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Graphical Model Details S1

The model framework presented in Fig. 1 is known in statistics as a Dirichlet process
mixture model [1,2]. In this model, the data observed on each experimental trial are gen-
erated by a Dirichlet distribution, but the Dirichlet’s parameters can vary across infants.
The hypothetical population of infants is modeled as a mixture of an unknown number of
discrete groups of unknown size, and each group has different parameters. Each sample
of infants, as observed in an experiment, is modeled as draw from this mixture. Thus, the
infants in each experiment represent a mixture of different groups, with a prior preference
for fewer, larger groups. Bayes rule (Equations 1) is used to infer, from the data and from
prior constraints, a distribution of beliefs for these model parameters.

This model has several equivalent formulations, each suited for different inference algo-
rithms (see S2). In this paper, we use the Chinese restaurant process (CRP) formulation,
which allows group identity and group parameters to be inferred separately [2, 3]. In the
Chinese Restaurant Process, groups are conceptualized as tables in a Chinese restaurant,
and infant participants as customers. When customers enters the restaurant, they choose
a table (z) in proportion to the number of customers already at that table. This yields a
rich-get-richer clustering scheme. However, with some small probability (α), a customer
chooses a new table, starting a new group. A property of this process called exchangeabil-
ity allows each customer to be treated as the last customer, producing a proper probability
distribution. For a more detailed tutorial, see [4]. In order to avoid specifying a partic-
ular concentration parameter (α), we let this parameter be drawn from an Exponential
distribution. This formally encodes a prior preference for fewer clusters, but lets the data
decide the strength of this prior. This Exponential distribution also has a parameter (γ)
that we set to 1 in the simulations in this paper. In hierarchical models, the higher level
at which a parameter is fixed, the more insensitive the posterior distribution is to the
specific value of that parameter. Equations S1 formalize this portion of the model.

α ∼ Exponential(γ)

z ∼ CRP(α)
(S1)

In order to infer a cognitive model for each infant’s gaze behavior, we formalize the data
observed on each trial as a distribution of dwell times over a set of areas of interest (AOIs).
Formally, let the AOIs in an experiment be defined as the vector A, and suppose that the
infant is exposed to t experimental trials. Then, di,t′ , the data for infant i on trial t′ is a
length |A| vector of proportions that sums to 1. Consequently, di, all of the data for infant
i, is a t × |A| matrix in which all of the trials are concatenated vertically. This data is
modeled as being generated by draws from t Dirichlet distributions with parameters θi,t,
a matrix of size t× |A| that encodes our prior belief for the likely dwell time distribution
over AOIs on each trial t. This matrix θ is a product of two separate components: ei –
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the experimental settings that infant i sees on each trial, and sz – the cognitive model
parameters for group z of which infant i is a member. These two components function
like the predictors and weights in a regression model respectively.

In any experiment, we can imagine an arbitrary number of factors that may contribute
to the observed distribution of gazes. These might include infants’ familiarity with the
objects in each AOI, the visual properties objects, relationships of these objects to co-
occurring audio stimuli, how long infants have been in the experiment, etc. Let r be a
vector of such factors, the elements of which work like predictor variables in standard
linear regression. Any experimental trial can then be described as having some value for
each of these factors for each area of interest. We encode this information as ei,t′ , the
|A| × |r| matrix containing the value for each of these predictive values for each AOI that
infant i sees on trial t′. The matrices for all trials can then be concatenated to produce
a t× |A| × |r| matrix. This matrix (ei) is then used to predict the gaze patterns seen on
each trial (di).

Thus, as in regression, the preference for each AOI is produced through a weighted linear
combination of predictors r. Bayesian inference in this model discovers the weight for
each of these factors for each group of infants (sz). In order to make the model as general
as possible, we let each of these weights be any continuous value in the range (−∞,∞).
Thus, some factors could contribute positively to looking, others could contribute nega-
tively, and some could not contribute at all. In accord with Ockhams razor, we would
prefer not to include predictors in the model if they do not contribute significantly to
the prediction of gaze data. To do this, we put priors on the parameters in sz, letting
them be drawn from a normal distribution with mean 0 and variance σ2. This encodes
a prior preference for 0-valued parameters, but does not yet specify the strength of this
preference. As we did in determining the number of groups, we put a hierarchical prior
on σ to let the data decide the strength of our preference for sparsity. We use a Jeffreys
prior [5], shown in previous work to work well in regularizing regression coefficients [6].
We approximate the Jeffreys prior by drawing σ from a Gamma distribution with very
small shape and rate parameters. Finally, because the weights in sz can take any contin-
uous value, but the Dirichlet distribution connecting predictors to outcomes must have
non-negative parameters, we exponeniate the products of weights and predictors. This
portion of the model is formalized in Equations S2.

σ ∼ Gamma(ε, ε)

s ∼ Normal(0, σ2)

θ = exp[sz × e]

d ∼ Dirichlet(θ)

(S2)
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