Changes in the oligomerization potential of the division inhibitor UgtP coordinate

Bacillus subtilis cell size with nutrient availability

An-Chun Chien, Shannon Kian Zareh, Yan Mei Wang, and Petra Anne Levin

Supplemental Figures

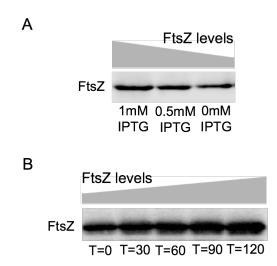
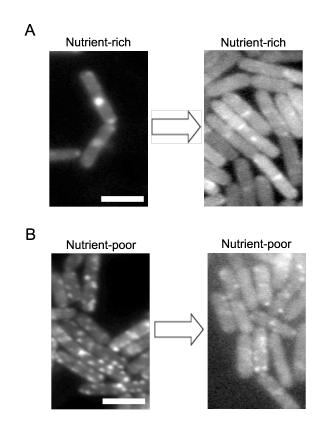
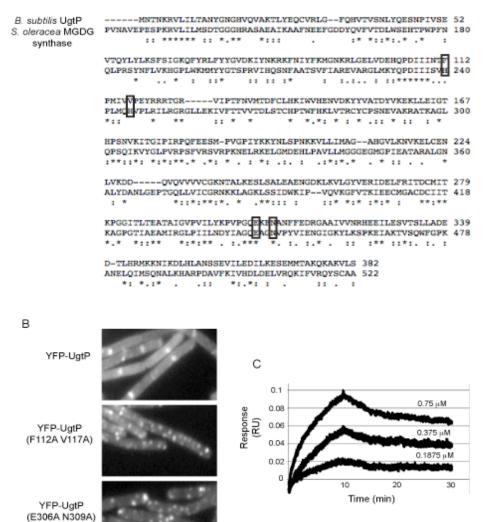




Figure S1. Quantitative immunoblots of FtsZ depletion and over-production. (A) The depletion of intracellular FtsZ levels in the strain PL2430 $amyE::P_{xyl}-yfp-ugtP$ $ftsZ::P_{spac}-ftsZ$ cultured with different amounts of the inducer IPTG. (B) The overproduction of FtsZ over a 2 hours course of induction using the strain JC115 $amyE::P_{spachy}-yfp-ugtP$ thrC:: $P_{xyl}-ftsZ$.

Figure S2. Controls of nutrient shift experiments. (A) Shifting PL2423 *amyE*:: P^{xyl} -*yfp-ugtP* cells from nutrient-rich LB to nutrient-rich LB in the presence of 200 µg ml⁻¹ chloramphenicol did not stimulate YFP-UgtP re-localization within 30 minutes. Bar = 3 µm. (B) Shifting PL2423 *amyE*:: P^{xyl} -*yfp-ugtP* cells from nutrient-poor minimal sorbitol to nutrient-poor minimal sorbitol in the presence of 200 µg ml⁻¹ chloramphenicol did not stimulate YFP-UgtP re-localization within 30 minutes. Bar = 3 µm. Cells were cultured at 30°C with a mass doubling time ~120 minutes.

Figure S3. Sequence alignments, YFP-UgtP localization and representative Octet traces. (A) Sequence alignments of *B. subtilis* UgtP and *S. oleracea* MGDG synthase generated by ClustalW (Thompson *et al.*, 1994). Rectangles indicate residues predicted to be involved in nucleotide sugar UDP-glc binding: F112, V119, E306 and N309 in UgtP. (B) Localization of wild type YFP-UgtP, the putative nucleotide-binding mutant YFP-UgtP (F112A V117A), and the putative hexose-binding mutant YFP-UgtP (E306A N309A) in the presence of the wild type *ugtP* allele. (C) A representative overlay of the Octet traces of UgtP•UgtP interaction.

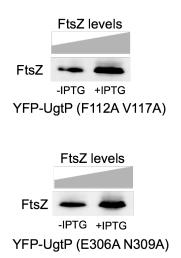


Figure S4. Quantitative immunoblots of FtsZ over-production in strains expressing the putative UDP-glc binding mutants of YFP-UgtP. Quantitative immunoblots of FtsZ indicating the over-production of FtsZ required for re-localization of the putative UDP-glc binding mutants of YFP-UgtP. YFP-UgtP (F112A V117A) is the putative nucleotide-binding mutant while YFP-UgtP (E306A and N309A) is the putative hexosebinding mutant. JC215 *amyE*:: P_{xyl} -yfp-ugtP (F112A V117A) thrC:: P_{spachy} -ftsZ and JC291 *amyE*:: P_{xyl} -yfp-ugtP (E306A N309A) thrC:: P_{spachy} -ftsZ cells were used.

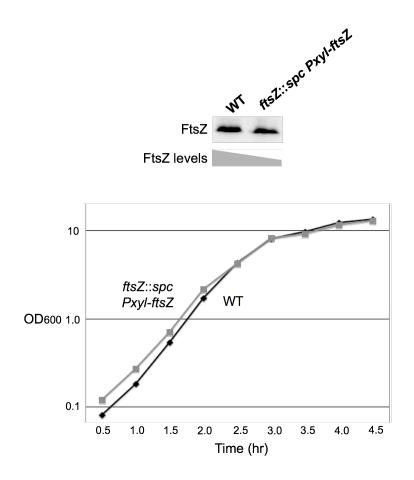


Figure S5. Growth curves of wild type cells and partially FtsZ-depleted cells. Top: Quantitative immunoblots indicate that PL2084 *ftsZ::spc thrC::P_{xyl}-ftsZ* cells cultured in LB supplemented with 0.1% xylose display ~15% reduction in intracellular FtsZ levels compared to wild type cells cultured in LB. <u>Bottom</u>: PL2084 *ftsZ::spc thrC::P_{xyl}-ftsZ* cells cultured in LB supplemented with 0.1% xylose display similar growth curve (gray) compared to that of wild type cells cultured in LB (black).

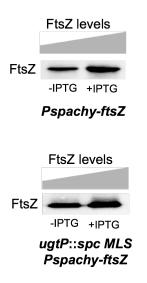


Figure S6. Quantitative immunoblots of partial FtsZ over-production. Quantitative immunoblots indicate the levels of FtsZ over-production (~13%) using the *amyE*:: P_{spachy} -*ftsZ* construct in both wild type (top) and *ugtP*::*spc MLS* (bottom) backgrounds

Supplemental Tables

Table S1. Strain table

Strain	Genotype	Reference
		(Perego et al.,
JH642	B. subtilis trpC2 pheA1	1988)
PL2292		(Weart et al.,
(BW503)	JH642 pgcA::Tn10 cat::spc amyE::P _{xyl} -yfp-ugtP cat	2007)
PL2430	JH642 <i>ezrA</i> :: <i>ezrA</i> - <i>cfp cat amyE</i> :: <i>P</i> _{<i>xyl</i>} - <i>yfp</i> - <i>ugtP cat</i> :: <i>spc ftsZ</i> :: <i>P</i> _{<i>spac</i>} - <i>ftsZ</i>	(Weart et al.,
(AL221)	phleo	2007)
JC115	JH642 amyE::P _{spachy} -yfp-ugtP thrC::P _{xyl} -ftsZ	This work
JC313	JH642 amyE::P _{xyl} -yfp-ugtP thrC::P _{spachy} -gtaB-myc gtaB::spc	This work
JC330	JH642 amyE::P _{xyl} -yfp-ugtP thrC::P _{spachy} -ywqF	This work
PL2423		(Weart et al.,
(AL198)	JH642 <i>amyE</i> :: <i>P_{xyl}-yfp-ugtP cat</i>	2007)
PL2295		(Weart et al.,
(BW507)	JH642 ugtP::cat::spc erm amyE::P _{xyl} -yfp-ugtP cat	2007)
JC41	JH642 amyE::P _{xyl} -yfp-ugtP(F112A V117A) cat	This work
JC47	JH642 ugtP::cat::spc erm amyE::P _{xyl} -yfp-ugtP (F112A V117A) cat	This work
JC275	JH642 amyE::P _{xyl} -yfp-ugtP(E306A N309A) cat	This work
JC283	JH642 ugtP::cat::spc erm amyE::P _{xyl} -yfp-ugtP (E306A N309A) cat	This work
JC215	JH642 amyE::P _{xyl} -yfp-ugtP (F112A V117A) cat thrC::P _{spachy} -ftsZ	This work
JC291	JH642 amyE::P _{xyl} -yfp-ugtP (E306A N309A) cat thrC::P _{spachy} -ftsZ	This work
PL2084		
(BW121)	JH642 ftsZ::spc xylA::tet thrC::P _{xyl} -ftsZ	This work
		(Weart & Levin,
PL950	JH642 <i>amyE</i> :: <i>P</i> _{spachy} -ftsZ cat	2003)
JC438	JH642 amyE::P _{spachy} -ftsZ cat ugtP::cat cat::spc erm	This work

Supplemental Experimental Procedures

Plasmid and strain construction

Standard techniques were used for genetic manipulations. Ampicillin was used at 100 μ g ml⁻¹, chloramphenicol at 5 μ g ml⁻¹, phleomycin at 2 μ g ml⁻¹, and spectinomycin at 100 μ g ml⁻¹. MLS resistance was selected for using erythromycin at 0.5 μ g ml⁻¹ and lincomycin at 12.5 μ g ml⁻¹.

Quantitative immunoblotting

Mid-exponential phase cells were harvested and resuspended in 50 mM Tris pH 8.0, 1 mM EDTA, 2 mg ml⁻¹ lysozyme and 1 mM AEBSF. Cells were incubated at 37°C for 15 minutes, chilled at 4°C for 15 minutes, and then lysed by the addition of sodium dodecyl sulfate (SDS). Cell lysates were normalized to OD₆₀₀ at gel loading and subjected to SDS-polyacrylamide gel electrophoresis. FtsZ was probed using affinity purified polyclonal rabbit anti-FtsZ antibodies. Primary antibodies were used in conjunction with a goat anti-rabbit antibody conjugated to horseradish peroxidase (Jackson ImmunoResearch). Immunoblots were quantitated via chemiluminescence using a LAS1000plus imager in conjunction with ImageGauge software v3.41 (Fuji Film).

Supplemental References

- Perego, M., G. B. Spiegelman & J. A. Hoch, (1988) Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in *Bacillus subtilis*. *Mol Microbiol* 2: 689-699.
- Thompson, J. D., D. G. Higgins & T. J. Gibson, (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res* 22: 4673-4680.
- Weart, R. B., A. H. Lee, A. C. Chien, D. P. Haeusser, N. S. Hill & P. A. Levin, (2007) A metabolic sensor governing cell size in bacteria. *Cell* 130: 335-347.
- Weart, R. B. & P. A. Levin, (2003) Growth rate-dependent regulation of medial FtsZ ring formation. *J Bacteriol* 185: 2826-2834.