represent
the ice and the liquid water; and Δhm and ΔT respectively denote
the specific latent heat of melting and the degree of supercooling.
The second stage, lasting for 41 s� 5 s and 3.1 s� 0.4 s on
PMMA and copper, respectively, can also be clearly identified
in Fig. S1. The freezing time on titanium was measured to be
8.8 s� 1.5 s. On PMMA, after the first stage, the resulting ice-
water slush reached 0 °C. The temperature of the slush remained
at 0 °C on PMMA for the second freezing stage. Since the tip of
T1 was fixed (at approximately 0.7 mm from the substrate sur-
face), the isothermal character of stage two on PMMA was only
visible until the freezing front passed by the thermocouple at time
t ¼ ∼20 s (Fig. S1A). This isothermal phase was absent on copper
(Fig. S1B). In addition, the freezing front of the second stage on
copper propagated considerably faster upwards, away from the
substrate [see experimentally observed front positions (solid tri-
angles) in Fig. S2].

It is expected that the high thermal conductivity of copper
would provide a low-resistance path for dissipation of the heat
released during freezing. Overall, the shown temperature varia-
tion can be understood to result from a balance of the heat
produced at the freezing front with heat conducted in to the sub-
strate, and heat dissipation to the environment through a combi-
nation of evaporation and convection.

The accurate modeling of the freezing process is very involved,
in part due to the need to capture the moving interface behavior,
requiring a dedicated specialized investigation. Previous works
have used numerical approaches to study the freezing of sessile
droplets (2). However, to understand the basic behavior of the
role of the substrate thermal conductivity, a goal pursued in the
present study, one can simply consider a one-dimensional Stefan-
type freezing problem (3) with a realistic determination of the
liquid substrate temperature. During the rapid recalescent stage,
the temperature of the droplet rises very rapidly; thus, we can
safely assume the substrate temperature to remain temporarily
unaffected. Therefore, postrecalescence, we obtain the tempera-
ture of the substrate using an analytical expression for the inter-
face temperature developing when two semiinfinite regions are
brought to contact (4)
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where the subscripts sub and drop represent the substrate and
droplet, respectively. The variables k, ρ, cp denote the thermal
conductivity, the density and the heat capacity, respectively (1, 5).
With a substrate temperature of −14.5 °C, a droplet freezing tem-
perature of 0 °C, and substituting the property values for copper,
titanium, and PMMA, the interface temperatures were deter-
mined to be −13.9 °C, −11.4 °C, and −3.3 °C, respectively. Clearly
the poor conductivity of PMMA offers high resistance for heat
conduction, thereby resulting in higher interface temperature.

The interface temperature in Eq. S1 can be used as a boundary
condition in a simplified, one-dimensional Stefan-type freezing
problem with the liquid temperature held at 0 °C to relate the
location of the freezing front with time t as (3)

sðtÞ ¼ 2λðαI tÞ1∕2; [S2]

where αI ¼ kI∕ρIcp;I denotes the thermal diffusivity of ice and
λ is a constant to be determined from a transcendental energy
balance equation at interface given by (3):

λeλ2erfðλÞ ¼ cp;IðTI − TdropÞ
ΔHm

ffiffiffi
π

p ; [S3]

where ΔHm denotes the enthalpy of fusion (1). Eq. S3 was solved
to determine λ for different substrates. Fig. S2 compares the ana-
lytically predicted (Eq. S2 and blue curves in Fig. S2) and experi-
mentally observed (black triangles in Fig. S2) evolution of the
freezing front positions for the two extreme cases, copper and
PMMA. The matching slopes of the experimental and theoretical
trends for the evolution of the freezing interface location testify
to the validity of the power law variation expressed in Eq. S2.

The experimental data were obtained by analysis of the digi-
tized images obtained from the video recording the droplet freez-
ing in side view (see for example s1–s3 in Fig. S3, indicating the
instantaneous position of the freezing front on PMMA). The
experimentally observed evolution of the freezing front position
was sðtÞ ¼ 0.1748t1∕2 for PMMA (red dashed curve in Fig. S2A)
and sðtÞ ¼ 0.6352t1∕2 for copper (red dashed curve in Fig. S2B).
This shows that our simple, one-dimensional estimate predicts
the scaling of front propagation with time very well and differs
only in constant prefactor from the experimentally observed front
propagation dynamics.

Accounting for the amount of liquid water already frozen in
the first stage (S2) (approximately 22%; see estimation above),
the remaining freezing time t2 on copper, titanium, and PMMA
was calculated to be 5.8 s, 7.1 s, and 24.8 s, respectively. Clearly,
the analytical results, while differing in actual values from the
measured ones, confirm in a relative sense the decisive role of
thermal conductivity on the freezing of the sessile droplet.

Critical supersaturation needed for condensation. According to the
classic nucleation theory (6, 7), the critical supersaturation in
vapor concentration needed for water condensation on a planar
substrate depends strongly on surface wettability (contact angle).
Supersaturation for water nucleation on solid surfaces as a func-
tion of water contact angle was first computed by Fletcher (8)
using parameters determined from rain cloud experiments.
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Although strictly valid only for ideally smooth surfaces, the ana-
lysis helps to provide a preliminary understanding of the salient
thermodynamic properties involved in the water vapor condensa-
tion process and is outlined here in brief.

The rate of surface nucleation of condensed water from water
vapor can be expressed as (6)

J ¼ K expð−ΔGc

kBT
Þ; [S4]

where kB, T denote the Boltzmann constant and the tempera-
ture, respectively. The pre-factor K in Eq. S4 designates a kinetic
coefficient (6), which was estimated by Fletcher (7) to be of the
order of 1024 to 1027 cm−2 s−1.

The free energy of heterogeneous nucleation of water on a
planar substrate is given by (1)

ΔGc ¼
16πM 2γ3

W;v

3ðRTρW lnSÞ2 f ¼
A

ðlnSÞ2 f ; [S5]

with the surface wetting factor (9)

f ðθÞ ¼ ð2þ cos θÞð1 − cos θÞ2∕4; [S6]

whereM, γW;v,R, ρW , θ, and S respectively denote the molecular
weight of water, the interfacial energy liquid water–water vapor
(1), the universal gas constant, the liquid water density (1), the
water droplet contact angle on the substrate, and the degree of
critical saturation for water vapor condensation. Substituting
Eq. S5 into Eq. S4 and rearranging the variables led to the desired
expression of the critical saturation for water vapor nucleation as

SðθÞ ¼ exp
�
1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
lnðJ∕KÞ
Af ðθÞ

s �
: [S7]

Assuming a nucleation rate of J ¼ 1 cm−2 s−1 (7) and consid-
ering an averaged water contact angle θ ¼ 72°, the critical satura-
tion for water vapor (Eq. S7) is solved to be S ¼ 2.38, which
corresponds to a critical supersaturation value of 138%. This
critical supersaturation value differs from the slightly above the
100% value at which condensation is recorded in the experiments
(see main text). Mahata et al. (8) studied the effect of water con-
tact angle on the condensation process and confirmed a signifi-
cant deviation in the critical supersaturation values predicted
theoretically and observed experimentally with increasing contact
angle. For example, for PMMA surface with an average water
contact angle of approximately 80° the deviation was approxi-
mately 130%, which lies within the expected range compared to
the present findings.

However, in Influence of humidity and substrate thermal
conductivity on evaporation and condensation during freezing we
discuss an alternative approach for determining the critical super-
saturation on PMMA by modeling an ablimating ice crystal. The
determined value of 104%� 4% for critical saturation on PMMA
with this approach is in accordance with our experiments.

Evaluation of water condensation/evaporation. Movie S1 shows the
freezing and related water vapor evaporation and condensation
around a sessile droplet on a PMMA surface. This section ana-
lyzes the phase change process in detail. Fig. S4 shows the radial
width of condensate formed during freezing of sessile droplets on
PMMA (d1 ¼ 1.4 mm, Fig. S4 A and C—Δt1) and copper (d1 ¼
0.54 mm, Fig. S4 B and D—Δt1). Due to the approximately 14
times faster freezing on copper than on PMMA and the much
faster temperature and water saturation reduction near the dro-
plet–gas interface with time (initial slope of −16 °C∕s on copper

compared to a constant temperature of −0.5 °C for the first 20 s
on PMMA, compare Fig. S1 A and B), the amount of evaporated,
diffused, and condensed water is considerably lower on copper.
Given that the vapor diffusion timescale for our conditions is
τD ∼ 0.1 s and the initial slope of temperature reduction on
copper is −1.6 °C∕s, it can be clearly seen that the quasisteady
approximation used for PMMA in the main document will fail
on copper. Therefore, for very conductive substrates such as
copper, a complex transient conjugate energy transport model,
along with interface capturing at the freezing front and at the
droplet evaporation surface, needs to be employed in order to
predict the condensate formation and its spreading. The time-
scale of water vapor diffusion ensures a lesser amount of water
condensation (as evident by lesser maximum width of the conden-
sate d1 in Fig. S4) on copper than on PMMA.

Due to the lesser amount of condensation in the vicinity of the
freezing droplet on copper compared to PMMA, the condensate
evaporates completely before freezing. The resulting vapor can
have two different outcomes. It can mix with the ambient gas
and/or deposit on to the frozen water droplet through ablimation
[direct vapor–solid phase transition, (1, 10)]. The latter outcome
is possible because the vapor pressure over a supercooled water
surface is larger than that over an ice surface, resulting in a super-
saturation state with respect to ice and in a vapor flux from the
liquid to the frozen droplet. The supersaturation over ice can be
expressed as SI ¼ ðpsat;W∕psat;IÞ − 1 ¼ 0.145, where psat;W , psat;I
respectively denote the saturation vapor pressure over plane
water and ice surfaces at −14.5 °C (1). The vapor flux to ice
results in growth of an ice crystal at the expense of neighboring
liquid microdroplets by the Wegener–Bergeron–Findeisen me-
chanism (1).

This is clearly visible through formation of an inner edge in
the condensate near droplet contact line (inner dashed line in
Fig. S4D), which recedes from the droplet contact line with time
due to evaporation of the condensate. We should note here that
this is in spite of the fact that during the evaporation stage more
water condenses near the mother droplet contact line than away
from it (i.e., the maximum size of the condensate drops near the
contact line is higher than of those away from it). The change in
position of this inner edge with time is plotted as blue circles in
Fig. S4B. Eventually, the inner and outer edges merge together
(overlap of red square and blue circle at 2.3 s in Fig. S4D),
indicating the absence of any condensation remnant in the neigh-
borhood of the mother droplet.

Also visible in the magnified segment of Fig. S4C—Δt2 is the
absence of liquid microdrops in the vicinity of the frozen conden-
sate edge (gap between frozen and liquid condensate), because of
their evaporation onto the growing crystals (Wegener–Bergeron–
Findeisen mechanism, as described above). Diffusion controlled
ice crystal growth discusses this phenomenon in more detail.

Influence of humidity and substrate thermal conductivity on evapora-
tion and condensation during freezing. Fig. S5 illustrates that the
ambient humidity and substrate thermal conductivity of the sub-
strate directly control the amount of condensed water and thus its
maximum expanse. With a rise in humidity the water vapor con-
centration necessary to reach supersaturation reduces, resulting
in an increase in the maximum expanse of condensed water. The
opposite outcome is observed with an increase in the substrate
thermal conductivity, which results in an increase in the rate
at which the latent heat released due to freezing is transmitted
through the substrate, and therefore leads to a faster freezing
of the droplet volume (see also Role of substrate on droplet freezing
and Evaluation of water condensation/evaporation for more
details).

Diffusion controlled ice crystal growth.As outlined in the main text,
in the performed experiments there was a time gap of 8.3 s
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between complete freezing of one droplet (including its conden-
sate) and the initiation of freezing of the neighboring droplet.
The time difference between completion of freezing of one dro-
plet and initiation of the neighboring one is also clear from the
freezing of droplet arrays recorded in Movie S2. It was discussed
in that context that a water-free zone is formed between the outer
edge of the frozen condensate and the neighboring liquid droplet
contact line (see Fig. 3). In this zone (bounded on one side by
the white dashed lines in Fig. 3) the vapor concentration remains
below critical supersaturation concentration so as to avoid water
condensation on the sample surface. A similar, albeit much smal-
ler, gap is also observed in front of the freezing condensate from
an isolated droplet in Fig. S4C—Δt2 (zoomed image), where a
water-free zone is formed between the edges of frozen and liquid
condensate. The reason for formation of both these gaps is abli-
mation due to different saturated vapor concentrations between
ice and water as discussed above. However, the gap between the
freezing condensate edge and the remaining condensate micro-
droplets is very small, which should facilitate continuous advance-
ment in the freezing condensate edge. This explains the
continuous freezing of the condensate in Movie S1. On the other
hand, the gap in Fig. 3B between the condensate edge and the
second liquid droplet (approximately 14 μm) is large. Below, we
analyze the experimentally determined time an ice crystal needs
to overcome this gap zone (Fig. 3B) and use the outcome to re-
evaluate the critical humidity for water condensation on PMMA
compared to the approach discussed in Critical supersaturation
needed for condensation.

The vapor mass flux at the ice crystal surface for a temperature
of −14.5 °C can be expressed as (1)

dm
dt

≈
C
G

SI; [S8]

with

G ¼
RT

psat;IDvM
þ ΔHs

kgT

�
ΔHsM
RT − 1

�
4π

¼ 3.8 × 106 ms kg−1; [S9]

where ΔHs,Dv, psat;I , and SI denote the specific heat of sublima-
tion, the diffusivity of water vapor, the water vapor saturation
pressure, and the degree of supersaturation with respect to ice
at −14.5 °C, respectively (1). The parameter C ¼ 2a0∕π, with
a0 denoting the initial radius of a geometrically idealized circular
ice crystal (1). Assuming the shape of the growing ice crystal to be
a simple thin, circular ice disc with radius a and height δ, the mass
flux in Eq. S8 can be written as

a
da
dt

≈
1

ρIπδ
C
G

SI ¼ Γ; [S10]

where ρI denotes the density of ice [919 kg∕m3 at −14.5 °C (1)].
Integration of Eq. S10 results in

aðtÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γtþ a2

0

q
: [S11]

Fig. S6 displays the theoretical change in the crystal size (a–a0)
with time for a model ablimating ice particle (Eq. S11). The time
at which the crystal size increases to overcome the gap size (ap-
proximately 14 μm) must be the time at which we observe the
initiation of the freezing of the neighboring droplet. Two different
water vapor concentrations are used: saturated condition (which
corresponds to SI ¼ 14.5%; blue curve in Fig. S6) and approxi-
mately 8% supersaturated condition (which corresponds to
SI ¼ 24%; red curve in Fig. S6) at −14.5 °C. The initial radius
and height of the growing ice particle used were 2.75 μm and

2.11 μm, estimated from the size of a frozen condensed micro-
droplet close to the water- and ice-free gap (see Fig. 3B).

Also shown in Fig. S6 is the experimentally determined time
(8.3 s) an incipient growing ice crystal needs in order to overcome
the water- and ice-free gap of approximately 14 μm before initi-
ating nucleation at the neighboring liquid droplet (cross in Fig. S6;
compare also with the Fig. 3 B, C, and D).

It is important to realize that the vapor concentration at the
outermost edge of the condensate in Fig. 3B must be equal to
the critical supersaturation needed for condensation. In fact, that
is what determines the expanse of condensate. The concentration
is likely to remain the same over the frozen microdroplets in the
condensate. Therefore, the vapor concentration in the gap be-
tween the frozen condensate and the second neighboring droplet
will vary from critical supersaturation at the frozen condensate to
saturation condition (with respect to water). The growth of ice
crystals, assuming the vapor concentration to be saturated with
respect to water (SI ¼ 14.5%; blue curve in Fig. S6), underesti-
mates the experimentally observed time of 8.3 s (cross in Fig. S6).
On the other hand, for an assumed supersaturation of approxi-
mately 8% (SI ¼ 24%; red curve in Fig. S6), the model overes-
timates the experiment. Therefore, the average humidity ϕ in the
gap can be estimated to be 104� 4%. The concentration could
also be seen as the critical saturation needed for water conden-
sation on PMMA. Improving the classical nucleation theory
(Critical supersaturation needed for condensation), the above
discussion confirms the findings presented in Fig. 2 of a critical
saturation condition close to 100%.

Numerical model for quasisteady vapor diffusion.As discussed in the
main document, the evaporation from a supercooled droplet
freezing on an insulating substrate such as PMMA can be mod-
eled using a quasisteady approach, with the approximation that
vapor field adjustment due to vapor diffusion in ambient occurs
much more rapidly than the rate of freezing front movement.
The approach is justified because, as estimated in the main text,
for a droplet freezing on PMMA, the freezing time τf of approxi-
mately 41 s is considerably larger than vapor diffusion time τD of
approximately 0.1 s. In the following, the evaporation of the dro-
plet during the second, thermally controlled stage of freezing is
modeled, since the formation of condensation halo took place
during this stage. The temperature of the slush (consisting of
an ice crystal scaffold and water) freezing completely during this
stage is assumed to remain at 0 °C. Please see Fig. S1A and the
corresponding discussion in Role of substrate on droplet freezing.

Under quasistatic approximation, the vapor field around the
droplet can be obtained by solving the steady vapor diffusion
equation for the vapor mass concentration∇2ρv ¼ 0. The upward
motion of the freezing front continuously reduces the volume of
the not-completely frozen region above it, and correspondingly
continuously reduces the unfrozen surface area of the droplet
through which the evaporation takes place. In spite of this com-
plexity, further plausible simplifications in the modeling geome-
try can still be made as follows. With the assumption of spherical
cap geometry for the droplet and the experimental observation
that the freezing front remains parallel to the substrate surface
as it moves upwards (Fig. S3), the vapor diffusion can be consid-
ered axisymmetric. For the quasisteady process modeled here, the
time dependent movement of the freezing front and, therefore,
the change in the available surface area of evaporation, can be
obtained by processing the digitized images from the side view
video recording of the droplet freezing process. More details on
the experimental freezing front motion so obtained are described
in Role of substrate on droplet freezing.

For every time step and corresponding area of evaporation, the
vapor diffusion was modeled with axisymmetric, steady Laplace
diffusion equation using the commercial software COMSOL®,
ver. 4.2. Since only the second stage of freezing is modeled, to
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account for the fact that 22% of the liquid is already transformed
into ice after recalescence (see the estimate in Role of substrate on
droplet freezing), the vapor concentration at the droplet surface
was taken to be 0.78 ρs0 where ρs0 is the saturation vapor con-
centration at 0 °C. This is justified if the temperature of the
slush (ice-water mixture) resulting from recalescence is 0 °C. In
effect, this amounts to considering the second freezing stage to be
similar to a Stefan-type freezing problem, where the liquid tem-
perature is held at the interface equilibrium temperature (11).
The temperature measurement inside the droplet once the freez-
ing front passes the thermocouple tip justifies this assumption.

The concentration at far field is derived from the relative
humidity of 1.3% measured at the experimental chamber tem-
perature of −14.5 °C. The far field boundary was taken at 160R0,
where R0 is the initial contact line radius of the sessile droplet.
As the freezing interface moves upward, the surface area of
evaporation is reduced. The already frozen bottom part of the
droplet does not contribute to evaporation. This is implemented
by setting the gradients in the vapor concentration equal to zero
in the frozen part of the droplet surface. The gradient is also set
to zero at the substrate.

Fig. S7 shows the contour plots for the vapor field concentra-
tions at two specific positions of the freezing front. An unstruc-
tured triangular mesh was used for the simulation. In order to
capture the high-concentration gradients occurring near the
droplet-air interface, the grids were kept 100 times finer near the

interface compared to the low gradient, far field region. The max-
imum grid size was kept at 2 mm and the maximum allowed rate
of increase in the grid size was kept at 10%. These grid sizes were
obtained through a systematic grid independence study for an in-
termediate position of the freezing interface. A relative tolerance
of 1 × 10−6 was used as convergence criterion for all simulations.

Fig. S7 shows the vapor contours at two instants at which tan-
gents to the droplet at the point of intersection of the freezing
front with the droplet air interface are at 60° (Fig. S7A) and 36°
(Fig. S7B) from the horizontal freezing front. In essence, we can
think of this as akin to evaporation from a droplet with variable
contact angle. However, the key difference lies in the fact that as
the freezing front starts to move, the remaining slush rests on the
formed ice. Clearly this angle is equal to 73° initially—i.e., equal
to the equilibrium contact angle on the substrate—and falls to 0°
at the end of the freezing process. The entire second freezing
stage was modeled through parametric variation of the geometry
using 2° steps in the contact angle on ice. This amounted to se-
parate steady-state simulations for each contact angle, at steps
differing by 2°, which was justified due to the quasisteady nature
of the evaporation process. The parametric sweep feature in the
COMSOL® solver was used to obtain the solutions. Volume ex-
pansion upon freezing of about 9% is neglected in this approx-
imate calculation because the corresponding change in area will
be even smaller. Therefore, the assumption should not appreci-
ably affect the evaporation process.
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Fig. S1. Variation of water droplet temperatures. Temperature variation with time for a freezing water droplet on PMMA (A) and copper (B) substrate. The
temperatures weremeasured at 10 Hz; however, for clarity, a smaller time resolution appears in the figures. The red closed dots indicate the temperature in the
droplet at approximately 0.7 mm from the substrate while the blue circles represent the gas temperature. The error bars indicate the standard deviation out of
three measurements. The first red points before recalescence in (A) are not visible.
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Fig. S2. Freezing front distribution. (A) Calculated (blue curve) and experimentally determined (solid triangles) freezing front moving upward and parallel to
the PMMA substrate. (B) Calculated (blue curve) and experimentally determined (solid triangles) freezing front moving upward and parallel to the copper
substrate. The fitting of the experimental data is indicated by the red dashed curves. The error bars indicate the standard deviation out of three measurements.

Fig. S3. Side view of a freezing water droplet on PMMA. (A–D) Showing snapshots at 0.3, 10, 30, and 45 s. (A) Freezing water droplet soon after the first
freezing stage. (B–C) The second stage of droplet freezing. The freezing front moves upward and parallel to the substrate, indicated by the black dashed line.
(D) Completely frozen water droplet. s1–s3 indicate the instantaneous positions of the freezing front. The white dashed lines indicate the outer boundary of
condensed water. The scale bar equals 1 mm.
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Fig. S4. Diffusion controlled water condensation and evaporation. (A) Variation in position of condensate outer edge with time on PMMA (red closed tri-
angles). (B) Condensate halo outer (red closed squares) and inner (blue circles) edge position variation with time on copper. (C) Position of condensate outer
edge (dashed line), maximum expanse (Δt1), and during condensate evaporation (Δt2) on PMMA. (D) Position of condensate outer and inner edge (dashed
lines), maximum expanse (Δt1), and during condensate evaporation (Δt2) on copper. Note the absence of condensate in the vicinity of frozen condensed water
[magnified segment in (C) Δt2] and the frozen mother droplet (D) due its evaporation into the environment and ablimation onto the frozen water. The error
bars represent the standard deviation over three measurements.

Fig. S5. Humidity and thermal conductivity controlled evaporation and condensation from a 5-μl freezing sessile water droplet. (A) Position of condensate
outer edge on PMMA at 35% humidity (maximum expanse d ¼ ∼2.2 mm). (B) Position of condensate outer edge on PMMA and 1.3% humidity (maximum
expanse d ¼ ∼1.4 mm). (C) Position of condensate outer edge on titanium and 1.3% humidity (maximum expanse d ¼ ∼0.9 mm). (D) Position of condensate
outer edge on copper and 1.3% humidity (maximum expanse d ¼ ∼0.55 mm).
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Fig. S6. Ablimating ice particle. Theoretical ice crystal growth through the water- and ice-free gap under different supersaturation values SI with respect to ice
(SI ¼ 14.5%, blue curve and SI ¼ 24%, red curve). The black cross represents the time an ice crystal needs to overcome the gap distance of approximately 14 μm
observed in the experiment.

Fig. S7. Evaporation of freezing droplet. Vapor concentration field around a supercooled sessile droplet freezing on an insulating substrate and undergoing
evaporation due to heat release during freezing. The unit of concentration is g∕m3. The vapor diffusion is quasisteady with respect to the freezing dynamics.
(A) and (B) show two specific instants during the second stage of freezing.

Movie S1. Diffusion controlled water condensation and evaporation during stage two of freezing. Initially, the droplet (magnified segment) is in a super-
cooled liquid state and in thermal equilibrium with the substrate and the gas at −14.5 °C. The bright ring concentric to the droplet contact line indicates the
liquid and finally partial frozen condensate on the substrate. The microdroplets in the condensate should be closely spaced to each other. Therefore, the rapid
freezing of the successive microdroplets in the condensate should be due to the fact that upon freezing every microdroplet must expand in volume and,
thereby, contact its next neighboring microdrop. This process will initiate a chain-like freezing front propagation through themicrodroplets in the condensate,
which is exactly what we observe in the movie.

Movie S1 (MOV)
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Movie S2. Evaporation, condensation and freezing of condensate on a droplet array. With evaporation and condensation formed from the freezing of
an undercooled water droplet, frost condensate initiates ice nucleation in the neighboring droplet, resulting in a domino-like effect of independent water
freezing. Initially, all three droplets are in thermal equilibrium with the PMMA substrate and the environment at −14.5 °C. The first crystallization of the right
droplet is initiated in a controlled manner by bringing a small ice-cluster in contact with the liquid surface.

Movie S2 (MOV)
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