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Quadratic dependence of hydration free energy on ion charge

for ions of the same sign

As inferred earlier by Latimeret al.,2 we reconfirm the fact that the hydration free energies of ions

with same sign of charge depend quadratically on the magnitude of the ion charge. To this end, we

fit experimental hydration free energies1 to the following equation,

∆G = −

(

1−
1
ε

)

γ(q)

2
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Ri +C+/−

) (1)
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Figure S1: Experimental hydration free energy,∆G, of monovalent and divalent cations and anions
at 298 K and 1 mol/L as a function of ion radius.1 The dashed lines correspond to the best fit∆G’s
exhibitingalmost quadratic dependence on ion charge.

whereC+ andC− are the corrections to the ion radii, specific to the sign of ion charge. Employ-

ing Eq. (1), we find the best fit (minimum RMSD to experimental∆G, Figure S1) values of

the γ(q) for the each set of anions and cations, independently. We obtain ∆G(+2e)/∆G(+e) =

γ(+2e)/γ(+e) = 4.02 and∆G(−2e)/∆G(−e) = γ(−2e)/γ(−e) = 3.92, a 0.5% deviation from

quadratic behavior for cations and 1.5% for anions.

Weak dependence of asymmetry factorη on water-water inter-

action

Free energy of ion hydration: first hydration shell approximation

To investigate the ion hydration asymmetry and its dependence on water-water interactions we

utilize a simple first hydration shell model shown in the Figure S2. For many realistic ions, the

number of water molecules in the first shell is close to six (Ref.3). This allows us to consider the

ion surrounded by six water molecules with their centers fixed in space in octahedral configuration,

making our analyses analytically tractable.

With only two allowed orientations for a water molecule dipole (+ and−), the canonical partition
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Figure S2: Schematic of the first hydration shell model used here. The ion (dark sphere with a
chargeq at it’s center) is surrounded by six water molecules (light spheres) with their centers fixed
in space in an octahedral configuration. Each individual water molecule has two orientation states
relative to the ion: its dipole directed away (+) or towards the ion (−).

Table S1: Configurational states of the water dipoles in the first-shell model of Figure S2. First
row: schematic of configurations (i) of the ion-water system corresponding to different values
of water-water interactionWi. Individual water dipole orientation states+ or − are represented
by Ã or # respectively. The ion center is located at the origin of the axes formed by the water
molecules. Second row: the degeneracygi of the ith configuration. Third row:N+

i , the number of
water molecules in state+.

1 2 3 4 5 6 7 8 9 10

Config.(i)

gi 1 6 3 12 12 8 3 12 6 1
N+

i 0 1 2 3 4 5 6

function of the ion-water system shown in Figure S2 can be written as,

ZII = ∑
i

gi exp
(

−β
(

N+
i E+ +(6−N+

i )E− +Wi
))

. (2)

Here,gi is the degeneracy of the energy of theith configuration (see Table S1),Wi the Coulomb

interaction energy between all the water molecules,N+
i the number of water molecules in the state

+. The Coulomb interaction energy between the ion and one watermolecule is characterized by

E+, andE− for the water molecule in the state+ and−, respectively. Within this model the van
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der Waals interactions are assumed to be constant and hence,are not explicitly incorporated in the

calculations.

The partition function for a hydrated empty spherical cavity within this model can similarly be

expressed as,

ZI = ∑
i

gi exp(−βWi) . (3)

Neglecting the tiny contribution pertaining to the cavity creation in water and the difference

between∆G and∆F for the standard states of ions and using Eq. (2) and Eq. (3), the free energy

of ion hydration is approximated by:

∆G1st
≈ ∆F1st

= −
1
β

ln

(

ZII

ZI

)

= −
1
β

ln

(

∑i gi exp
(

−β
(

N+
i E+ +(6−N+

i )E− +Wi
))

∑i gi exp(−βWi)

)

. (4)

We now use our2P water model in Eq. (4) to calculate∆G1st
for alkali and halide ions. We

have already established (see Main text), that this two point water model is capable of causing

charge hydration asymmetry.

The result is only 5.9% RMS deviation from the experimental4 values of hydration free en-

ergy. This agreement suggests that the simplified first shell, two-state model introduced here is a

reasonable approximation for the energetics of ion hydration.

We will now show that this model can capture proper hydrationasymmetry when used in the

framework of the formalism based on the ansatz proposed in the Main text.

Evaluation of the asymmetry factorη

The asymmetry factor (see Main text) is defined as,

η = ∆G2P/∆GSPD ≈ ∆G1st

2P/∆G1st

SPD (5)
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One can express∆G1st

SPD and∆G1st

2P within the first-shell approximation via Eq. (4). Further using

Eq. (5), the asymmetry factorη is

η =

ln

(

∑i gi exp(−β(N+
i E+

2P+(6−N+
i )E−

2P+W 2P
i ))

∑i gi exp(−βW 2P
i )

)

ln

(

∑i gi exp(−β(N+(i)E+
SPD+(6−N+

i )E−
SPD+W SPD

i ))
∑i gi exp(−βW SPD

i )

) . (6)

The above equation is analytically tractable. Using the ionradii from1 and parameters for2P and

SPD(see Main article) water models, one can hence calculate thehydration free energies for alkali

and halide ions. Leading towards the goal of this section,i.e. to investigate the intensity of effect

of water–water interactions in hydration free energy, we now scale the water-water interaction term

in Eq. (6) with a multiplicative factorf , Wi → f Wi, such thatf can vary from 0 to 1. The resulting

dependence ofη calculated for mono–valent ions with ionic radiusRi = 1 and 2 Å are presented

in Figure S3.
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Figure S3: Dependence of the asymmetry factorη on the strength of water–water interaction.
The calculation is for mono–valent ions of radiusRi = 1 and 2 Å and chargeq = ±1e, f = 1
corresponds to full strength of water–water interaction.

In Figure S3 we see that the relative change ofη( f ) over the entire range off , from 0 to 1, is

very small,
∣

∣

∣

η(1)−η(0)
η(1)

∣

∣

∣
≤ 3%. This allows one to neglect the water-water interactionsin estimating
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η which modifies Eq. (6) to the model discussed in the Main text.Mathematically,

η =

ln

(

e−βE+
2P+e−βE−2P

2

)

ln

(

e−βE+
SPD+e−βE−SPD

2

) . (7)

Employing our ansatz,∆G = ∆GB(Re f f )η , in Eq. (7) provides us with:

∆G = ∆GB(Re f f )

ln

(

e−βE+
2P+e−βE−2P

2

)

ln

(

e−βE+
SPD+e−βE−SPD

2

) , (8)

whereRe f f = Ri +Rs with the quantityRs = 0.52Å (see Main text).

Ion hydration energy expressed via water model parameters

The asymmetry factor in Eq. (7) utilizes two simplified watermodels,2P andSPD. Below we

express the Coulomb energies of water molecule in the field of ion, ~E , through the parameters

of these two models. Taking into account only two allowed orientations of the water molecule

(σ = +,−) in our simplified first hydration shell model described in S2.1, these energies can be

written as

E±
2P =

qqO

Riw
+

qqH

Riw ±Rz
OH

, (9)

E±
SPD = −(~E ·~p±) = −

(

±
qqHRz

OH

R2
iw

)

, (10)

whereqO, qH are the negative (“oxygen”) and positive (“hydrogen”) charges in the2P model

separated by the distanceRz
OH , Riw the distance between center of ion and the center of water

molecule (the “oxygen” point in2P model), and|~p| = p = qHRz
OH . Using the above expressions
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for the energies and noting thatqO = −qH , we can rewrite Eq. (8) as

∆G = ∆GB(Re f f )

ln

(

1
2 ∑

σ=−1,1
e
−βqqO

(

1
Riw

− 1
Riw+σRz

OH

)

)

ln
(

cosh(βqqORz
OH/R2

iw)
) . (11)

Strong field limit for ion hydration

In this article as we used small ions,Ri < 3Å and|q| ≥ e, the electric field of the ion acting on the

first hydration shell water molecules satisfies|~E (Riw)| ≫ (β p)−1. The energy of a water dipole in

this field can exceedkT by orders of magnitude. With only two allowed water dipole orientations

(σ = +,−) in our first shell model, this leads to the condition|βEσ | ≫ 1. Under these conditions,

Eq. (11) simplifies significantly. This simplified form is most easily obtained from the strong field

limit of Eq. (7), i.e.,

η =
Eσ∗

2P

Eσ∗

SPD

. (12)

Hereσ∗ denotes the orientation of the water dipole with the lowest ion-water interaction energy

(the orientation along the field of the ion: “+” for cations and “-” for anions). Using Eq. (9) and

Eq. (10) in Eq. (12), the asymmetry factor can be expressed as

η =
qqH

(

1
Riw

− 1
Riw+Sgn[q]Rz

OH

)

qqH
Sgn[q]Rz

OH
R2

iw

=
Riw

Riw +Sgn[q]Rz
OH

=

(

1+Sgn[q]
Rz

OH

Riw

)−1

. (13)

With Eq. (13), the expression for∆G (see Eq. (8)) in the strong field limit can thus be written

as,

∆G = ∆GB(Re f f )

(

1+Sgn[q]
Rz

OH

Riw

)−1

. (14)
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Ion hydration Entropy estimation

The explicit form of free energy change upon ion hydration∆G given by Eq. (14) allows us to

estimate the ion hydration entropy using the general thermodynamics relation

∆S = −

(

∂∆G
∂T

)

P
(15)

The temperature dependent parameters in Eq. (14) are the dielectric constant of water,ε, the

solvent dependent effective position of the dielectric boundary,Re f f , and the ion-water distance,

Riw. At T = 298K, ∂ε/∂T = −0.36.5 Under our treatment, the thermal expansion ofRe f f and

Riw are approximated to be the same as the thermal expansion of the mean intermolecular spacing

of neighboring molecules (Rww = 2Rw) in bulk water,i.e., ∂Re f f /∂T ≈ ∂Riw/∂T ≈ ∂Rww/∂T .

Using the volumetric thermal expansion coefficient of water, α = 2.57·10−4 K−1 atT = 298 K ,6

one can express∂Rww/∂T as,

α =
3

Rww

∂Rww

∂T
. (16)

Under the above assumptions and using Eq. (14) and Eq. (15) weobtain,

∆S = ∆GB(Re f f )×η
(

−
1

ε(ε −1)

∂ε
∂T

+
α
3

(

Rww

Re f f
−

(

Rww

Riw

)

Sgn(q)Rz
OH

Riw +Sgn(q)Rz
OH

))

. (17)

which can be further simplified to,

∆S = ∆G

(

−
1

ε(ε −1)

∂ε
∂T

+
α
3

(

Rww

Re f f
+(η −1)

Rww

Riw

))

. (18)

Insensitivity to the number of water states

In this section we calculate the ion hydration free energy using 2P and SPD water models with all

possible orientation states of a water molecule in the ion first hydration shell. The orientation of

the water molecule is determined by the angleθ between the water dipole and the axis connecting
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Figure S4: Schematic represents a simple ion (a sphere of radius Ri with a chargeq at the center)
interacting with 2P water molecule of radiusRw with the oxygen partial chargeqO (red dot) at
the center. The light blue sphere represents all admissiblestates of the positive “hydrogen” charge
(blue dot) at the distanceRz

OH from the center.θ is the angle between the axis connecting ion and
water center,~Riw and the water dipole moment,~p.

ion and water centers shown in Figure S4. The post–solvationcanonical partition function for

ion–water interaction with one water molecule is given by,

ζ II
1 =

∫ π

0
e−βE(θ) sinθdθ , (19)

whereE(θ) is the ion-water Coulomb interaction energy. The equation for SPD water can be

simplified taking into account thatESPD(θ) = qqORz
OH cosθ/R2

iw,

ζ II
1,SPD =

2sinh
(

βqqORz
OH

R2
iw

)

βqqORz
OH

R2
iw

. (20)

The pre–solvation partition function for both SPD and 2P models is given byζ I
1 =

∫ π
0 e0sinθdθ =

2.

Now, using our ansatz∆G = ∆GB ×η and 6 from the main text, we can express the hydration
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energy as,

∆G = ∆GB(Re f f )×

ln

(

ζ II
1,2P

ζ I
1,2P

)

ln

(

ζ II
1,SPD

ζ I
1,SPD

)

= ∆GB(Re f f )
ln

( ∫ π
0 e−βE (θ) sin(θ)dθ

2

)

ln





sinh

(

βqqORz
OH

R2
iw

)

βqqORz
OH

R2
iw





. (21)

We use Eq. (21) to calculate the hydration free energies of alkali halide ions. The results of this

calculation is compared with the analytical strong field limit result, Eq. (14) and experimental data

in Figure S5. It clearly shows that incorporating more states (all orientation states in this example)

does not provide any noteworthy difference in accuracy whencompared to the simplified analytical

formula, Eq. (14)i.e. the model based on just two orientation states.
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Figure S5: Comparison of the hydration free energies for monovalent anions and cations predicted
using our main result, Eq. (14) based on only two orientationstates (+/−) of the water molecule
(solid black lines) and the results from the all states model, Eq. (21) (orange circles). The experi-
mental data (red and blue circles) are taken from Ref.4
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The “first princiles" (MSA) universal shift in ion radius, Rs, is

close to optimal.

We introduce a “first-principles” uniform shift,Rs, to the ion radius,Re f f = Ri +Rs, suggested by

Ref.,7 a study based on the mean spherical approximation (MSA). Using the MSA formalism, we

obtainRs = 0.52Å at 298K and using the typical water radius,Rw = 1.4Å. In Figure S6, we assess

the sensitivity of the hydration energy, Eq. (14) by varyingthe Rs around the MSA calculated

value. As seen in the Figure S6, the “first principles” MSA value ofRs is very close (within 9%)

to its optimum value for Eq. (14). The hydration free energies based on this fitted optimal value

is within 1% difference from the energies computed with the “first principles” MSA-basedRs used

in the main text.
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Figure S6: RMS% deviation of hydration free energy, Eq. (14) from experimental values4 plotted
as a function ofRs. The “first principles”Rs = 0.52 Å is marked by the red bullet.
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