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Supplementary Figure S1. We consider a source of entangled photon pairs based on spontaneous parametric
downconversion (SPDC). The distribution of the number of produced photon pairs per measurement time window
follows Poisson statistics. The photons from each pair are coupled into two separate channels. Alice (Bob) then
performs projective measurements described by the real Bloch vector ±a (±b) on her (his) photon. The two possible
outcomes of Alice’s measurement correspond to clicks at detectors D1 and D2, and at detectors D3 and D4 for Bob’s
measurement.

Supplementary Tables

Supplementary Table S1. Estimated experimental parameters. The estimated values of experimental parameters
are shown. These estimations are based on previous characterizations of our source [26,19], as well as factory specified
values of some of our optical components. All values except dA and dB have non-negligible uncertainty and are
expressed in terms of their potential minimum and maximum values.

Minimum value Maximum value

µ 0.028 0.036

dA 4× 10−8 4× 10−8

dB 2.5× 10−5 2.5× 10−5

V (F ) 0.96 (0.97) 0.98 (0.985)

ηA 5.35% (12.7 dB loss) 9.79% (10.1 dB loss)

ηB with 10 m link 0.302% (25.2 dB loss) 0.741% (21.3 dB loss)

ηB with 12.4 km link 0.0126% (34.8 dB loss) 0.0331% (30.9 dB loss)
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Supplementary Table S2. Elements of Mη.

Transition from to Corresponding matrix element

(0000) (0000) Mη(1, 1) = (1− ηA)(1− ηB)

(0000) (0001) Mη(2, 1) = 1
2 (1− ηA)ηB

(0000) (0010) Mη(3, 1) = Mη(2, 1)

(0000) (0100) Mη(5, 1) = 1
2ηA(1− ηB)

(0000) (0101) Mη(6, 1) = θ+ηAηB
(0000) (0110) Mη(7, 1) = θ−ηAηB
(0000) (1000) Mη(9, 1) = Mη(5, 1)

(0000) (1001) Mη(10, 1) = Mη(7, 1)

(0000) (1010) Mη(11, 1) = Mη(6, 1)

(0001) (0001) Mη(2, 2) = 1
2 (1− ηA)(2− ηB)

(0001) (0011) Mη(4, 2) = Mη(2, 1)

(0001) (0101) Mη(6, 2) = ηA[θ+ + θ−(1− ηB)]

(0001) (0111) Mη(8, 2) = Mη(7, 1)

(0001) (1001) Mη(10, 2) = ηA[θ− + θ+(1− ηB)]

(0001) (1011) Mη(12, 2) = Mη(6, 1)

(0010) (0010) Mη(3, 3) = Mη(2, 2)

(0010) (0011) Mη(4, 3) = Mη(2, 1)

(0010) (0110) Mη(7, 3) = Mη(10, 2)

(0010) (0111) Mη(8, 3) = Mη(6, 1)

(0010) (1010) Mη(11, 3) = Mη(6, 2)

(0010) (1011) Mη(8, 3) = Mη(7, 1)

(0011) (0011) Mη(4, 4) = 1− ηA
(0011) (0111) Mη(8, 4) = 1

2ηA
(0011) (1011) Mη(12, 4) = Mη(8, 4)

(0100) (0100) Mη(5, 5) = 1
2 (2− ηA)(1− ηB)

(0100) (0101) Mη(6, 5) = ηB [θ+ + θ−(1− ηA)]

(0100) (0110) Mη(7, 5) = ηB [θ− + θ+(1− ηA)]

(0100) (1100) Mη(13, 5) = 1
2ηA(1− ηB)

(0100) (1101) Mη(14, 5) = Mη(7, 1)

(0100) (1101) Mη(15, 5) = Mη(6, 1)

(0101) (0101) Mη(6, 6) = 1− 1
2 (ηA + ηB) + θ+(ηA + ηB)

(0101) (0111) Mη(8, 6) = Mη(7, 5)

(0101) (1101) Mη(14, 6) = Mη(10, 2)

(0101) (1111) Mη(16, 6) = Mη(6, 1)
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Supplementary Table S3. Elements of Mη (continuation of Supplementary Table S2).

Transition from to Corresponding matrix element

(0110) (0110) Mη(7, 7) = 1− 1
2 (ηA + ηB) + θ−(ηA + ηB)

(0110) (0111) Mη(8, 7) = Mη(6, 5)

(0110) (1110) Mη(15, 7) = Mη(6, 2)

(0110) (1111) Mη(16, 7) = Mη(7, 1)

(0111) (0111) Mη(8, 8) = 1
2 (2− ηA)

(0111) (1111) Mη(16, 8) = Mη(8, 4)

(1000) (1000) Mη(9, 9) = Mη(5, 5)

(1000) (1001) Mη(10, 9) = Mη(7, 5)

(1000) (1010) Mη(11, 9) = Mη(6, 5)

(1000) (1100) Mη(13, 9) = Mη(13, 5)

(1000) (1101) Mη(14, 9) = Mη(6, 1)

(1000) (1110) Mη(15, 9) = Mη(7, 1)

(1001) (1001) Mη(10, 10) = Mη(7, 7)

(1001) (1011) Mη(12, 10) = Mη(6, 5)

(1001) (1101) Mη(14, 10) = Mη(6, 2)

(1001) (1111) Mη(16, 10) = Mη(7, 1)

(1010) (1010) Mη(11, 11) = Mη(6, 6)

(1010) (1011) Mη(12, 11) = Mη(7, 5)

(1010) (1110) Mη(15, 11) = Mη(10, 2)

(1010) (1111) Mη(16, 11) = Mη(6, 1)

(1011) (1011) Mη(12, 12) = Mη(8, 8)

(1011) (1111) Mη(16, 12) = Mη(8, 4)

(1100) (1100) Mη(13, 13) = 1− ηB
(1100) (1101) Mη(14, 13) = 1

2ηB
(1100) (1110) Mη(15, 13) = Mη(14, 13)

(1101) (1101) Mη(14, 14) = 1
2 (2− ηB)

(1101) (1111) Mη(16, 14) = Mη(14, 13)

(1110) (1110) Mη(15, 15) = Mη(14, 14)

(1110) (1111) Mη(16, 15) = Mη(14, 13)

(1111) (1111) Mη(16, 16) = 1
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Supplementary Note 1. Modelling the detection statistics of a source of entanglement

To study how noise affects an entanglement-based implementation of our protocol, we developed a model of the
detection statistics for a source of entangled photons taking into account loss, dark counts, multi-pair emissions and
imperfect optical alignment. This is a generalization of previous work that modelled the detection statistics of a
probabilistic source of (unentangled) photon pairs (see Ref. [27] of the main text). We consider a probabilistic source
of photonic entanglement, such as one based on spontaneous parametric downconversion, as shown in Supplementary
Figure S1.

To model the detection statistics of this experimental setup we construct a 16 × 1 column vector P, as shown in
Eq. (S1), that describes the joint state of the four detectors:

P = ( P0000 P0001 P0010 P0011 P0100 ... P1111, )
T
. (S1)

The enumeration of the indices of the elements of the state vector P follows the binary counting order, from ‘0000’
to ‘1111’, with the rightmost bit being the least significant. For example, the 11th element is labelled as P1010. Each
element of P describes the probability that a set of detectors clicked or not per measurement time window, which
is defined as a window centred on a pump pulse and for which detections are considered for statistical analysis. We
use the notation (ijkl), where i, j, k, l ∈ {0, 1}, to describe the state of detectors D1 through D4, respectively. Hence,
probability Pijkl denotes the probability to find the detectors in state ijkl after the measurement. For example, P0101

is the probability that detectors D2 and D4 clicked, and that D1 and D3 did not.

The goal is to determine how this state vector, initially described by P0 = ( 1 0 ... 0 )
T

, is affected by single and
multiple photon pair emissions, as well as detector dark counts, after one measurement time window. Photons from
different pairs are assumed to be independent of each other and cannot, for example, bunch. This is the case when the
source follows Poisson statistics as pairs are distinguishable in their emission time within the pump pulse duration.
This condition is well satisfied by the source used in our experiment [27] as the coherence time of the photons, 0.27 ps,
is much smaller than the pump pulse duration, 50 ps.

Transitions caused by entangled photon pairs

First, we describe the interaction of one entangled photon pair with the system. We assume the pair is emitted in
a Werner state:

ρ = V|Φ+〉〈Φ+|+ 1− V
4

I, (S2)

where |Φ+〉 = 1√
2
(|00〉+ |11〉), V ∈]0, 1] is called the intrinsic visibility of the state, and I is the 4× 4 identity matrix.

It is maximally entangled if and only if V = 1. The fidelity of ρ with |Φ+〉 is given by F = 〈Φ+|ρ|Φ+〉 = 3V+1
4 .

Let us assume that Alice and Bob each perform their projective measurements described by real Bloch vectors ±a
and ±b, respectively. Hence, a click at detector D1 (D2) projects on the state corresponding to a (−a). Similarly, a
click at D3 (D4) corresponds to a projection on b (−b). Let 2θ be the angle (on the Bloch sphere) between a and
b. Assuming the qubits do not decohere during transmission from the source to the detectors (this is a very good
approximation for time-bin entangled qubits), then the probability for a given pair to create a two-fold coincidence
between D1 and D3 is given by θ+ηAηB , where θ+ = 1

4 (1+V cos θ), and where ηA (ηB) denotes the overall transmission
from the source (i.e., from the SPDC medium) to D1 (D3). Similarly, the two-fold coincidence probability between
D2 and D4 is also θ+ηAηB . Coincidences between D1 and D4, as well as between D2 and D3, each happen with a
probability θ−ηAηB , where θ− = 1

4 (1 − V cos θ). Note that we are assuming that both of Alice’s (Bob’s) detectors
are identical, and that transmissions ηA and ηB include all optical losses, fibre coupling losses, detector inefficiencies,
spectral and temporal filtering losses.

To see how the state vector is affected by a single entangled pair, we construct a 16 × 16 matrix Mη such that
its elements give the probabilities of the possible transitions, i.e. transitions from state (ijkl) to (i′j′k′l′), where
i, j, k, l, i′, j′, k′, l′ ∈ {0, 1}. Specifically, the matrix element of row 1 and column 1, Mη(1, 1), gives the probability to
transit from state (0000) to (0000), that is, the probability that none of the photons are detected. This term is given
by

Mη(1, 1) = 2θ+(1− ηA)(1− ηB) + 2θ−(1− ηA)(1− ηB) = (1− ηA)(1− ηB). (S3)



5

Similarly, element Mη(2, 1) give the probability to transit from (0000) to (0001), and is given by

Mη(2, 1) = θ+(1− ηA)ηB + θ−(1− ηA)ηB =
1

2
(1− ηA)ηB . (S4)

The rest of the matrix is constructed following the same physical reasoning. All elements above the diagonal of the
matrix are equal to 0 as photons cannot make detectors “unclick”. Furthermore, to conserve the total probability,
each column of Mη sums to 1. The result of one pair interacting with the system is thus given by MηP0. The matrix
Mη is too large to be written explicitly here, but all the elements are written in supplementary Tables S2 and S3.

Second, we describe the interaction of i pairs created during the same measurement time window. Because the
pairs are assumed to be independent of each other, the result is simply given by (Mη)iP0.

Transitions caused dark counts

In addition to the absorption of a photon, thermal excitations can also cause detectors to click. These dark
counts can be taken into account by constructing another matrix Mdc. Let dA denote the dark count probability per
measurement time window of D1 and D2 (we assume both of Alice’s detectors are identical). Similarly, dB denotes
the dark count probability per measurement time window of D3 and D4. Let us first consider D1 only. Following the
same reasoning as before, the transition matrix due to dark counts is

M
(1)
dc =

(
1− dA 0

dA 1

)
. (S5)

For D2, we get M
(2)
dc = M

(1)
dc . The matrices for D3 and D4 are the same as D1 but with dA replaced by dB .

Now, because dark counts happen independently on all detectors, the transition matrix of all four detectors is
simply given by

Mdc = M
(1)
dc ⊗M

(2)
dc ⊗M

(3)
dc ⊗M

(4)
dc , (S6)

where ⊗ is the Kronecker product of the matrices. Here again, Mdc is too large to be written explicitly, but it is
trivial to construct.

Transitions caused by entangled photon pairs and dark counts

When the number of incident photons follows an arbitrary, known distribution, it is possible to calculate the final
state vector P through

P = Mdc

∞∑
i=0

pi(Mη)iP0, (S7)

where pi is the probability that i photon pairs are incident per measurement time window. For a Poisson distribution,
we have pi = e−µµi/i!, where µ is the mean number of photon pairs created per pump pulse. Note that all matrices
commute, so the order in which they are applied does not matter. The construction of the matrices ensures that all
elements of P are bounded individually between 0 and 1 and that the elements of P sum to 1, i.e. the total probability
is conserved.

Supplementary Note 2. Application to our loss-tolerant quantum coin-flipping protocol

We now show how one can apply this model of the detection statistics to assess the performance of our quantum
coin-flipping protocol in the presence of varying loss and with the fair states. We first discuss how one can calculate
the intrinsic error probability P ∗ as well as the probability PA (PB) for a cheating Alice (Bob) to fix the outcome to
the bit of her (his) liking. All these calculations neglect cases with more than one click at Alice’s and/or at Bob’s.
This approximation is valid as the probability of such events is much smaller than the one of events with one click at
Alice’s and one at Bob’s. Hence, neglecting multiple clicks in the simulation has no impact on the comparison with
our experimental data.
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Intrinsic error probability

Let us consider P ∗ first. When both Alice and Bob are honest, a mismatch can occur only when both Alice and Bob
measure in the same basis, which happens with probability 1

2 . When this is the case, the state vector P is calculated
using θ = 0. Overall, P ∗ is given by

P ∗ =
1

2

(
P0110 + P1001

P0110 + P1001 + P1010 + P0101

)
. (S8)

The two terms in the numerator correspond to a mismatch associated with a two-fold coincidence between one of
Alice’s detector and one of Bob’s. To obtain the value of P ∗ per coin-flip instance, we normalize by the probability
of an instance.

Error probabilities in the presence of a cheater

Let us now consider PA. When Alice cheats, she succeeds in fixing the outcome of the coin-flip instance in two
possible ways. She either declares a basis different from Bob’s with probability 1

2 and he is forced to accept her bit,

or she declares the same basis as Bob, with probability 1
2 , and succeeds in fixing the bit with conditional probability

P ′A, which is obtained from P using θ = π
2 − arccos(4/5). Specifically, we have

PA =
1

2
(1 + P ′A) (S9)

where

P ′A =
P1010 + P0101

P1010 + P0101 + P0110 + P1001
. (S10)

When Bob cheats, he succeeds whenever he correctly identified Alice’s bit by measuring in a basis satisfying
θ = arccos(4/5). Hence, probability PB is given by

PB =
P1010 + P0101

P1010 + P0101 + P0110 + P1001
. (S11)

Using the calculated values of PA and PB , we can also calculate the lower bound

P ∗C = 2(1− PA)(1− PB) (S12)

on the intrinsic error probability of any classical protocol for noisy coin flipping [22].

Supplementary Note 3. Estimation of the experimental parameters

We now detail our estimation of the experimental parameters µ, ηA, ηB , dA, dB and V, where µ corresponds to the
mean number of photon pairs created per pump pulse. This estimation is based on previous characterizations of our
source [20,27] as well as factory specified values of some of our optical components. We obtained the values presented
on Supplementary Table S1.

The loss over the 12.4 km link includes the optical loss of the fibre and the loss of all optical components [20]. It also
includes additional loss caused by the temporal widening of the wave packets due to chromatic dispersion in the fibre.
Indeed, the 5 nm spectral width of Bob’s photons is sufficient to considerably widen the wavepackets. Considering
that we used a 400 ps detection window, and that the jitter of Bob’s detectors was equal to 200 ps, we calculated an
additional loss of 2.3 dB. Globally, the 12.4 km link increases the loss by 9.6 dB.

Using these parameters, we can estimate the expected performance of our protocol. Specifically, using values of
Supplementary Table S1 and eq. S8 through S12, we can produce lower and upper bounds for P ∗ and P ∗C , as shown
on Fig. 4-a of the main text.

We can also produce another curve of P ∗ assuming slightly improved, but realistic, experimental parameters, as
explained in the main text. The parameters are µ = 0.005, ηA = 9.79%, dA = 4×10−8, dB = 10 Hz×400 ps = 4×10−9

and F = 99.25%. To obtain this µ, one would have to lower the pump power by a approximately factor of 6 with
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respect to the value we used in our experiment. The improved value of dB corresponds to the dark count probability
per 400 ps of a free-running detector having a 10 Hz dark count rate. Finally, the improved value of F corresponds
to an intrinsic visibility of V = 99% and is achievable through better optical alignment. The expected value of P ∗ as
a function of ηB is shown on Fig. 4-b in the main text.


