Supporting information

Logistic Dose Response of Inhibitors on a Chip

Jae Young Yun^{1†}, Sachin Jambovane^{1†}, Se-Kwon Kim², Sung-Hak Cho³, Evert C Duin⁴,

and Jong Wook Hong¹*

¹Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, ²Marine Bioprocess Research Center, Pukyong National University, Busan, 608-737, Korea ³Nanomachining Laboratories, Korea Institute of Machinery and Materials, Daejeon, Korea ⁴Department of Chemistry and Biochemistry, Auburn University

[†]These authors contributed equally to this work

*Corresponding author

Figure S1. Device structure and channels network.

Figure S2. Reagent introduction to the chip for obtaining (a) standadrd curve of FAM, (b) Enzyme gradient, (c) Substrate gradient, and (d) Inhibitor dose response analysis

Figure S3. Traces using on-chip method for (a) Enzyme gradient, and (b) Substrate gradient