Support 1.1 Supporting 199953349

Fidalgo et al. 10.1073/pnas.1208533109

SI Methods

Generation of Transgenic NG4 ESC Lines. NG4 ESCs have been described (1). For ectopic Nanog expression, a Flag and biotintagged doxycycline-inducible Nanog transgene (^{FLbio}Nanog) was
introduced into NG4 cells by lentiviral infection using a nTRIPZ introduced into NG4 cells by lentiviral infection using a pTRIPZ vector. Positive clones were established by puromycin (1 μg/mL) selection, and expression of $^{FLDio}Nanog$ upon Doxycycline (Dox) treatment (0, 0.625, 1.25, or 2.5 μ o/mL) was confirmed by RTtreatment $(0, 0.625, 1.25, \text{ or } 2.5 \mu\text{g/mL})$ was confirmed by RTquantitative PCR (qPCR). The same Dox concentrations were used throughout the study. For knockdown studies, ESCs were infected with pLKO lentiviruses expressing no shRNA (shEmpty) or shRNA against Nanog (shNanog) or NuRD complex proteins followed by selection with puromycin $(1 \mu g/mL)$ for 48 h. The pLKO.1 lentiviral vector contains a puromycin-IRES-mCherry "pim" expression cassette.

In Vitro Differentiation. Differentiation of ESCs to embryoid bodies (EBs) was performed as described in our previous study (2). Briefly, shRNA virus transduced ESCs described above were cultured in suspension on low attachment dishes in standard ES medium over a 10-d period in the absence of LIF and in the presence of puromycin. The area of EBs was calculated by using ImageJ software.

Validation of Anti-Zfp281 Antibody for Immunoprecipitation, Coimmunoprecipitation (Co-IP), and Western Blot Analyses. We have used an anti-Zfp281 antibody for both IP/co-IP and affinity purification. The quality of this antibody has been validated (Fig. $S2A$) and B). This antibody is commercially available from Abcam (ab101318). Other commercially available antibodies used in this study are as follows: anti-Nanog (AB5731, Millipore; A300- 397A, Bethyl), anti-Chd4 (A301-081A, Bethyl), anti-Mta1/2 (A300-911A, Bethyl), anti-HDAC2 (A300-705A, Bethyl), and anti-β-Actin (A5441, Sigma).

Generation of iPSCs from Oct4-GFP Mouse Embryonic Fibroblasts (MEFs). For lentivirus production, STEMCCA plasmid (3) was cotransfected with packaging vectors into HEK293T cells. For retroviral production Plat-E cells were transfected with an LMPshRNA scramble vector and LMP-shRNA against Zfp281. The viral supernatants were harvested after 48 h and concentrated by using Amicon Ultra (Millipore) centrifuge tubes. Reprogramming was performed according to a published procedure (3) with minor changes. Briefly, STEMCCA lentiviral supernatants containing the four reprogramming factors (Oct4, Sox2, Klf4, and cMyc; OSKM) and retroviral LMP-shRNA supernatants were mixed before infection. Infected cells were selected with puromycin (1.5 μg/mL) at day five after transduction, and selection

1. Schaniel C, et al. (2009) Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells 27: 2979–2991.

was maintained for 15 d. iPSC colonies were scored 21 d after transduction by counting GFP-positive colonies under fluorescence microscope or by staining for alkaline phosphatase (AP) activity using a commercial kit (Sigma). Quantitation of $GFP(+)$ cells during reprogramming was also performed by flow cytometry analysis.

Generation of iPSCs from Neural Stem (NS) Cell Reprogrammed **PreiPSCs.** Nanog^{+/+} or Nanog^{-/-} NS cells were reprogrammed to preiPSCs by Oct4, Klf4, and c-Myc (4, 5). These preiPSCs were infected with lentiviruses (pTRIPZ) or retroviruses (LMP or pMx) expressing shZfp281 (V2THS_42594, Open Biosystems; Table S1), scramble shRNA (shSCR), or Nanog cDNA (Piggy-Bac or PB-Nanog, pMx-Nanog), followed by selection with puromycin (2 μg/mL) for at least 10 d. Transduced preiPSC cells (1×10^5) were seeded on a six-well plate in serum/LIF medium. After 4 d, medium was switched to serum-free N2B27 supplemented medium with LIF and 2i inhibitors, CHIR99021 (3 μM; STEMGENT) and PD025901 (1 μ M; STEMGENT). Oct4-GFP positive colonies from reprogrammed $Nano^{-t/\pm}$ prejPSCs or AP positive colonies from reprogrammed $Nanog^{+/+}$ preiPSCs or AP
positively stained colonies from both $Nanog^{+/+}$ and $Nanog^{-/-}$ positively stained colonies from both $Nanog^{+/+}$ and $Nanog^{-/-}$
preiPSCs were scored at day 10 after 2i/LIF treatment preiPSCs were scored at day 10 after 2i/LIF treatment.

Heterokaryon-Based Reprogramming. Experimental heterokaryons were generated by fusing mouse ESCs and human B lymphocytes according to a published protocol (6). Zfp281^{+/+} and Zfp281^{-/−} ESCs (2) were used for fusion with human B cells as described (6). Reprogramming of human somatic cells was monitored by quantitative real-time PCR analyses of human-specific gene expression. The sequences of human gene-specific primers are provided in Table S1.

Flow Cytometry. For flow cytometry analyses, single-cell suspensions were evaluated on an LSRII Flow Cytometer System (BD Biosciences). Data were analyzed with FlowJo software.

Chromatin Immunoprecipitation Coupled with Quantitative Real-Time PCR (ChIP-qPCR). ChIP assays were performed as described (7). Briefly, cells were cross-linked with 1% (wt/vol) formaldehyde for 5 min at room temperature, and formaldehyde was inactivated by the addition of 125 mM glycine. Chromatin extracts containing DNA fragments were immunoprecipitated by using anti-Nanog (Bethyl), anti-Zfp281 (Fig. S2), anti-Mta1/2 (Bethyl), or anti-HDAC2 (Bethyl) antibodies. Immunoprecipitated DNA was analyzed by real-time PCR as described (2), and the primer sequences are provided in Table S1. Measurements were performed in triplicate, and error bars denote SDs.

4. Silva J, et al. (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6:e253.

5. Silva J, et al. (2009) Nanog is the gateway to the pluripotent ground state. Cell 138: 722–737.

6. Pereira CF, Fisher AG (2009) Heterokaryon-based reprogramming for pluripotency. Curr Protoc Stem Cell Biol, Chapter 4:Unit 4B.1.

7. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748.

^{2.} Fidalgo M, et al. (2011) Zfp281 functions as a transcriptional repressor for pluripotency of mouse embryonic stem cells. Stem Cells 29:1705–1716.

^{3.} Sommer CA, et al. (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27:543–549.

Fig. S1. Nanog autorepression in E14T cells. (A) Schematic representation of an episomal system for enforced Nanog expression in E14T ESCs (Left) and morphology of established E14T cell lines expressing empty vector or pPyCAG-Nanog (Center and Right). (B) Colony formation assays show that enforced Nanog expression sustains LIF-independent self-renewal. Colonies stained for AP were scored in three categories: uniformly undifferentiated (purple), partially differentiated (pink), and fully differentiated (gray) as indicated on the right. (C) Total Nanog transcripts analyzed by reverse transcription-quantitative PCR (RT-qPCR). Error bars represent SD (n = 3). (D) Total Nanog protein expression by Western blotting. Quantitation of protein expression was performed with lmageJ software, and results are presented on Left. β-Actin was used as a loading control. (E) RT-qPCR analyses of endogenous Nanog (^{Endo}Nanog) transcripts. Error bars represent SD ($n = 3$).

Fig. S2. Validation of Zfp281 antibody. (A) The Zfp281 antibody is specific for both Western blot and immunoprecipitation (IP) detection of Zfp281 protein. Zfp281 is detected by Western blot after IP of nuclear extracts from Zfp281^{+/+} ESCs. Note that the specific band detected by Western blot disappears in the nuclear extracts from Zfp281^{-/−} ESCs, confirming the specificity of the antibody. N.S., nonspecific signals enriched in both Zfp281^{+/+} and Zfp281^{-/−} ESCs during IP. (B) Relative enrichment of Zfp281 in the genomic loci of Nanog using chromatin from Zfp281^{+/+} ESCs. Illustration of the upstream regulatory regions of the Nanog gene is shown (Upper), and primers are listed in Table S1.

Fig. S3. Down-regulation of Zfp281 enhances the efficiency of somatic cell reprogramming. (A) RT-qPCR analyses of Zfp281 expression after knockdown with three independent shRNAs targeting Zfp281. MEFs were transduced with STEMCCA lentivirus expressing four reprogramming factors (4F) (Oct4, Sox2, Klf4, and c-Myc) and LMP virus expressing a scrambled shRNA sequence (shSCR) or three independent shRNAs against Zfp281 and grown for 4 d. The data were normalized to Gapdh, and error bars represent the SD of triplicate qPCR reactions. (B) Mean proliferation rate of MEFs. Cells were counted at each time point as indicated. (C) iPSC colonies were stained for AP activity 21 d after transduction. Duplicated wells from the same experiment are shown. (D) Phase and GFP images of iPSC colonies 21 d after transduction. (E) Flow cytometry analysis of Oct4-GFP cells during iPSC reprogramming at indicated days after virus infection.

PNAS

 $\tilde{\mathbf{A}}$

Fig. S4. Loss of Zfp281 facilitates somatic cell reprogramming through Nanog regulation. (A) Summary of the procedure for iPSC generation using Nanog^{+/+} preiPSCs. These preiPSCs harbor an Oct4-GFP transgene that can be reactivated during reprogramming. (B) Zfp281 knockdown promotes the preiPSC to iPSC transition. (*B Upper*) AP positive colonies in representative wells. (*B Lower*) GFP (+) colony numbers. (C) Enhanced reprogramming by combined action of
Zfp281 knockdown (shZfp281) and ectopic Nanog expression (pMx-Nanog combination with retroviral pMx-Nanog or pMx vector alone. (C Upper) AP positive colonies in representative wells. (C Lower) GFP (+) colony numbers.

 Δ

Fig. S5. Loss of Zfp281 enhances heterokaryon-based reprogramming. (A) Schematic representation of the strategy for generating heterokaryons between
mouse ESCs and human B lymphocytes*. Zfp281*¹⁺* (3WT) and *Zfp281^{-1–*} cells. (B) Enhanced reprogramming of human pluripotency gene expression in hB cells by Zfp281^{-/-} ESCs. (C) Down-regulation of hB cell-specific genes during reprogramming.

Fig. S6. Down-regulation of Nanog fails to rescue differentiation defects of Zfp281^{-/−} ESCs during in vitro differentiation. (A) Representative images of EBs generated from ESCs transduced with shEmpty or shNanog in the presence or absence of Zfp281. (B) Analysis of the relative EB area during the time course of
EB differentiation. Note that down-regulation of Nanog fails to re levels of Nanog, Oct4, Gata6, Sox17, and Cdx2 during the time course of EB differentiation.

 Δ

Fig. S7. Ectopic expression of Nanog promotes activation of known Nanog activators in the absence of Zfp281. (A) RT-qPCR analyses of ectopic Nanog (^{FLbio}Nanog) expression upon Dox treatment in Zfp281^{+/+} and Zfp281^{−/−} ESCs. (B) RT-qPCR analyses of *Oct4, Esrrb, Zfp143, Tbx3,* and *Rex1 ex*pression in the same samples as described in A.

Fig. S8. Down-regulation of Nanog by siRNA causes up-regulation of Nanog-GFP reporter activity. (A) Schematic depiction of the genome-wide siRNA screening strategy. NG4 cells were reverse-transfected with 25 nM siRNA in 384-well tissue culture plates coated with 0.1% gelatin in 50 μL of total volume with standard mouse ES media containing LIF. After 1 d, media were changed to ES media without LIF plus 10 nM RA for 2 d. Cells were fixed with 2% formaledhyde in PBS for 15 min and stained with Hoechst 33342 (5 μg/mL) before confocal fluorescence imaging. (B) Representative high-content images of NG4 cells treated with nontargeting siRNA control (siNT), siRNA against GFP (siGFP), and siRNA against Nanog (siNanog). (C) Quantitation of average GFP intensity per cell. Note the increase of GFP intensity upon siNanog treatment.

Table S1. List of qPCR primers, ChIP-qPCR primers, and shRNA oligos used in this study

Primer name **Primer sequence**

PNAS PNAS

F, forward primer; R, reverse primer.

PNAS PNAS