The *Brassica napus* Calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in plant response to abiotic stress and ABA signalling

Liang Chen, Feng Ren, Li Zhou, Qing-Qing Wang, Hui Zhong, and Xue-Bao Li

Supplementary Data

Supplementary data

Supplementary Table 1. Primer sequences used in this study

Name	Squence	Function
BnCIPK6 up	5'-GGGACTAGTATGGTCGGAGCAAAACCTATAG-3'	BiFC
BnCIPK6 dn	5'-GGGCTCGAGAGCAGGTGTAGTAGAAGTCCAG-3'	BiFC
BnCBL1 up	5'- CTTGGATCCATGGGCTGCTTCCACTCCAAA -3'	BiFC
BnCBL1 dn	5'- CTTGGATCCTTTGACAATCTCATCCACCTCC-3'	BiFC
BnCIPK6 p1	5'-GGAGGCGGCGAAGGTTGGGAATAAGTTTGA-3'	RT-PCR
BnCIPK6 p2	5'-GGGCTCGAGTCAAGCAGGTGTAGTAGAAGTC-3'	RT-PCR
BnCBL1 p1	5'- ATCACTACTTAAGATCATGAC -3'	RT-PCR
BnCBL1 p2	5'- TATGATGTAAGAGAAACAATT -3'	RT-PCR
BnACT2 p1	5'- GTGTTGTTGGTAGGCCAAGACAT-3'	RT-PCR
BnACT2 p2	5'- CTTGATGTCTCTTACAATTTCCC-3'	RT-PCR
AtACT2 p1	5'- GAAATCACAGCACTTGCACC -3'	RT-PCR
AtACT2 p2	5'- AAGCCTTTGATCTTGAGAGC -3'	RT-PCR
RD29A p1	5'- TGAAAGGAGGAGGAGGAATGGTTGG -3'	RT-PCR
RD29A p2	5'- ACAAAACACACATAAACATCCAAAGT -3'	RT-PCR
RD29B p1	5'- CCAGATAGCGGAGGGGAAAGGACAT -3'	RT-PCR
RD29B p2	5'- AAGTTCACAAACAGAGGCATCATAC -3'	RT-PCR
KIN1 p1	5'- ACCAACAAGAATGCCTTCCAAGC -3'	RT-PCR
KIN1 p2	5'- TCCCAACAGTTAATTAGAAAAGG -3'	RT-PCR
ABF3 p1	5'- CTTTGTTGATGGTGTGAGTGAGC -3'	RT-PCR
ABF3 p2	5'- GTGTTTCCACTATTACCATTGCTG -3'	RT-PCR
ABF4 p1	5'- AACAACTTAGGAGGTGGTGGTCAT -3'	RT-PCR
ABF4 p2	5'- TGTAGCAGCTGGCGCAGAAGTCAT -3'	RT-PCR
BnCIPK6 F	5'- CTTGAATTCATGGTCGGAGCAAAACCTATAG -3'	pGBKT7
		construction
BnCIPK6 R	5'- GGGCTGCAGTCAAGCAGGTGTAGTAGAAGTC -3'	pGBKT7
		construction
AtCBL1 F	5'-CGAATTCATGGGCTGCTTCCACTCAAAGGCAG-3'	pGADT7
		construction
AtCBL1 R	5'-CGGATCCTCATGTGGCAATCTCATCGACCTCC-3'	pGADT7
		construction
AtCBL2 F	5'- CGAATTCATGTCGCAGTGCGTTGAC -3'	pGADT7
		construction
AtCBL2 R	5'- CGAATTCATGTCGCAGTGCATAGACGGTTTC -3'	pGADT7
		construction
AtCBL3 F	5'- CGAATTCATGTCGCAGTGCATAGACGGTTTC -3'	pGADT7
		construction
AtCBL3 R	5'- CGGATCCTCAGGTATCTTCCACCTGCGAGTG -3'	pGADT7
		construction
AtCBL4 F	5'- CCATATGATGGGCTGCTCTGTATCGAAGAAG -3'	pGADT7

		construction
AtCBL4 R	5'-CGAATTCTTAGGAAGATACGTTTTGCAATTCC-3'	pGADT7
		construction
AtCBL5 F	5'-CGAATTCATGGGATGTGTTTGCAGCAAGC -3'	pGADT7
		construction
AtCBL5 R	5'-CGGATCCTTACCGGAGAAAGGTTGGGAAAATC-3'	pGADT7
		construction
AtCBL6 F	5'- CGAATTCATGATGATGCAATGTTTAGATGG -3'	pGADT7
		construction
AtCBL6 R	5'- CGGATCCTCATCCATCCAGCTCACTAG -3'	pGADT7
		construction
AtCBL7 F	5'- CGAATTCATGGATTCAACAAGAAATTCAGC -3'	pGADT7
		construction
AtCBL7 R	5'- CGGATCCTCAGGTATCTTCCACTTGCG -3'	pGADT7
		construction
AtCBL8 F	5'- CCATATGATGTTGGCATTCGTGAAATGC -3'	pGADT7
		construction
AtCBL8 R	5'- CGAATTCCTAGTCTTCAACTTCAGAGTCGAG -3'	pGADT7
		construction
AtCBL9 F	5'- CGAATTCATGGGTTGTTTCCATTCCACG -3'	pGADT7
		construction
AtCBL9 R	5'- CGGATCCTCACGTCGCAATCTCGTCC -3'	pGADT7
		construction
AtCBL10 F	5'- CCCATGGATGACAACTGGCCGACCAAAT-3'	pGADT7
		construction
AtCBL10 R	5'- CGGATCCTCAGTCTTCAACCTCAGTGTT-3'	pGADT7
		construction
BnCIPK6 CP1	5'- GGAGTTCCACAAGTGTCGTGGAGAAGCCCGT-3'	Genome walking
BnCIPK6 CP2	5'- CGCCACGCTTTTACCCGTTGTTACGTTACG -3'	Genome walking
BnCIPK6 CP3	5'- CACTTTAGCGAATGTCCCGTGGCCTAGAAG-3'	Genome walking
BnCIPK6	5'-GGGGTCGACTTTTATCTTCTGTCTTCGTGTA-3'	Isolate promoter
Promoter up		
BnCIPK6	5'-GGGGGATCCTGTTTTTTAACCAAAAAAAGGG-3'	Isolate promoter
Promoter dn		
BnCIPK6/BnCI	5'-CTTCCCGGGATGGTCGGAGCAAAACCTATAG-3'	OE vector
PK6 (M) S		construction
BnCIPK6/BnCI	5'-GGGCTCGAGTCAAGCAGGTGTAGTAGAAGTC-3'	OE vector
PK6 (M) AS		construction
BnCBL1 S	5'- CTTGGATCCATGGGCTGCTTCCACTCCAAA -3'	OE vector
		construction
BnCBL1 AS	5'- GGGGAGCTCTCATTTGACAATCTCATCCAC -3'	OE vector
		construction

Clone	Homologous genes	Species	E-value	Homology
no.				
1	DNAJ heat shock protein	Arabidopsis thaliana	2e-77	Id.84%; Po.96%
2	CBL3	Arabidopsis thaliana	2e-100	Id.98%; Po.99%
3	fms interacting protein	Ricinus communis	6e-46	Id.60%; Po.77%
4	putative alpha/beta hydrolase	Arabidopsis thaliana	5e-62	Id.92%; Po.96%
5	polyubiquitin UBQ14	Cucumis sativus	3e-26	Id.100%; Po.100%
6	metal ion binding	Brassica rapa	1e-33	Id.97%; Po.98%
7	TCP-1chaperonin-like protein	Arabidopsis thaliana	3e-88	Id.98%; Po.100%
8	AtITPK4(inositol	Arabidopsis thaliana	4e-46	Id.88%; Po.94%
	1,3,4-trisphosphate 5/6-kinase 4)			
9	F-box family ptotein	Arabidopsis lyrata	3e-51	Id.59%; Po.67%
10	MYB3	Arabidopsis thaliana	3e-19	Id.66%; Po.69%
11	APG8 activating enzyme	Arabidopsis thaliana	1e-48	Id.95%; Po.99%
12	ATP binding / metal ion binding	Arabidopsis thaliana	6e-78	Id.95%; Po.97%
13	Putative xylan endohydrolase	Arabidopsis thaliana	1e-24	Id.88%; Po.96%
14	unknown protein	Arabidopsis thaliana	1e-36	Id.79%; Po.86%
15	hypothetical protein	Arabidopsis lyrata	9e-32	Id. 97%; Po.98%
16	chaperone protein dnaJ-related	Arabidopsis thaliana	2e-60	Id. 81%; Po.88%
17	plastid-lipid associated protein	Brassica rapa	1e-77	Id.100%; Po.100%
	PAP2			
18	phospholipase A2-alpha	Arabidopsis lyrata	1e-46	Id.89%; Po.93%
19	acyl-CoA thioesterase	Ricinus communis	4e-43	Id.76%; Po.87%
20	Soybean gene regulated by cold-2	Arabidopsis thaliana	1e-73	Id.91%; Po.94%
21	putative phosphoglucomutase	Arabidopsis thaliana	3e-46	Id.95%; Po.98%
22	SNF1 kinase homolog 10	Arabidopsis thaliana	2e-64	Id.87%; Po.92%
23	phosphoribulokinase	Arabidopsis thaliana	7e-96	Id.97%; Po.99%
24	cytokinin dehydrogenase	Arabidopsis thaliana	4e-70	Id.91%; Po.95%
25	ubiquitin-protein ligase	Arabidopsis thaliana	3e-74	Id.94%; Po.97%
26	C2 domain-containing protein	Noccaea caerulescens	4e-13	Id.84%; Po.93%
27	calcineurin B-like protein 1	Brassica oleracea	8e-117	Id.99%; Po.100%
	-			

Supplementary Table 2. Identified cDNA clones from the BnCIPK6 yeast

two-hybrid screen

Supplementary Table 3. Statistical analysis of relative green leaves and relative fresh weight of *BnCIPK6* and *BnCIPK6M* transgenic *Arabidopsis* under a range of NaCl concentrations.

NaCl	Relative green leaves (%)					Relative fresh weight (mg)				
Concentration	WT	BnCIPK6(M)	BnCIPK6(M)	BnCIPK6	BnCIPK6	WT	BnCIPK6(M)	BnCIPK6(M)	BnCIPK6	BnCIPK6
		L8	L9	L3	L6		L8	L9	L3	L6
75 mM	95±2	95±3	96±2	96±3	95±4	29.1±1.6	31.4±2.4	34.3±2.8*	32.1±2.6	30.1±2.1
150mM	65±4	81±3**	85±4**	82±3**	80±3**	20.1±1.2	24.7±1.4*	29.0±2.1**	25.2±1.5**	22.7±1.2*
170mM	25±3	62±5**	75±8**	70±7**	35±6**	17.6±1.5	21.4±1.7**	28.5±3.1**	22.4±1.3**	20.5±1.3*
200mM	18±3	48±4**	60±6**	53±6**	28±3**	12.5±2.4	17.1±1.5**	21.1±2.6**	18.4±1.9 **	16.1±1.0*
250mM	4±1	6±2	8±4	5±4	4±1	-	-	-	-	-

Independent t-tests for equality of means demonstrated that there was significant difference (* P value < 0.05) or very significant difference (** P value < 0.01) between wild type and transgenic plants.

Supplementary Table 4. Statistical analysis of relative green leaves and relative fresh weight of *BnCBL1* transgenic *Arabidopsis* under a range of NaCl concentrations.

NaCl	Relative green leaves (%)				Relative fresh weight (mg)	
Concentration	WT	BnCBL1 L10	BnCBL1 L11	WT	BnCBL1 L10	BnCBL1 L11
75 mM	95±2	95±3	96±2	29.1±1.6	33.2±1.4*	30.5±1.9
150mM	65±4	82±2**	79±4**	20.1±1.2	28.3±2.6**	23.8±1.7*
170mM	25±3	63±5**	41±5**	17.6±1.5	26.5±2.0**	21.2±1.3**
200mM	18±3	42 ±4**	29 ±3**	12.5±2.4	18.5±2.5**	16.7±1.5 **
250mM	4±1	5±2	4±1	-		

Independent t-tests for equality of means demonstrated that there was significant difference (* P value < 0.05) or very significant difference (** P value < 0.01) between wild type and transgenic plants.

Supplementary Table 5. Statistical analysis of the primary root length (cm) of *BnCIPK6* and *BnCIPK6M* transgenic *Arabidopsis* under a range of ABA concentrations.

Genotype	0 µM ABA	0.25 µM ABA	0.5 µM ABA	0.75µM ABA	1 µM ABA
WT	2.03±0.2	1.73±0.2	1.30±0.14	1.21±0.15	1.10±0.1
BnCIPK6(M)L8	1.95±0.2	1.35±0.1*	0.90±0.1**	0.85±0.11**	$0.80{\pm}0.09{**}$
BnCIPK6(M)L9	1.98±0.18	1.30±0.15*	$0.84 \pm 0.08 **$	$0.74 \pm 0.08 **$	$0.69 \pm 0.08 **$
BnCIPK6L3	1.98±0.18	1.43±0.1	1.09±0.1*	$0.99 \pm 0.05*$	0.95±0.12*
BnCIPK6L6	2.0±0.2	1.51±0.2	1.15±0.11*	1.06±0.10*	1.02±0.1*

Independent t-tests for equality of means demonstrated that there was significant difference (* P value < 0.05) or very significant difference (** P value < 0.01) between wild type and transgenic plants.

Supplementary Fig 1. A schematic diagram of the domain structure of BnCIPK6. The overall structure of BnCIPK6 comprises an N-terminal kinase domain and a regulatory C-terminal domain that are separated by a junction domain. Within the kinase domain, phosphorylation of amino acids in the activation loop (indicated as a box, 164-193aa) results in kinase activation. The regulatory C-terminal domain contains two conserved interaction domains, the FISL domain (also called NAF domain), which is responsible for the CBL–CIPK interaction, and the adjacent protein–phosphatase interaction (PPI) domain mediating interaction with 2C-type protein phosphatase (PP2C)-type phosphatases.

Supplementary Fig 2. BiFC assays of BnCIPK6 interaction with BnCBL1 in onion cells. (a) to (c) pUC-SPYNE and pUC-SPYCE-BnCIPK6; (d) to (f) pUC-SPYNE-BnCBL1+pUC-SPYCE; (g) to (i) pUC-SPYNE-BnCIPK6+pUC-SPYCE-BnCBL1. (a, d, g) YFP fluorescent Images; (b, e, h) Bright field Images of images a, d and g; (c, f, i) Fluorescent Images merged with their bright-field Images.

Supplementary Fig 3. Yeast two-hybrid analysis for interactions between BnCIPK6 and Ten AtCBL proteins. BnCIPK6 can interact with AtCBL1, AtCBL2, AtCBL3 and AtCBL9. (a) Transformants were assayed for growth on QDO nutritional selection medium (SD/-Trp/-Leu-Ade-His). (b) Transformants were assayed for growth on selection medium (SD/-Trp/-Leu). 1-10, AtCBL1-AtCBL10; 11 AD (empty).

Supplementary Fig 4. Quantitative RT-PCR analysis of *BnCBL1* expression in the transgenic Arabidopsis. CK, wild type; L1 - L15, *BnCBL1* transgenic lines.

Supplementary Fig 5. Assay of lateral roots elongation of *BnCIPK6* and *BnCIPK6M* transgenic plants growing on low phosphate medium. (A) Comparison of the later roots between *BnCIPK6/6M* transgenic plants and wild type. (B) Statistical analysis of lateral root elongation. WT, wild type; BnCIPK6L3, *BnCIPK6* transgenic line 3; BnCIP6(m)L9, *BnCIPK(M)* transgenic line 9. Independent *t*-tests for equality of means demonstrated that there was significant difference (* P value < 0.05) between wild type and *BnCIPK6/6M* transgenic lines.

Supplementary Fig 6. Statistical analysis of plant dry weight of *BnCBL1* transgenic plants under phosphorous starvation. WT, wild type; L10 and L11, transgenic line 10 and 11. Independent *t*-tests for equality of means demonstrated that there was very significant difference (** P value < 0.01) between wild type and *BnCBL1* transgenic lines.

Supplementary Fig 7. Identification of *cipk6* **loss-of-function mutants.** (**a**) The homozygous insertion mutant *cipk6* was isolated by PCR-based screening using *CIPK6*-specific primers and atransposon specific primer (3' dSpm). (**b**), RT-PCR analysis of *CIPK6* expression in wild-type plants and homozygous mutants line1, 3 and 4. *Actin2* served as control. LP and RP, left and right genomic primers for the *CIPK6* gene, respectively; up and down, *AtCIPK6* full-length cDNA primers; WT, wild type; 1-4, *cipk6* line1-4.

Supplementary Fig 8. Characterization of *Arabidopsis cipk6* knockout mutant expressing *BnCIPK6*. (a) Six-old-day seedlings were transferred and grew on MS medium with 25 μ M ABA (b) Six-old-day seedlings were transferred and grew on MS medium with 50 μ M phosphate (low phosphate, LP). (c)Statistical analysis of the root length of wild type, the *cipk6* mutant and the *cipk6/BnCIPK6* complemented transgenic lines (COM) grown on MS medium without (-ABA) or with 25 μ M ABA for two weeks after transferring. (d) Statistical analysis of the lateral root number of wild type, the *cipk6* mutant and the *cipk6/BnCIPK6* complemented transgenic lines (COM) grown on low phosphate medium (50 μ M Pi). Mean values and standard errors (bar) were shown from three independent experiments (n>50 seedlings per each line). Independent *t*-tests for equality of means demonstrated that there was significant difference (* P value < 0.05) or very significant difference (** P value < 0.01) between wild type, the *cipk6* mutant and the *cipk6/BnCIPK6* complemented transgenic lines (COM).