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I. SUPPLEMENTARY INFORMATION

A. Decay of correlation and First Poincaré Returns

As rigorously shown in [1], the decay with time of the
correlation, C(t), is proportional to the decay with time
of the density of the first Poincaré recurrences, ρ(t, ε),
which measures the probability with which a trajectory
returns to an ε-interval after t iterations. Therefore, if
ρ(t, ε) decays with t, for example exponentially fast, C(t)
will decay with t exponentially fast, as well. The re-
lationship between C(t) and ρ(t) can be simply under-
stood in chaotic systems with one expanding direction
(one positive Lyapunov exponent). As shown in [2], the
“local” decay of correlation (measured in the ε-interval)
is given by C(t, ε) ≤ µ(ε)ρ(t, ε)−µ(ε)2, where µ(ε) is the
probability measure of a chaotic trajectory to visit the
ε-interval. Consider the shift map xn+1 = 2xn,mod 1.
For this map, µ(ε) = ε and there are an infinite number
of possible intervals that makes C(t, ε) = 0, for a finite
t. These intervals are the cells of a Markov partition.
As recently demonstrated by [P. Pinto, I. Labouriau,
M. S. Baptista], in piecewise-linear systems as the shift
map, if ε is a cell in an order-t Markov partition and
ρ(t, ε) > 0, then ρ(t, ε) = 2−t and by the way a Markov
partition is constructed we have that ε = 2−t. Since
that ε = µ(ε) = 2−t, we arrive at that C(t, ε) ≤ 0,
for a special finite time t. Notice that ε = 2−t can be
rewritten as − ln (ε) = t ln (2). Since for this map, the
largest Lyapunov exponent is equal to λ1 = ln (2), then
t = − 1

λ1
ln (ε), which is exactly equal to the quantity T ,

the time interval responsible to make the system to lose
its memory from the initial condition and that can be
calculated by the time that makes points inside an initial
ε-interval to spread over the whole phase space, in this
case [0, 1].

B. IC , and IlC in larger networks and
higher-dimensional subspaces ΣΩ

Imagine a network formed by K coupled oscillators.
Uncoupled, each oscillator possesses a certain amount of
positive Lyapunov exponents, one zero, and the others
are negative. Each oscillator has dimension d. Assume
that the only information available from the network are
two Q dimensional measurements, or a scalar signal that
is reconstructed to a Q-dimensional embedding space.
So, the subspace ΣΩ has dimension 2Q, and each sub-
space of a node (or group of nodes) has dimension Q.
To be consistent with our previous equations, we assume
that we measure MΩ = 2Q positive Lyapunov exponents
on the projection ΣΩ. If MΩ 6= 2Q, then in the follow-
ing equations 2Q should be replaced by MΩ, naturally
assuming that MΩ ≤ 2Q.

In analogy with the derivation of IC and I lC in a
bidimensional projection, we assume that if the spread-
ing of initial conditions is uniform in the subspace Ω.

Then, PX(i) = 1
NQ represents the probability of find-

ing trajectory points in Q-dimensional space of one
node (or a group of nodes) and PXY (i, j) = 1

NC
repre-

sents the probabilities of finding trajectory points in the
2Q-dimensional composed subspace constructed by two
nodes (or two groups of nodes) in the subspace Ω. Addi-
tionally, we consider that the hypothetical number of oc-

cupied boxes NC will be given by NC(T ) = expT (
∑2Q

i=1 λi).
Then, we have that T = 1/λ1 log (N), which lead us to

IC = λ1(2Q−D). (1)

Similarly to the way we have derived I lC in a bidimen-
sional projection, if ΣΩ has more than 2 positive Lya-
punov exponents, then

I lC = λ1(2Q− D̃0). (2)

To write Eq. (1) in terms of the positive Lyapunov ex-
ponents, we first extend the calculation of the quantity
D to higher-dimensional subspaces that have dimension-
ality 2Q,

D = 1 +

2Q∑
i=2

λi
λ1
, (3)

where λ1 ≥ λ2 ≥ λ3 . . . ≥ λ2Q are the Lyapunov expo-
nents measured on the subspace Ω. To derive this equa-
tion we only consider that the hypothetical number of

occupied boxes NC is given by NC(T ) = expT (
∑2Q

i=2 λi).
We then substitute D as a function of these exponents

(Eq. (3)) in Eq. (1). We arrive at

IC = (2Q− 1)λ1 −
2Q∑
i=2

λi. (4)

C. IC as a function of the positive Lyapunov
exponents of the network

Consider a network whose attractor Σ possesses M
positive Lyapunov exponents, denoted by λ̃i, i =
1, . . . ,M , and that can be calculated either directly or
via the reconstructed attractor. For a typical subspace
Ω, λ1 measured on Ω is equal to the largest Lyapunov
exponent of the network. Just for the sake of simplicity,
assume that the nodes in the network are sufficiently well
connected so that in a typical measurement with a finite
number of observations this property holds, i.e., λ̃1 = λ1.
But, if measurements provide that λ̃1 >> λ1, the next
arguments apply as well, if one replaces λ̃1 appearing in
the further calculations by the smallest Lyapunov expo-
nent, say, λ̃k, of the network that is still larger than λ1,
and then, substitute λ̃2 by ˜λk+1, and so on. As before,
consider that MΩ = 2Q.

Then, for an arbitrary subspace Ω,
∑2Q
i=2 λi ≤

∑2Q
i=2 λ̃i,

since a projection cannot make the Lyapunov exponents
larger, but only smaller or equal.
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Defining

ĨC = (2Q− 1)λ1 −
2Q∑
i=2

λ̃i. (5)

Since
∑2Q
i=2 λi ≤

∑2Q
i=2 λ̃i, it is easy to see that

ĨC ≤ IC . (6)

So, IC , measured on the subspace ΣΩ and a function of
the 2Q largest positive Lyapunov exponents measured in
ΣΩ, is an upper bound for ĨC , a quantity defined by the
2Q largest positive Lyapunov exponents of the attractor
Σ of the network. Therefore, if the Lyapunov exponents
of a network are know, the quantity ĨC can be used as
a way to estimate how much is the MIR between two
measurements of this network, measurements that form
the subspace Ω.

Notice that IC depends on the projection chosen (the

subspace Ω) and on its dimension, whereas ĨC depends
on the dimension of the subspace ΣΩ (the number 2Q
of positive Lyapunov exponents). The same happens for
the mutual information between random variables that
depend on the projection considered.

The Lyapunov exponents of the network, and conse-
quently ĨC , can be obtained from the reconstructed at-
tractor of a single time-series measure. Hence, the recon-
structed attractor can be used to estimate IC .

Equation (5) is important because it allows us to ob-
tain an estimation for the value of IC analytically. As an
example, imagine the following network of coupled maps
with a constant Jacobian

X
(i)
n+1 = 2X(i)

n + σ

K∑
j=1

Aij(X
(j)
n −X(i)

n ),mod 1, (7)

where X ∈ [0, 1] and A represents the connecting adja-
cent matrix. If node j connects to node i, then Aij = 1,
and 0 otherwise.

Assume that the nodes are connected all-to-all. Then,
the K positive Lyapunov exponents of this network are:
λ̃1 = log (2) and λ̃i = log 2[1 + σ], with i = 2,K. Assume
also that the subspace Ω has dimension 2Q and that 2Q
positive Lyapunov exponents are observed in this space
and that λ̃1 = λ1. Substituting these Lyapunov expo-
nents in Eq. (5), we arrive at

ĨC = (2Q− 1) log (1 + σ). (8)

We conclude that there are two ways for ĨC to increase.
Either one considers larger measurable subspaces Ω or
one increases the coupling between the nodes. This sug-
gests that the larger the coupling strength is the more
information is exchanged between groups of nodes.

For arbitrary topologies, one can also derive analytical
formulas for ĨC in this network, since λ̃i for i > 2 can be
calculated from λ̃2 [3]. One arrives at

λ̃i(ωiσ/2) = λ̃2(σ), (9)
where ωi is the ith largest eigenvalue (in absolute value)
of the Laplacian matrix Lij = Aij + I

∑
jAij .
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