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SUPPORTING INFORMATION Hofmann et al. 

Polymer scaling laws of unfolded and intrinsically disordered proteins 
quantified with single molecule spectroscopy 

 

Preparation and labeling of proteins.  

The cysteine containing variants of a destabilized variant of human cyclophilin A 

(W121F/C52/61/115/161S) (hCypA) were produced recombinantly in BL21DE3 as inclusion 

bodies (IBs). After cell disruption, 0.5 vol. of 60 mM EDTA, 6% Triton, 1.5 M NaCl were 

added and the raw extract was stirred at 4°C overnight. IBs were isolated by centrifugation at 

48,200 g for 30 min at 10°C. The resulting IBs were washed with 0.1 M TrisHCl, 1 mM 

EDTA, pH 8 and resolubilized with 6 M GdmCl, 50 mM TrisHCl pH 7.5, 100 mM DTT. 

After centrifugation, the DTT was removed by desalting the resulting supernatant using a 

26/60 desalting column (GE Healthcare) pre-equilibrated with 6 M GdmCl, 50 mM TrisHCl 

pH 8.0, 10 mM imidazole. The protein-containing fractions were immediately loaded on a 

HisTrap-column, and the His-tagged protein was eluted with a gradient from 0% to 100% 6 

M GdmCl, 50 mM TrisHCl, 500 mM imidazole, pH 8. All hCypA-containing fractions were 

pooled and concentrated in the presence of 5 mM TCEP. The His-tag was cleaved by slowly 

adding 1-3 ml of hCypA to 40 ml of 50 mM TrisHCl, 0.5 M L-Arg, 1 mM TCEP containing 

1.25 M HRV C3-protease, pH 8. Since the variants of hCypA are highly destabilized 

compared to wt-hCypA, the variants aggregate during cleavage. After 2 hours, 3.5 M NH4SO4 

were added to precipitate the protein. The suspension was centrifuged at 48,200 g for 1 hour 

at 10°C, and the pellet was dissolved in 2 ml of 6 M GdmCl, 50 mM TrisHCl, 10 mM 

imidazole, pH 8. The sample was then loaded on a HisTrap column (5 ml, GE Healthcare) 

with a high flow rate of 4 ml/min. The flow-trough contained 100-200 M His-tag-free 

hCypA. To reduce the hCypA variants for labeling, 1 ml of the hCypA sample was incubated 

for 1 hour with 200 mM -Mercaptoethanol and desalted afterwards using a HiTrap desalting 

column (5 ml, GE Healthcare) pre-equilibrated with 6 M GdmCl, 50 mM potassium 

phosphate pH 7.2. Immediately after elution, 0.5 equivalents of the donor fluorophore 

AlexaFluor 488 C5 maleimide (Invitrogen) was added. After 2 hours at room temperature, the 

reaction was stopped by the addition of 200 mM -Mercaptoethanol. Unlabeled protein was 

separated from labeled protein using reversed phase chromatography (C18) with a gradient 

from aqueous 0.1 % trifluoroacetic acid (TFA) to 100% acetonitril without TFA. The pooled 

fractions were analyzed by mass spectrometry (ESI) and lyophilized. After resolubilization of 

the labeled hCypA variants in 6 M GdmCl, 50 mM potassium phosphate pH 7.2, a threefold 

excess of acceptor AlexaFluor 594 C5 maleimide (Invitrogen) was added. After 7 hours, 100 

M TCEP was added, and the doubly-labeled protein was separated from free dye using size-

exclusion chromatography (6 M GdmCl, 50 mM potassium phosphate pH 7.2). 

The spectrin domains R15 and R17 were expressed and purified as described by Scott 

et al. (1). For labeling of the spectrin domains, cysteine residues were introduced by site-



2 

	

directed mutagenesis at positions 39 and 99 (R1760 and R1560) or 6 and 99 (R1793 and R1593). 

In R17, an endogenous cysteine at position 68 was exchanged to alanine to avoid multiple 

labeling. For labeling, a 1.3:1 molar excess of reduced protein was incubated with Alexa 

Fluor 488 maleimide (Invitrogen) at 4oC for ~10 hours. Un-reacted dye was removed by gel 

filtration (G25 desalting; GE Healthcare Biosciences AB, Uppsala, Sweden), and the protein 

was incubated with Alexa Fluor 594 maleimide at room temperature for ~2 hours. Doubly 

labeled protein was purified by ion-exchange chromatography (MonoQ HR 5/5; GE 

Healthcare Biosciences AB, Uppsala, Sweden). 

The variants of the cold shock protein from Thermotoga maritima were produced and 

labeled as described in Soranno et al. (2). The purification and labeling of the intrinsically 

disordered proteins prothymosin  and the N-terminal domain of HIV integrase are described 

in Müller-Späth et al. (3). 

 

Single-Molecule Fluorescence Spectroscopy.  

Measurements were performed at 22 °C using either a custom-built confocal microscope as 

described previously (3, 4) or a	 Micro Time 200 confocal microscope equipped with a 

HydraHarp 400 counting module (Picoquant, Berlin, Germany). The donor dye was excited 

with a diode laser at 485 nm (dual mode: continuous wave and pulsed, LDH-D-C-485, 

PicoQuant) at an average power of 200 W for hCypA and 100 W for all other proteins. 

Single-molecule FRET efficiency histograms were acquired in samples with a protein 

concentration of about 20 to 50 pM, with the laser in either continuous-wave mode or pulsed 

mode at a repetition rate of 64 MHz; photon counts were recorded with a resolution of 16 ps 

by the counting electronics (time resolution was thus limited by the timing jitter of the 

detectors). For rapid mixing experiments (R17 at low concentrations of GdmCl), microfluidic 

mixers fabricated by replica molding in PDMS were used as described previously (4, 5). The 

measurements were performed in 50 mM sodium phosphate buffer, pH 7.0, 150mM -

mercaptoethanol (Sigma), 20mM cysteamine hydrochloride (Sigma), and 0.001% Tween 20 

(Pierce) with varying concentrations of GdmCl (Pierce) for CspTm, R15, and R17. The 

measurements of hCypA were performed in 50 mM TrisHCl, 10 mM MgCl2, 5 mM KCl, 100 

mM -mercaptoethanol and 0.001% Tween 20 (Pierce).	For experiments in the microfluidic 

device, the Tween 20 concentration was increased to 0.01% to avoid surface adhesion of the 

proteins. All measurements were performed with instruments that were calibrated with Alexa 

Fluor 488 and Alexa Fluor 594 as described previously (6). Independent measurements of 

Cyp111 at two different instruments lead to an uncertainty of 0.02 in the mean transfer 

efficiency. Examples of single-molecule transfer efficiency histograms are shown in Fig. S1-

3. 
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Two-focus fluorescence correlation spectroscopy (2fFCS).  

2fFCS measurements (7) of donor-labeled hCypV2C were performed at 22 °C on a	Micro 

Time 200 confocal microscope equipped with a differential interference contrast prism. The 

donor dye was excited alternatingly with two orthogonally polarized diode lasers at 483 nm 

(LDH-D-C-485, PicoQuant) with a repetition rate of 40 MHz and a laser power of 30 W 

each. The concentration of labeled protein was 500 pM in 50 mM TrisHCl, 10 mM MgCl2, 5 

mM KCl, 100 mM -mercaptoethanol, 0.001% Tween 20 (Pierce), pH 7.5 (native buffer) and 

varying concentrations of GdmCl. The distance between the two foci was determined using 

four standards, Oregon Green in water and 0.001% Tween20, and AlexaFluor488-labeled 

CspTmC67 (Csp-A488), hCypV2C (Cyp-A488), and monomeric GroEL-single ring (SR1-

A488) in 5.07 M GdmCl, 50 mM sodium phosphate, 100 mM -Mercaptoethanol, 0.001% 

Tween 20, pH 7.25. The reference value for the hydrodynamic radii (RH) of Oregon Green is 

0.6 nm (8). The reference values of the labeled proteins were determined under identical 

conditions using dynamic light scattering (DLS) with a Mambo-Laser 594nm (Cobolt, 

Sweden)	at 100mW, resulting in 2.39 nm for Csp-A488, 3.71 nm for Cyp-A488, and 6.91 nm 

for SR1-A488. The focal distance was determined by iteratively minimizing the sum of the 

squared distances between reference RH-value and the value determined by 2f-FCS. The fit 

converged to a focal distance of 442 nm, resulting in RH-values for our reference substances 

of 0.47 nm (Oregon Green), 2.39 nm (Csp-A488), 3.6 nm (hCyp-A488) and 6.98 nm (SR1-

A488) (Fig. S4). Guanidinium chloride concentrations were measured with an Abbe 

refractometer (Krüss, Germany), and viscosities of the solutions were measured with a digital 

viscometer (DV-I+, Brookfield Engineering, Middleboro, MA, USA) with a CP40 spindle at 

100 rpm. 

Determination of RG from mean transfer efficiencies. 
In order to relate the distribution  , ,G GP r R   to a distance distribution  , , GP r R  , which 

is required to describe the transfer efficiencies E  of the polypeptide chains, we used as an 

approximation the conditional probability function  GP r r  (9) that describes the distance 

distribution of two random points inside a sphere with the radius rG 
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The actual value of  is independent of the length of the polymer and was obtained from the 

condition that 2 26 GR r  at the -state ( 5 2.23   ). Given Eqs. 1 and S1, the transfer 

efficiency between donor and acceptor results as 
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where   1/3
3 1 v/4CR N      is the radius of gyration of the most compact state, v is the 

weighted mean volume of one amino acid (v = 0.13nm3) (10), and N is the number of peptide 
bonds between the fluorophores. Using two different guess values for RG , we obtain two 

estimates for the root mean squared radius of gyration RG, RG1 and RG2, from the transfer 
efficiency E . Although the shapes of  , ,G GP r R   and  , , GP r R   do depend on the 

choice of GR  , RG is largely independent of the specific value of GR   (Fig. S8).  As guess 

values for the -state, we assumed 1/2
,1 / 3G pR l b N   with lp = 0.4 nm as persistence length 

(Gaussian chain) (11) and 1/3 1/2
,2 0.658v ( 1)GR N    (12). The volume fraction  in Eq. 1 is 

given by 3 3/C GR R  . After calculating i, with i = 1 for ,1GR   and i = 2 for ,2GR  , the mean 

radii of gyration were obtained according to  
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The scaling exponents were determined from the segment length dependence of

 ,1 ,2 / 2G G GR R R  . The root mean squared difference 12 between RG,1 and RG,2  was 

calculated as  21
12 ,1 ,2

1

( ) ( )
d

G G
j

d R j R j 



  , where ,1( )GR j  and ,2 ( )GR j  are the radii of 

gyration at the GdmCl concentration j, and d is the total number of measurements. We found 

0.05 nm ≤ 12 ≤ 0.2 nm for all proteins and variants of this study, suggesting a sufficiently 
exact determination of RG. The correct value for GR   was finally estimated from the 

conditions at which  = 1/2. 

Simulations of a self-avoiding chain with excluded volume. 

Equation S1 assumes that the spatial distribution of chain monomers of a polymer is 

spherically symmetric. However, several authors showed that self-avoiding chains in good 

solvent exhibit substantial asymmetry (13-17). We simulated an off-lattice self-avoiding chain 

by successively adding monomers with a volume of 0.13 nm3 and a bond length of 0.38 nm 

until we obtained a chain of 50 monomers. In case a monomer interfered sterically with any 

other monomer, except its neighbor in sequence, the chain was deleted, and a new chain was 

started. It has been shown that this approach leads to an unbiased self-avoiding chain (16) 

comparable to the conventionally used Pivot-algorithm. We simulated 10,000 chains, and 

calculated 
1/22

G GR R  and the mean transfer efficiency between the first and the last 

monomer. To quantify the asymmetry of the simulated chains, we calculated the asphericity 
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() according to Dima & Thirumalai (13) and found  = 0.45, indicating a significant 

deviation from spherical symmetry (Fig. S5). For the radius of gyration, we found RG = 

1.68 nm as an exact result. When we computed RG from the mean transfer efficiency of the 

simulated chains using Eq. S1-3, we obtained a value of RG = 1.76 nm, nearly independent of 

the choice of the radius of gyration of the -state, which implies that we are overestimating 

RG by about 5% under good solvent conditions. This result cannot serve as a proof that the 

functional form of Eq. S1 always leads to good estimates for RG, especially not at the critical 

point, but we expect this deviation to be even smaller in poor solvent, since the asphericity is 

expected to be smaller for compact globules (13). 

Comparison of mean-field theories for homopolymers and heteropolymers. 

When treating a heteropolymer with a mean-field approach, it is natural to replace the 

conventional interaction parameter  by a sum of the mean-field of the backbone (bb) and an 

energy of the specific side-chains that is averaged over all monomers (sc). Such an approach 

would lead the functional form of the free energy being almost unaltered compared to the 

homopolymer case as exemplified by a comparison between the homopolymer theory of 

Sanchez (12) and a statistical field-theory for heteropolymer collapse by Bryngelson and 

Wolynes (18). From Eq. 56 on p. 984 of ref. (12) we find for the free energy of the 

homopolymer in units of kT 

 

 1
log 1

2Homo elast

N
F N F

 


 
     

 
.     S4 

In the same nomenclature, the free energy for the heteropolymer reads as 

   2 1
2 log 1

2Hetero elast

N
F z N F

   


 
       

 
    S5 

with z being the coordination number,  being the variation of the mean-field interaction 

energy due to the heteropolymeric nature in the random energy approximation (REM), and 

Felast is the elastic free energy resulting from the chain entropy (Eq. 23, p. 180 in ref. (18)). 

Both equations differ mainly in the interaction term. 

Determination of scaling exponents. 
In the power-law relation 0GR N usually employed to describe the length scaling of 

polymers, 0 cannot be assumed to be independent of solvent quality. An estimate for the 

dependence of 0 on solvent quality can be obtained from chain statistics and the definition of 

RG when following Flory (19) and Hammouda (20). The mean-squared distance between two 

monomers i and j for a freely joined chain with bond length b and persistence length lp is 

2 2ij pr l b i j  .         S6 
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For a self-avoiding chain, Eq.S6 can be generalized to 

22 *
,2ij p ijr l b i j

  .         S7 

Here lp,ij
* is a persistence length that depends on the solvent quality and the inter-dye distance 

between residues i and j. lp,ij
* also depends on the inter-dye distance because the tails for a 

given pair of residues i and j within the chain can alter the end-to-end distance. For the sake 

of simplicity, the persistence length is assumed to be independent of the specific positions i 

and j (lp,ij
*≈ lp

 *), which is, strictly speaking, only true in ideal and good solvents. According to 

the definition of the radius of gyration, 

2 2
2

,

1

2G ij
i j

R r
n

  ,         S8 

with n=N+1 being the number of monomers in the chain. With Eq. S7, this yields 

 
* * *

22 2 2
2 2

, 1 1

2 2 2
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n n
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G
i j k k

l b l b l b k
R i j n k k k

n n n n
  

 

       
 

   .   S9 

Substituting x = k/n and taking the limit of large n, the last expression can be written as 

 
1

2 * 2 2 * 2

0

1 1
2 1 2

2 1 2 2G p pR l bn x x dx l bn  

 
            S10 

and we finally obtain for the radius of gyration of a self-avoiding chain  

*2

(2 1)(2 2)
p

G

l b
R n

 


 
,        S11 

as given in ref. (20). A similar derivation for the freely joined chain can be found in Flory’s 

book (19). Fitting the data of Kohn et al. (21) with Eq. S11 yields  = 0.58 and lp
* = 0.40 ± 

0.06 nm (using b = 0.38 nm), in agreement with the value of 0.369 nm predicted from random 

sampling of the (,) maps (22). A fit of the 10905 folded proteins from the pdb gives  = 

0.34 and lp
* = 0.53 nm. The origin of the higher value of lp

*=0.53 nm in folded proteins 

compared to unfolded proteins in high denaturant might be a result of the specific secondary 

structure elements (-helix, -sheets) present in folded proteins or of the assumption that tail-

effects are negligible, which is a very strong assumption for folded proteins. Analysis of our 

data with lp
*=0.53 nm instead of lp

*=0.40 nm results in critical exponents that are by a value 

of 0.04 lower than with lp
*=0.40 nm. However, this does not affect our conclusions since the 

critical exponents for all proteins, except for cyclophilin, are still > 0.41. For cyclophilin, we 

obtain  = 0.37 with lp
* = 0.53 nm instead of  = 0.40 with lp

* = 0.40 nm. With Eq. S11, 
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lp
*=0.40 nm and neglecting unity compared to Nbonds, the radius of gyration at the critical 

point is 1/20.22 nmG bondsR N  . 

 

Determination of the free energies of transfer, gsol.  

The gsol values (23) for the transfer of the individual amino acids from water to GdmCl were 

taken from Pace (24). No experimentally determined values for gsol are published for the 
amino acids Ser, Glu, Asp, Lys, and Arg. We thus followed the approach of O’Brien et al. 
(25) and approximated the values of Ser, Glu, and Asp by those of Thr, Gln, and Asn. The 

values of Lys and Arg were taken from O’Brien et al. (25). For interpolation, the gsol values 
were fitted with the Schellman weak binding model (26)  
 

            1 log 1solg Ka     .  (S12) 

 

Here,  is the number of bound GdmCl molecules, K is the binding constant,  is (RT)-1, with 

R being the ideal gas constant and T being the temperature; a is the GdmCl activity (27). The 

gsol values, together with the values obtained for  and K, are shown in Table S2. The fits 

with Eq. S12 are shown in Fig. S6. Finally, the average free energy of transfer per residue of 

an amino acid sequence from water to GdmCl is given by 

 

, ,sol sol b i sol i
i

g g p g    ,        (S13) 

where gsol,i is the free energy of transfer of an amino acid side chain of type i, pi is the 

frequency of an amino acid of type i in the sequence, and gsol,b is the free energy of transfer 

of one peptide bond. The summation is over all types of amino acids. We estimated the gsol-
values for Asp and Glu, ,D E

solg  (Table S2), from the difference between the transfer free 

energy of ProT in which all values of gsol for Glu and Asp residues were replaced by those 
for Gly, ,D E G

solg  , and the fit of total with Eq. S12, total,Fit. Our estimate of ,D E
solg  is 

therefore given by 

 

 , ,
,

,

D E D E Gtotal
sol total Fit sol

D E

n
g g

n
     ,       (S14) 

with ntotal =  129 being the total number of amino acids of ProT and nD,E = 52 being the 

number of Asp and Glu in the sequence of ProT(Fig. S7).  

 

The effect of the fluorophore linkers on the scaling exponents. 

The linker of the attached fluorophores might have an effect on the determined RG-values and 

therefore also on the scaling exponents. We assumed l = 9 additional bonds for the linkers of 

our dyes, based on MD-simulations (28, 29) and previous work (11). However, since we have 

no information about the behavior of the linker and the dye at different denaturant 
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concentrations, we analyzed our data set for cyclophilin, which shows the most prominent 

collapse, with different values for the linker length l ranging from 3 to 18 bonds and found a 

variation of  in water from 0.398 for the longest linker (l = 18) to 0.409 for the shortest 

linker (l = 3), which indicates a marginal effect of the linker length on the distance ranges 

mapped in our experiments (Fig. S9). In addition, we checked the effect of a fixed linker 

length that does not depend on solvent quality and analyzed the same data using 

1/33/2*
3 3

,

2

(2 1)(2 2)
p

G G L

l b
R N R

 

  
        

      S15 

with RG,L being an estimate for the linker length. Equation S15 results from the assumption 

that the volume of gyration of the protein-dye construct is the sum of the individual radii of 

gyration of chain and dye (VG = VG,Chain + VG,Linker). Since the estimate for the additional 

distance introduced by the two dyes is approximately 1.47 nm (28), we estimated RG,L = 0.6 

nm. To obtain an upper bound for the effect, we also used RG,L = 1.2 nm, which is twice the 

hydrodynamic radius of rhodamine, an analog of our fluorophores (8). We found the resulting 

effect of RG,L on RG to be negligibly small (Fig. S9), again implying that the size of the dyes 

and their linkers do not affect the determined critical exponents. 

Scaling of intra-chain energies with chain length.  

By minimizing the free energy of the chain in the Sanchez model (Eq. 1 main text) and 

truncating the series expansion after the three-body interaction term, one obtains 

 

 5 3 1/21
23

1
c

c n  


    ,        (S16) 

where c1 and c2 are constants, and n = N+1 is the number of amino acids (12). Based on Eq. 

S16, the difference in the intra-chain interaction energy  = (n,aGdmCl,1) -(n,aGdmCl,2) 

between two conditions with the GdmCl activities aGdmCl,1 and aGdmCl,2, corresponding to 

expansion factors 1 and 2, is given by 

 

     1 1/2 5 3 3 5 3 3 1/2
2 2 2 1 2 1 1 1 1n c n c c An                     .   (S17) 

 

The ratio of (nDA)/total(ntotal)is 

 

 
 

1/2

DA total DA

total DA total

n n A

n n A



    

       
.       (S18) 

 

For the variant of a given protein with a sequence separation nDA between the two 

fluorophores, the difference in , nDA = 1nDA - 2nDA, between water, 1nDA and a 
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GdmCl activity of 6, 2nDA is very similar to the difference in  for the longest variant of 

the same protein nDA,longest. We obtained ratios (nDA)/(nDA,longest) of 1.16 for hCypA, 

1.03 for CspTm, 1.07 for R15 and R17, implying that ADA/Atotal  1 for these proteins. For 

the IDPs prothymosin  and HIV integrase, (nDA)/(nDA,longest) could not be calculated 

because data were only obtained for either one variant (HIV integrase) or two variants with 

almost identical sequence separation between the fluorophores (prothymosin ). Based on our 

results for the foldable proteins (hCypA, CspTm, R15 and R17), we assumed ADA/Atotal  1 

in these cases. We therefore obtain 

 
1/2

( ) ( ) DA
total total

total

n
n n

n
 

 
    

 
.       (S19) 

 
The remaining differences in  total (ntotal ) for the different variants of one protein in Fig. 5 

might result from small deviations ofADA/Atotal from one.  

 

Link between unfolded-state collapse and folding. 

To introduce a link between collapse and folding, we start from the probability distribution of 

chains with a given volume fraction  as given by Sanchez Eq. 56, p. 984 (12) 

 

    
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  


               

      
 with  

1

0

1P d    (S20) 

 

Figure S10A shows several examples of P() for different values of . We now assume that 

only unfolded proteins with a minimum volume fraction of  > f can fold (Fig. S10A). One 

could imagine that the formation of a folding nucleus of critical size requires a minimum 

volume fraction f. We further assume that chains with  > f always fold completely to the 

native state, implying that the free energy of the folded state is always much smaller than that 

of the chains with  > f. The fraction of folding-competent collapsed chains, fC, with > f, 

and the fraction of expanded folding-incompetent chains, fE, are then given by 

 

  
1

f

Cf P d


     and   
0

f

Ef P d


             (S21 a,b) 

(Fig. S10B) and the free energy difference between collapsed and expanded chains in units of 

kBT is 

 

 ln C
C E

E

f
F

f    .                (S22) 
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Figure S10C shows examples of FC-E for different sets of parameters and we find that 

C EF     for  < 1 (Fig. S10C). Ziv & Haran (9) found a correlation between the mN-U -

value for the denaturant-induced unfolding of proteins (where  /N U N Um F D    , and [D] 

is the concentration of denaturant) and the change in free energy of the unfolded chain with 
respect to a collapsed state,  /C U C Um F D    . The quantity FC-U is identical to the 

quantity FC-E . According to the result shown in Fig. 5A in the main text, we can substitute 

the intra-chain energy by the mean Tanford transfer values of the amino acid sequence, 

 
  0 ln 1 GdmClKa               (S23) 

 
and obtain with FC E    

 
  0 ln 1C E GdmClF Ka      .         (S24) 

 
With the approximation that    ln 1 GdmCl TKa m D    (with mT > 0), Eq. S24 leads to 

 

 
 

C E
T

F
m

D





 .            (S25) 

 

The change in free energy difference between a collapsed ( > f) and an expanded state ( < 

f) is proportional to the change in free energy of transfer of the pure amino acids from water 

into a GdmCl-solution. When we use the typical Tanford expression for the free energy 

difference between folded and unfolded proteins (FN-U), as for example given in Eq. 2 by 

Ziv & Haran (9), and set FN-U = FN-E, we have 

 

  ( ) (0)N E N E TF D F nm D          and   
 

N E
T

F
nm

D

 



             (S26 a,b) 

 

with E N being the average difference in solvent accessible surface area between the 

expanded unfolded and the folded state. Since  is a constant, it is clear by comparing Eq. 

S26b with Eq. S25 that 

 

   
C E N EF F

D D

 
 

  
 ,         (S27) 

 

which is the correlation found by Ziv & Haran (9). 	
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Interpolation and Extrapolation of the experimentally determined RG-values. 

To obtain RG-values for the different inter-dye variants of our proteins at identical 

concentrations of GdmCl, all raw-data sets (RG vs. GdmCl-concentration) were fitted with the 

empirical equation 

          
 
    1

0 2 3expG G

a GdmCl
R R a a GdmCl

K GdmCl
   


,              (S.28) 

where the third term describes the re-expansion of the IDP’s integrase and prothymosin at 

very low concentrations of GdmCl. For all foldable proteins a2 = 0. The fits of the raw data 

are shown in Fig. S11. The values of the fits with Eq. S28 were used to obtain the results 

shown in Fig. 2 in the main text. The data below 0.6 M GdmCl (aGdmCl < 0.19) for all Csp-

variants, below 0.2 M GdmCl (aGdmCl < 0.033) for all Cyp-variants, and below 0.3 M (aGdmCl < 

0.07) for R1560 and R1793 were extrapolated to 0 M GdmCl using Eq. S28. For R1760, the 

unfolded state was also investigated in a micro-fluidic device (5) down to 0.03 M GdmCl. 

 

Calculation of scaling exponents from net charge and hydrophobicity.  

The correlation between scaling exponent and net charge Q and the mean hydrophobicity H 

(Fig. 6A, B main text) where fit with the empirical equations 

 

   1

0( ) 1/ 3 1 exp /Q a x Q z


      and   1

0( ) 1/ 3 1 exp /H a x cH d z


        (S29) 

 

where we assumed a negative correlation between the mean net charge Q and the mean 
hydrophobicity H according to Q cH d   . The equation provides reasonable limits for , 

 
  

1
lim ( ) 1/ 3
H

H


  

 

0
lim ( ) 0.71
H

H


  

 
 

1
lim ( ) 0.71
Q

Q


 .  

 

The parameters obtained area = 0.394, z = 0.09, x0 = 0.114, c = 1.72, and d = 0.9. In order to 

combine the two different correlations of  with net charge, (Q), and  with hydrophobicity, 

(H), (Fig. 6A, B, main text), we used polyampholyte theory (3, 30) to decide which 

correlation is most suited to predict the scaling exponent of a given amino acid sequence. 

Polyampholyte theory provides an expression for the effect of charges on the excluded 

volume  , expressed as an excess volume *: 
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   2 22
*

2

4 B Bl f g l f g 


 
 

         (S30) 

 

with f being the fraction of positive charges in a chain with length n (f = n+/n), g being the 
fraction of negative charges (g = n-/n), 1 0.304 nm / I    being the Debye length at ionic 

strength I, and  2
0/ 4B r Bl e k T   being the Bjerrum length, where e is the elementary 

charge, 0 is the dielectric constant, r is the permittivity of water, kB is the Boltzmann 

constant, and T is the temperature. Values of *  greater than zero indicate a net electrostatic 

repulsion, in which case we use (Q) to estimate the scaling exponent, whereas*  0 

indicates a net attraction, in which case we use (H) to estimate the scaling exponent.  For I = 

0.15 M and T = 298 K, we calculated *  for every sequence that was drawn randomly from 

the amino acid frequency distribution of ancestral proteins, current proteins, and proteins in 

distant time given by Table 3 in ref. (31). Whether (Q) or (H) should be used to estimate 

the scaling exponent  was decided according to the following criterion: 

 
*

*

( ) 0 0 0

( ) 0 0 0

Q f g

H f g

 


 
    

 
    

.     (S31) 
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Table S1. Proteins and variants used in this study 

protein variant Nb mutationa sequence 

CspTm Csp33 33 M34G/p.E33_E35insRC/E69C GPG MRGKVKFFDS KKGYGFITKD EGGDVFVHFS AIEGR’CEGF 

KTLKEGQVVE FEIQEGKKGG QAAHVKVVEC 

 Csp33 33 M34G/p.G34_E35insRC/E69C/p.M1_R35del CEGF  KTLKEGQVVE FEIQEGKKGG QAAHVKVVEC 

 Csp46 46 E21C/E67C GPG MRGKVKFFDS KKGYGFITKD CGGDVFVHFS AIEMEGFKTL KEGQVVEFEI  

        QEGKKGGQAA HVKVVEC 

 Csp57 57 S10C/E67C GPG MRGKVKFFDCK KGYGFITKDE GGDVFVHFSA IEMEGFKTL KEGQVVEFEI 

QEGKKGGQAA HVKVVEC 

 Csp66 66 p.M1_R2insC/E68C GPG MCRGKVKFFD SKKGYGFITK DEGGDVFVHF SAIEMEGFKT LKEGQVVEFE 

IQEGKKGGQA AHVKVVEC 

R15 R1560 60 A39C/S99C KLKEANKQQN FNTGIKDFDF WLSEVEALLA SEDYGKDLCS VNNLLKKHQL 

LEADISAHED RLKDLNSQAD SLMTSSAFDT SQVKDKRETI NGRFQRIKCM  

AAARRAKLNES HRL 

 R1593 93 N6C/S99C KLKEACKQQN FNTGIKDFDF WLSEVEALLA SEDYGKDLAS VNNLLKKHQL 

LEADISAHED RLKDLNSQAD SLMTSSAFDT SQVKDKRETI NGRFQRIKCM  

AAARRAKLNES HRL 

R17 R1760 60 A39C/K99C RLEESLEYQQ FVANVEEEEA WINEKMTLVA SEDYGDTLCA IQGLLKKHEA  

FETDFTVHKD RVNDVAANGE DLIKKNNHHV ENITAKMKGL KGKVSDLECA  

AAQRKAKLDE NSAFLQ 

 R1793 93 L6C/K99C RLEESCEYQQ FVANVEEEEA WINEKMTLVA SEDYGDTLAA IQGLLKKHEA  

FETDFTVHKD RVNDVAANGE DLIKKNNHHV ENITAKMKGL KGKVSDLECA  



14 

	

AAQRKAKLDE NSAFLQ 

protein variant Nb mutationa sequence 

hCyp Cyp96 96 K28C/G124C GP MVNPTVFFDI AVDGEPLGRV SFELFADCVP KTAENFRALS TGEKGFGYKG  

SSFHRIIPGF MSQGGDFTRH NGTGGKSIYG EKFEDENFIL KHTGPGILSM  

ANAGPNTNGS QFFISTAKTE FLDCKHVVFG KVKEGMNIVE AMERFGSRNG  

KTSKKITIAD SGQLE 

 Cyp111 111 D13C/G124C GP MVNPTVFFDI AVCGEPLGRV SFELFADKVP KTAENFRALS TGEKGFGYKG  

SSFHRIIPGF MSQGGDFTRH NGTGGKSIYG EKFEDENFIL KHTGPGILSM  

ANAGPNTNGS QFFISTAKTE FLDCKHVVFG KVKEGMNIVE AMERFGSRNG  

KTSKKITIAD SGQLE 

 Cyp122 122 V2C/G124C GP MCNPTVFFDI AVDGEPLGRV SFELFADKVP KTAENFRALS TGEKGFGYKG  

SSFHRIIPGF MSQGGDFTRH NGTGGKSIYG EKFEDENFIL KHTGPGILSM  

ANAGPNTNGS QFFISTAKTE FLDCKHVVFG KVKEGMNIVE AMERFGSRNG  

KTSKKITIAD SGQLE

 Cyp152 152 V2C/K154C GP MCNPTVFFDI AVDGEPLGRV SFELFADKVP KTAENFRALS TGEKGFGYKG  

SSFHRIIPGF MSQGGDFTRH NGTGGKSIYG EKFEDENFIL KHTGPGILSM  

ANAGPNTNGS QFFISTAKTE FLDGKHVVFG KVKEGMNIVE AMERFGSRNG  

KTSCKITIAD SGQLE

 Cyp163 163 V2C/E165C GP MCNPTVFFDI AVDGEPLGRV SFELFADKVP KTAENFRALS TGEKGFGYKG  

SSFHRIIPGF MSQGGDFTRH NGTGGKSIYG EKFEDENFIL KHTGPGILSM  

ANAGPNTNGS QFFISTAKTE FLDGKHVVFG KVKEGMNIVE AMERFGSRNG  

KTSKKITIAD SGQLC

IN IN 56  GSHC FLDGIDKAQE EHEKYHSNWR AMASDFNLPP VVAKEIVASC  

DKCQLKGEAM HGQVDC 
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protein variant Nb mutationa sequence 

ProT ProTC2 53 S2C MAHHHHHHS AALEVLFQGP MCDAAVDTSS EITTKDLKEK KEVVEEAENG  

RDAPANGNAN EENGEQEADN EVDEECEEGG EEEEEEEEGD GEEEDGDEDE  

EAESATGKRA AEDDEDDDVD TKKQKTDEDD 

 ProTC110 54 D110C MAHHHHHHS AALEVLFQGP MSDAAVDTSS EITTKDLKEK KEVVEEAENG  

RDAPANGNAN EENGEQEADN EVDEECEEGG EEEEEEEEGD GEEEDGDEDE  

EAESATGKRA AEDDEDDDVD TKKQKTDEDC 

a Additional mutations CspTm: W7F/W29F; R17: C68A; hCyp: W121F/C52S/C62S/C115S/C161S 
b Number of peptide bonds between donor and acceptor attachment sites 
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Table S2. Free energies of transfer (gsol) and fit parameters for the single amino acis. 

 gsol (cal mol-1)b   

 GdmCl (M)   

residue 1 2 4 6  Ka 

Ala 10 20 30 45 0.030 ± 0.004 3 ± 1 

Val 85 115 195 265 0.150 ± 0.026 5 ± 2 

Leu 150 210 355 480 0.275 ± 0.042 5 ± 2 

Ile 135 190 320 430 0.244 ± 0.036 5 ± 2 

Met 150 245 400 535 0.317 ± 0.024 4 ± 1 

Cys 150 245 400 535 0.317 ± 0.024 4 ± 1 

Phe 215 355 580 775 0.462 ± 0.032 4 ± 1 

Tyr 235 385 605 770 0.416 ± 0.018 6 ± 1 

Trp 400 630 980 1235 0.640 ± 0.034 7 ± 1 

Pro 100 140 240 320 0.184 ± 0.027 5 ± 2 

Thr 65 90 120 125 0.042 ± 0.006 67 ± 48 

His 180 285 385 420 0.167 ± 0.021 27 ± 13 

Asn 200 320 490 645 0.344 ± 0.022 6 ± 1 

Gln 135 215 315 360 0.163 ± 0.014 14 ± 4 

Gly 0 0 0 0 0 0 

backbone 83 134 207 245 0.121 ± 0.009 9 ± 2 

Serc 65 90 120 125 0.042 ± 0.006 67 ± 48 

Aspc 200 320 490 645 0.344 ± 0.022 6 ± 1 

Gluc 135 215 315 360 0.163 ± 0.014 14 ± 4 

Lysc 68 136 272 408 0.394 ± 0.027 1.1 ± 0.2 

Argc 42 85 170 254 0.245 ± 0.017 1.1 ± 0.2 

Glu, Aspd - 112 439 798 3 ± 3 0.12 ± 0.15 
a Values on GdmCl-activity scale; b from Pace(24); c estimates for gsol according to O’Brien et al.(25),d 

Values estimated in this study 
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Figure S1. Transfer efficiency histograms of hCyp variants at different concentrations of 

GdmCl. Solid lines are fits according to a sum of a Gaussian distribution describing the 

unfolded state population and two log-normal functions describing the native transfer 

efficiency distribution at high transfer efficiencies, and the donor-only population at low 

transfer efficiencies, respectively. 
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Figure S2. Selected transfer efficiency histograms of CspTm variants at different 

concentrations of GdmCl. Solid lines are fits according to a sum of a Gaussian distribution 

describing the unfolded state population and two log-normal functions describing the native 

transfer efficiency distribution at high transfer efficiencies, and the donor-only population at 

low transfer efficiencies, respectively. 
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Figure S3. Selected transfer efficiency histograms of R15 and R17 variants at different 

concentrations of GdmCl. Solid lines are fits according to a sum of a Gaussian distribution 

describing the unfolded state population and two log-normal functions describing the native 

transfer efficiency distribution at high transfer efficiencies, and the donor-only population at 

low transfer efficiencies, respectively. 
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Figure S4. Calibration of 2f-FCS. (a) 2f-FCS autocorrelation functions (blue, red) and 

crosscorrelation functions (green) for Oregon Green in water and Csp-A488, Cyp-A488 and 

SR1-A488 in 5.07 M GdmCl. Solid black lines are fits according to Dertinger et al.(7). The 

fits include a component describing the triplett-lifetime of the fluorophores. The 

measurements were performed at 21.8 °C with a laser power of 30 W for each focus. We 

obtained the following diffusion coefficients: 4.6810-6 cm2s-1 ( = 0.98 mPa s) Oregon 

Green, 6.5410-7 cm2s-1 ( = 1.38 mPa s) Csp-A488, 4.3510-7 cm2s-1 ( = 1.38 mPa s) Cyp-

A488, 2.2410-7 cm2s-1 ( = 1.38 mPa s) SR1-A488 (b) Correlation between hydrodynamic 

radius measured with 2fFCS (RH
2fFCS) and hydrodynamic radius reported in literature (RH

ref) 

for Oregon Green and determined with DLS for Csp-A488, Cyp-A488 and SR1-A488 at 5.07 

M GdmCl with a focal distance of 442 nm. 
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Figure S5. Graphical representation of the monomer coordinates of 2000 self-avoiding chains 

with RG = 1.68 nm (gray) aligned along their principal axis. Each chain consists of 50 

monomers. The sphere represents the model used in Eq. S1 for the determination of RG from 

the mean transfer efficiency (RG,FRET). The radius of the sphere is RG,FRET = 1.76 nm. The axis 

units are in Å. 
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Figure S6. Fits of the free energies of transfer for the single amino acids gsol with the 

Schellman binding model (Eq. S12). The values for Glu and Asp are identical to that of Gln 

and Asn. 
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Figure S7. Correlation of the free energies of transfer for the single amino acids gsol at an 

GdmCl-activity of 6 with the number of GdmCl-binding sites . The black point (indicated by 

the arrow) is the value for Glu and Asp determined from the change in the intra-chain 

interaction free energy of ProT. The color scale increases from blue to red with increasing 

gsol . The red point results from Trp. Inset: Estimated change in the free energy of transfer 

for Glu and Asp. Parameters are given in Table S1. 
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Figure S8. Change in RG on varying guess values of 

�

RG . Absolute RG-values for Cyp163 at 

6.3 M GdmCl as function of 

�

RG  calculated using Eq. S2 (top). Relative error in estimating 

RG as function of 

�

RG  (bottom). 
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Figure S9. Critical exponents obtained for varying linker length (circles) with linker lengths 

corresponding to 3 (blue), 6 (lighter blue), 9 (green), 12 (yellow), 15 (orange) and 18 (red) 

equivalent bond length. The nearly indistinguishable red and blue lines correspond to an 

analysis with a fixed distance offset as given by Eq. S15. 
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Figure S10. Volume fraction distributions P() (Eq. S20) (A) and the fraction of collapsed 

(folding competent) and expanded (folding incompetent) chains as a function of the GdmCl 

concentration (Eq. S21 a,b) (B) and free energy difference between expanded and collapsed 

chains (C). (A) Colored areas indicate the fraction of chains with  > f for chains with 

increasing intra-chain interaction energies (). (B) The parameter set was 0 =f = 0.29, n = 

150, 0 = 2,  = 0.3, K = 10. (C) Calculated according to Eq. S22 with n = 100 and 0 = 0.29 

for different values of f  = 0.8 (blue),f  = 0.6 (red),f  = 0.4 (yellow), f  = 0.2 (green).  
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Figure S11. RG-values determined from the mean transfer efficiencies using Eq. S1-3 and fits 

according to Eq. S28. The color code for the different variants is shown in Fig. 3B in the main 

text. 
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