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SUMMARY

Data on absolute molecule numbers will empower
the modeling, understanding, and comparison of
cellular functions and biological systems. We quanti-
fied transcriptomes and proteomes in fission yeast
during cellular proliferation and quiescence. This
rich resource provides the first comprehensive refer-
ence for all RNA andmost protein concentrations in a
eukaryote under two key physiological conditions.
The integrated data set supports quantitative biology
and affords unique insights into cell regulation.
Although mRNAs are typically expressed in a narrow
range above 1 copy/cell, most long, noncoding
RNAs, except for a distinct subset, are tightly
repressed below 1 copy/cell. Cell-cycle-regulated
transcription tunes mRNA numbers to phase-
specific requirements but can also bring about
more switch-like expression. Proteins greatly exceed
mRNAs in abundance and dynamic range, and
concentrations are regulated to functional demands.
Upon transition to quiescence, the proteome
changes substantially, but, in stark contrast to
mRNAs, proteins do not uniformly decrease but
scale with cell volume.
INTRODUCTION

Gene regulation is crucial to implement genomic information

and to shape properties of cells and organisms. Transcriptomes

and proteomes are dynamically tuned to the requirements of

cell volume, physiology and external factors. Although tran-

scriptomic and proteomic approaches have provided ample

data on relative expression changes between different condi-

tions, little is known about actual numbers of RNAs and proteins

within cells and how gene regulation affects these numbers.

More generally, most data in biology are qualitative or relatively
quantitative, but ultimately many biological processes will only

be understood if investigated with absolute quantitative data

to support mathematical modeling. Other areas of science

have long appreciated the limits of relative, or compositional,

data and potential pitfalls of their naive analysis (Lovell et al.,

2011).

Insights into numbers and cell-to-cell variability of selected

mRNAs and proteins have been provided by single-cell studies

(Larson et al., 2009), but these approaches require genetic

manipulation and are not well suited for genome-scale anal-

yses. Relating mRNA to protein abundance in single cells

is challenging, with only one such study available for a

prokaryote (Taniguchi et al., 2010). Global mRNA abundance

for yeast populations have been estimated (Holstege et al.,

1998; Miura et al., 2008). There are no comparisons for cellular

concentrations of mRNAs and the emerging diversity of non-

coding RNAs.

RNA-seq now allows actual counting of RNA numbers,

offering unbiased genome-wide information on average cellular

RNA concentrations in cell populations (Ozsolak and Milos,

2011). Moreover, the global quantification of proteins has

recently become possible owing to advances in mass spectrom-

etry, giving valuable insight into the protein content of different

cells (Beck et al., 2011; Cox and Mann, 2011; Maier et al.,

2011; Nagaraj et al., 2011; Vogel and Marcotte, 2012).

Here, we combine quantitative RNA-seq and mass spec-

trometry to analyze at unprecedented detail and scale how

changes in cell physiology and volume are reflected in the

cellular concentrations of all coding and noncoding RNAs and

most proteins. We analyze two fundamental physiological

states in fission yeast: (1) proliferating cells that need to con-

stantly replenish their RNAs and proteins, and (2) postmitotic

cells that do not grow or divide owing to nitrogen limitation

and reversibly arrest in a quiescent state (Yanagida, 2009).

Although quiescent states are common, both for yeast and

for cells in the human body, most research has focused on

proliferating cells. The ability to alternate between proliferation

and quiescence is central to tissue homeostasis and renewal,

pathophysiology, and the response to life-threatening chal-

lenges (Coller, 2011). For example, quiescent lymphocytes
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Figure 1. Transcriptome Quantification in

Proliferating Cells

(A) Abundance distribution of total RNA (green)

and mRNA (black). Red vertical lines indicate 1

and 10 RNA copies/cell, and red hatched lines

delimit expression zones 1 to 3. See also Figure S1

and Table S10.

(B) Abundance for all detected mRNAs (each dot

represents a gene). Green and gray dots corre-

spond to essential and non essential genes,

respectively. Expression zones are indicated at

right.
and dermal fibroblasts become activated to mount immune

responses or support wound healing, respectively. Adult stem

cells also alternate between proliferating and quiescent states,

and the deregulation of either state can cause complex pathol-

ogies such as cancer (Li and Clevers, 2010).

Our integrated transcriptomic and proteomic data, acquired in

parallel under highly controlled conditions in a simple model,

afford varied biological insights and reveal key principles of

RNA and protein expression in proliferating and quiescent cells

with broad relevance for other eukaryotes. This rich resource

also provides a quantitative framework toward a systems-level

understanding of genome regulation, and the common units of

the absolute data allow direct comparison of different biological

processes and organisms.

RESULTS AND DISCUSSION

Transcriptome and Proteome Quantification in Two
Conditions
We acquired quantitative expression data relative to absolutely

calibrated standards for transcriptomes and proteomes of

haploid fission yeast cells. For transcripts, genome-wide mea-

surements were obtained by calibrating RNA-seq data from

total RNA preparations with data on absolute cellular concen-

trations for 49 mRNAs, covering the dynamic expression range.

The overall measurement error was estimated to be �2-fold or

less (Figure S1; Tables S1–S4 available online). Protein quantifi-

cation was performed on the same cell samples using a mass

spectrometry (MS) approach (Schmidt et al., 2011). Selected

proteotypic peptides from 39 proteins (Table S5), covering the

dynamic expression range, were used to absolutely quantify

the corresponding proteins (Tables S6 and S7). These data

were then used to translate the MS-intensities for the other

proteins into estimates of cellular concentration (Figures S2A–

S2D and S3; and Tables S8 and S9). The mean overall measure-

ment error was estimated at 2.4- and 2.7-fold for proliferating

and quiescent cells, respectively.

We quantified transcriptomes and proteomes in two distinct

physiological conditions: (1) exponentially proliferating cells in
672 Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc.
defined minimal medium, and (2) quies-

cent cells, 24 hr after nitrogen removal

(Figure S4). We first report the results

from proliferating cells, and then relate

our findings to corresponding data from
quiescent cells. Table S4 provides the cellular copy numbers

for RNAs and proteins in the two conditions.

Most mRNAs Are Expressed in Narrow Range above 1
Copy/Cell
In proliferating cells, we measured a total of �41,000 mRNA

molecules/cell on average, representing �5% of the overall

�802,000 rRNAs/cell in our samples. Protein-coding genes

produced a median of 2.4 mRNA copies/cell, ranging from

�0.01 to >810 copies (Figure 1A). Only 71 genes showed no

detectable mRNA signal, 43 of which are annotated as

‘‘dubious’’ or ‘‘orphan’’ (Wood et al., 2012). To discuss our

findings, we distinguished three somewhat arbitrary expression

zones, set relative to the one RNA copy/cell mark (Figure 1A).

Zone 1 contained low-abundance mRNAs detected at <0.5

copies/cell. Zone 2 mRNAs were expressed at �1 copy/cell

(0.5–2 copies), where fluctuations due to cell division or

stochastic expression will strongly affect the presence of

mRNAs in cells. Zone 3 mRNAs showedmore robust expression

at >2 copies/cell. Most mRNAs were expressed within a low

and narrow range: whereas >90% of all annotated mRNAs

(4,608/5,110) belonged to zones 2 or 3, 86.1% of these mRNAs

were present at <10 copies/cell (Figure 1A). Low overall

mRNA concentrations have also been reported for budding

yeast, which has comparable gene numbers and cell size, with

even lower estimates for median mRNA abundance (<1 copy/

cell) and total mRNA molecules/cell (Holstege et al., 1998; Miura

et al., 2008). Our findings are in line with a single-cell study of

budding yeast, where five mRNAs show 2.6–13.4 copies/cell,

with a total estimate of 60,000 mRNA molecules/cell (Zenklusen

et al., 2008).

We examined the mRNAs of the 1,273 genes essential for

growth (Kim et al., 2010), which are expected to be expressed

in proliferating cells. Nearly all essential mRNAs were expressed

in zones 2 or 3 (98.4%; Figure 1B). This finding raises the

possibility that �1 mRNA copy/cell defines a natural minimal

threshold for productive gene expression.

The view of �1 mRNA copy/cell as an expression threshold

is supported by recent data from metazoa, where mRNA levels
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Figure 2. Functional Categories and Expression Zones

(A) Hierarchical clustering of p values (Fisher exact test, color-coded as indicated) assessing significance of overlap between genes in functional categories (rows)

and 200-gene sliding windows of mRNA abundance (columns). Vertical red lines delimit the expression zones. Functional categories with p values <0.01 in R1

window are shown. See also Table S11.

(B) Frequency of genes for which corresponding protein is detected in 200-gene sliding window of mRNA abundance (black curve; left axis), together with p

values (Fisher exact test) for significance of overlap between gene list and window (green curve; right axis).

(C) As in (B) for early meiotic differentiation genes (Mata et al., 2002).

(D) As in (B) for core environmental stress response genes (Chen et al., 2003).

(E) As in (B) for ‘‘protein folding’’ genes (Gene Ontology ID: 0006457).
show a bimodal distribution (Hebenstreit et al., 2011): one

group of putative nonfunctional mRNAs present at <1 copy/

cell, and another group of actively transcribed mRNAs ex-

pressed at >1 copy/cell. mRNA levels did not show such

a bimodal distribution in fission yeast (Figure 1A). This disparity

highlights that in differentiated metazoan cells many genes are

not expressed, whereas in proliferating yeast cells most genes

are actively expressed. Notably, when including long noncod-

ing RNAs, which were mostly present at low abundance, fission

yeast also showed a bimodal distribution for transcript levels

(Figure 1A).

Characteristics of Three mRNA Expression Zones
Each expression zone was enriched for distinct functional

categories (Figure 2A), revealing that genes participating in

similar processes typically coordinate their cellular mRNA

concentrations. The mRNA expression zones reflect protein

expression as the 3,397 proteins detected in proliferating cells

showed a strong bias toward highly expressed mRNAs (Fig-

ure 2B), although proteins of low abundance were also confi-

dently detected (see below).
Only 431 genes were present in zone 1 (8.4% of 5,110 protein-

coding genes), which were enriched for meiotic differentiation

functions such as recombination and sporulation (Figures 2A

and 2C). Genes induced during meiosis are tightly repressed

during proliferation, and their expression is regulated at multiple

levels including chromatin (Zofall et al., 2012), transcription (Mata

et al., 2007), and mRNA turnover (Harigaya and Yamamoto,

2007; McPheeters et al., 2009). Only 31 (7.2%) of these genes

produced detectable proteins, most of which were stress

response genes and present near the upper limit of zone 1

(0.5 copies/cell). These findings support the notion that zone 1

genes are not actively transcribed and typically do not lead to

productive protein expression. We propose that the presence

of mRNAs at well below 1 copy/cell reflects active repression

of the corresponding genes. Such low mRNA copy numbers

could be the result of rare stochastic transcription (Hebenstreit

et al., 2011).

The 1,664 genes of zone 2 included 27.8% of all essential

genes, and 880 (52.9%) of these genes produced detectable

proteins. These findings indicate that low mRNA concen-

trations (�1 copy/cell) are compatible with productive gene
Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc. 673



Figure 3. mRNA Copy Number Changes during Cell Cycle

Peak (blue) and basal (green) mRNA abundance of cell-cycle-regulated genes

extrapolated from average data in asynchronous cultures, with 10% of cell-

cycle assumed as duration for peak expression. Data for six cell-cycle time

course experiments are indicated by clustered dots (Rustici et al., 2004). Left:

ten histone mRNAs peaking during S phase; right: mik1, mde6, and mei2

mRNAs peaking during M and G1 phases.

See also Figure S5 and Table S12.
expression. Zone 2 genes were functionally enriched for chro-

mosome segregation, nitrogen starvation, and core environ-

mental stress response (Figures 2A and 2D). The latter genes

are rapidly induced in multiple stresses (Chen et al., 2003) and

show highly variable expression across different experimental

conditions (Pancaldi et al., 2010). This enrichment suggests

that �1 mRNA copy/cell corresponds to the basal expression

typical of many stress response genes (Chen et al., 2003). Unlike

the tight repression of meiotic genes, the basal expression of

stress genes could enable a rapid response to sudden environ-

mental challenges. Zone 2 was transitional between zones 1

and 3 also with respect to protein detection (Figure 2B). We

propose that low basal mRNA expression might not always

lead to robust protein expression but might maintain a respon-

sive chromatin environment, e.g., for genes that require rapid

upregulation during stress. Moreover, such low average expres-

sion could reflect a ‘‘bet-hedging’’ strategy to diversify cellular

phenotypes and promote population survival to unexpected

environmental challenges (López-Maury et al., 2008).

Zone 3 contained 2,944 genes (57.6% of all genes), which

were enriched for several functional categories (Figure 2A). For

example, genes involved in translation and protein folding
674 Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc.
tended to be highly expressed (Figure 2E). Proteins were de-

tected for 2,486 (84.4%) of the zone 3 genes, indicating that

robust mRNA expression typically results in robust protein

expression.

Together, these data show that mRNAs of different functional

categories are typically expressed in distinct abundance ranges.

The data further support the notion that an expression of �1

mRNA copy/cell defines a minimal threshold for productive

gene expression. We conclude that the three mRNA expression

zones reflect characteristic gene groups with respect to regu-

lation, cellular functions, and protein production.

Effect of Cell-Cycle-Regulated Gene Expression
on mRNA Numbers
Global studies have revealed hundreds of fission yeast genes

that are periodically expressed during the cell cycle (Marguerat

et al., 2006). The corresponding mRNA copy numbers will

therefore fluctuate, and our quantitative data from asynchronous

cell cultures reflect time-averaged mRNA counts. The effects

of cell-cycle-regulated gene expression on absolute mRNA

abundance are not known. Two scenarios are plausible: periodic

gene expression might boost mRNA numbers for proteins

required at higher levels during certain cell-cycle phases, or it

might act in a switch-like manner to tightly restrict expression

to a specific phase.

To distinguish between these two hypotheses, we applied

simple modeling to extrapolate absolute changes in mRNA

abundance of cell-cycle-regulated genes from our data in asyn-

chronous cultures. The model assumes that periodic genes

peak in expression during a defined cell-cycle phase and

show basal expression during the other phases. We derived

phase-specific mRNA copy numbers for 241 periodic genes

with expression peaking in M, G1, or S phase (Figure 3).

Most of these genes (96.3%) showed variations in mRNA

expression that remained within zones 2 and 3 throughout

the cell cycle. For example, the mRNAs for 10 histone genes

were abundant throughout the cell cycle, with their numbers

peaking during DNA replication (Figure 3). This pattern is

consistent with the idea that periodic gene expression boosts

mRNA numbers to accommodate an increased demand for

histones during S phase, with a high basal requirement in

other phases.

Only nine genes showed a more switch-like pattern of tran-

scription: they belonged to zones 2 or 3 during peak expres-

sion, but dropped to zone 1 during basal expression, thus

crossing the �1 mRNA copy/cell threshold (Figure 3). We

propose that expression of these genes is restricted to a

specific cell-cycle phase, and repressed when they may be

harmful. For example, the mik1 gene encodes an inhibitor of

mitosis with a tightly restricted expression window at both

mRNA and protein levels (Ng et al., 2001). Another example

was mei2, encoding a protein that promotes untimely meiosis

when activated at the wrong time (Harigaya and Yamamoto,

2007). We conclude that periodic gene expression generally

tunes mRNA numbers to specific requirements in different

cell-cycle phases but also, in special cases, reflects regulatory

switches restricting the expression of critical regulators to

specific phases.



Figure 4. Quantitative Analysis of Long Noncoding RNAs

(A) Absolute abundance of mRNAs (gray), and all (dark green), intergenic (bright green), and antisense (blue) lncRNAs. Expression zones are indicated at right.

(B) Cumulative plot of copy numbers contributed by lncRNA genes ranked by decreasing abundance, with genes expressed in zones 2 and 3 at left of red line.

(C) Sequence scores for lncRNAs in libraries made from total versus poly(A)+ RNA. Bright green circles, lncRNAs expressed in zone 1; dark green and orange

triangles, lncRNAs expressed in zones 2 or 3; orange, lncRNAs that are R4-fold more abundant in total than in poly(A)+ RNA library.

See also Table S13.
Long Noncoding RNAs Are Typically Present below 1
Copy/Cell
Substantial transcriptional activity occurs outside of protein-

coding genes and produces distinct noncoding RNAs. Besides

the well known RNAs involved in gene expression such as

rRNAs, tRNAs, snRNAs, and snoRNAs (Figure S1), 1,557 long

noncoding RNAs (lncRNAs) have been identified in fission yeast

(Rhind et al., 2011; Wilhelm et al., 2008). These lncRNAs are

reminiscent of lincRNAs in multicellular eukaryotes and unanno-

tated transcripts in budding yeast (SUTs, CUTs, XUTs) (Atkinson

et al., 2012), but differ from the short RNAs produced by RNA

interference pathways (Grewal, 2010). In proliferating cells, we

could quantify 86.4% (1,346/1,557) of these lncRNAs, which

together accounted for only 1,672 RNA molecules/cell (Table

S10). Accordingly, 1,159 (85.5%) of these lncRNAs belonged

to zone 1, numbering well below 1 copy/cell, similar to tightly

repressed mRNAs (Figures 1A and 4A). lncRNAs transcribed

both in intergenic regions and antisense to coding genes typi-

cally belonged to zone 1 (Figure 4A). By analogy with meiotic

genes, such low abundance could reflect tight repression at

transcriptional, posttranscriptional, and/or chromatin levels.

The remaining 187 lncRNAs (14.5%) were expressed in zones

2 and 3, at �1–200 copies/cell. Notably, this small group

accounted for >90% of the total cellular number of lncRNA

molecules (Figure 4B). This group was not enriched for lncRNAs

conserved in other fission yeast species (Rhind et al., 2011). The

coding genes that were associated with antisense RNAs ex-

pressed in zones 2 or 3 were more likely to be repressed in

zone 1 (pbinomial < 10�8), consistent with a role of antisense tran-

scription in repressing the corresponding sense transcription.

We compared the sequence scores from RNA-seq libraries

produced from either total or poly(A)-enriched RNA. Most

lncRNAs were present at similar levels in the two libraries, irre-

spective of their abundance (Figure 4C). This result suggests

that most lncRNAs are polyadenylated and therefore likely

transcribed by RNA polymerase II (Pol II). Intriguingly, 38

lncRNAs were much more abundant in the total RNA library
(Figure 4C). These lncRNAs were depleted during poly(A) enrich-

ment and hence likely not polyadenylated. This finding raises

the possibility that these lncRNAs are not transcribed by Pol II,

or that they are matured via poly(A) trimming (Lemay et al.,

2010). These lncRNAs showed no particular sequence features

using Rfam (Gardner et al., 2011), and they were not similar to

any well-known RNAs such as snRNAs or snoRNAs. Remark-

ably, although these lncRNAs made up only 2.4% of the known

lncRNA repertoire, they accounted for 63.6% of the total lncRNA

molecules. Taken together, this analysis uncovered two distinct

classes of lncRNAs that differ based on their absolute expres-

sion and polyadenylation status, with a small class of nonpolya-

denylated lncRNAs contributing the majority of all cellular

lncRNA molecules.

Proteins Greatly Exceed mRNAs in Abundance
and Dynamic Range
In proliferating cells, we could quantify 3,397 (66.5%) of the

5,110 predicted proteins, adding up to an average of 60.3 million

protein molecules/cell. The identified proteins showed no strong

bias against any protein class (Figure S2E), underlining the

broad coverage achieved. Protein-coding genes produced a

median of 3,919 protein copies/cell, with a dynamic range of

five orders of magnitude (Figure 5A). The most abundant protein

was the translation factor EF-1a (Tef102), expressed at �1.1

million copies/cell, whereas the lowest detectable protein was

the formin Cdc12, expressed at <100 copies/cell. Our data

were similar to quantitative microscopy data for 27 cytokinesis

proteins (Figure S2H) (Wu and Pollard, 2005). On average,

proteins were�1,850 timesmore abundant than their respective

mRNAs. This finding indicates that translation serves as a global

amplification step, although some of this difference could also

reflect longer half-lives for proteins than for mRNAs.

The mRNAs coding for the 3,397 detected proteins were

greatly enriched in expression zones 2 and 3 (Figure 5B). More-

over, the 1,273 essential genes (Kim et al., 2010) produced

a significantly higher proportion of detectable proteins (81.9%,
Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc. 675



Figure 5. Quantitative Analysis of Proteome in Proliferating Cells

(A) Abundance distribution for mRNAs (green) and proteins (red). Red vertical lines delimit expression zone 2 (0.5–2 mRNA copies/cell). See also Figures S2, S3,

and Table S10.

(B) Absolute abundance for all mRNAs (each dot represents a gene). Dark and light blue dots correspond to genes for which proteins were detected or not,

respectively.

(C) Protein versus mRNA abundance. Black curve, sliding median.

(D) Protein/mRNA ratio versus protein abundance. Red dots: ribosomal proteins; black curve: sliding median.

(E) Protein abundance for selected functional categories. Each dot represents a protein. Haploid Schizosaccharomyces pombe cells contain 5,110 and 10,220

annotated protein-coding genes in G1 and G2 phase, respectively (red zone), and 5,348 introns across 2,523 intron-containing genes (red and yellow zones,

respectively). In proliferating cells, we measured �41,000 mRNA molecules (dark green line) and 1.1–2.6 3 105 copies of each rRNA (green zone). Ribosomal

proteins copies/cell for paralogs were summed up.

See also Figure S6.
pbinomial < 10�15). The 458 robustly expressed zone 3mRNAs not

associated with detectable proteins were enriched for mRNAs

upregulated during mitosis and for cell surface functions
676 Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc.
(although protein detection was not affected by numbers of

trans-membrane domains; Figure S2F; Table S11). Proteins en-

coded by mitotic mRNAs may only be expressed during a short



cell-cycle window, and thus fall below the detection limit in

unsynchronized cells. Accordingly, of eight cell-cycle-regulated

proteins tested, only two were detectable by fluorescence

microscopy, and they showed expression restricted to specific

phases (Table S12). Small proteins typically had less than or

equal to five MS-compatible peptides and showed lower identi-

fication rates (Figure S2G; Table S11). Taken together, these

data indicate that the proportion of proteins not detected due

to technical limitation (rather than lack of expression) was

<20% of the expressed proteome. Thus, we provide accurate

absolute quantification for most fission yeast proteins, and these

proteins substantially exceed the mRNAs in abundance and

dynamic range.

Coordinated Expression at mRNA and Protein Levels
Copy numbers of mRNAs and corresponding proteins were

highly correlated (Figure 5C). This global relationship between

transcriptome and proteome means that mRNA levels largely

reflect the respective protein levels. Translational properties of

mRNAs, such as ribosome numbers and densities (Lackner

et al., 2007), were also correlated with protein abundance

(R2 �0.1). These data extend previous observations that gene

expression is coordinated at the levels of transcription, mRNA

decay and translation (Lackner et al., 2007) to now also include

protein abundance. However, the ratios between protein and

corresponding mRNA copy numbers spanned over three orders

of magnitude, ranging from 14 to 61,060. This result points to

substantial regulation at the levels of translation and/or protein

turnover. The protein/mRNA ratios were also strongly correlated

with the corresponding protein numbers, but they saturated at

higher protein levels (Figure 5D). This phenomenon suggests

that translation becomes limiting for the most abundant pro-

teins (e.g., owing to saturation of ribosomes on mRNAs), and

that these proteins thus rely on relatively higher mRNA numbers

to boost their abundance. Schwanhäusser et al. (2011) have

observed a similar saturation when comparing 5,000 mouse

protein levels to respective translation rates. Notably, the highly

expressed ribosomal proteins formed a distinct group that

showed significantly lower protein/mRNA ratios compared to

genes with similar protein expression (pWilcoxon < 10�9; Fig-

ure 5D). This observation, and related data from Schmidt et al.

(2007), suggests that ribosomal proteins rely more on mRNA

levels than on translation for their high abundance. As ribosomal

proteins act in a complex with rRNAs, the emphasis on transcrip-

tional control might ensure better regulatory coordination with

the nontranslated rRNAs. Other ribonucleoprotein complexes

such as the spliceosome, however, did not show such lower

protein/RNA ratios.

Protein abundance was negatively correlated with protein

length (R2 �0.07), consistent with shorter mRNAs being

more efficiently translated (Lackner et al., 2007). This finding

supports the idea that highly expressed proteins evolved

more streamlined structures due to energetic constraints.

Conversely, no correlation between mRNA abundance and

protein length was evident (R2 �4 3 10�5), suggesting that

any regulatory adaptation occurred at the levels of translation

and/or protein stability, which are energetically more costly

than transcription.
Strikingly, the 20% most abundant proteins accounted for

81.3% of the total protein molecules in proliferating cells, and

this skew was also reflected in the corresponding mRNA

numbers, albeit less pronounced (Figure S2I). This finding

evokes the Pareto principle (‘‘20–80 rule’’) of unequal distribu-

tion in economics and elsewhere, and it highlights that the cell

invests most energy to produce many copies of relatively few

proteins. In addition, the distribution of individual protein

frequencies as a function of their expression rank fitted power-

law distributions, extending a characteristic of mRNA expres-

sion to proteins (Figures S2J and S2K). Taken together, we

conclude that gene regulation is globally coordinated and

streamlined across the expression spectrum.

Protein Abundance in Context of Cellular Landmarks
and Functions
We compared protein concentrations with cellular ‘‘landmarks’’

for meaningful biological context (Figure 5E). The ribosome is

a large complex composed of single copies of multiple proteins

and rRNAs. Thus, transcriptome and proteome data correctly

calibrated relative to each other should arrive at similar estimates

for total ribosome numbers, allowing cross-validation of our

two independent data sets. Reassuringly, the numbers for

most ribosomal proteins were consistent with the numbers for

different rRNAs (Figure 5E), indicating that there are 1–2 3 105

ribosomes in an average proliferating cell. This number is

comparable to an electron microscopy estimate (�5 3 105 ribo-

somes/cell; Maclean, 1965). For further confirmation, we calcu-

lated the total number of ribosomes associated with mRNAs

by multiplying copy numbers of all individual mRNAs with their

associated ribosome numbers obtained from polysome profiling

(Lackner et al., 2007), resulting in a total of �1.5 3 105 ribo-

somes/cell. Thus, several independent data point to similar

cellular ribosome numbers, corroborating that our quantification

of transcripts and proteins is accurate, both with respect to

absolute numbers and relative to each other. Some ribosomal

proteins showed much lower abundance, however, supporting

the view that they may have nonribosomal functions (Bhavsar

et al., 2010). The median mRNA and protein expression of

single-copy ribosomal proteins was significantly higher than

the median expression of duplicated ribosomal proteins (Fig-

ure S6A); this finding raises the possibility that paralogs

contribute to only part of the ribosome pool, suggesting hetero-

geneous ribosome composition. Proliferating cells contained

approximately four times more ribosomes than mRNAs, illus-

trating the amplification at the level of translation.

The proteasome is a large complex that degrades ubiquiti-

nated proteins. An average cell contained 1–2 3 104 pro-

teasomes, approximately ten times fewer than ribosomes

(Figure 5E). This result highlights that more resources are

invested in protein production than in protein degradation in

proliferating cells that need to continuously produce new pro-

teins to compensate for dilution from cell growth and division.

Proteins of the Pol II transcription complex were present at

7,780 median copies/cell, meaning that cells contain �1 Pol II/

gene (Figure 5E). This low estimate suggests that Pol II could

become limiting, consistent with the finding that Pol II subunit

mutants are haplo-insufficient (Kim et al., 2010), and with
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evidence for transcription factories where limiting factors are

concentrated for gene expression (Cook, 2010). One Pol II

subunit, Rpc10, was more highly expressed (20,748 copies/

cell), reflecting that Rpc10 is part of all three RNA polymerase

complexes.

We also analyzed regulatory transcription factors (TFs) that

direct Pol II to specific subsets of genes. The numbers of the

detectable TFs ranged from �100 to >7,000 copies/cell. TFs

controlling meiotic differentiation (Mei4, Atf21, Atf31, Rep1;

Mata et al., 2007) were not detected as proteins and showed

low mRNA abundance in zone 1, whereas the heat shock factor

Hsf1 was the most highly expressed TF (7,244 copies). The large

dynamic range in TF abundance could reflect different mecha-

nisms of transcriptional control, or TF copy numbers might scale

with the numbers of their target genes, although they did not

correlate with the occurrence of known DNAmotifs (Figure S6B).

Proteins of the spliceosome complex were present at 2,675

median copies/cell, similar to the number of intron-containing

genes (Figure 5E). Two splicing proteins, Snu13 and Uap56,

were found at much higher numbers (�1 3 105 and 5 3 104

copies, respectively), probably reflecting their additional roles

in rRNA maturation and mRNA export (Dobbyn and O’Keefe,

2004; Strässer and Hurt, 2001). Thus, the cell produces just

enough spliceosomes to deal with the 2,523 intron-containing

transcriptional units, supporting the view that most splicing

occurs cotranscriptionally in a chromosomal context (de Al-

meida and Carmo-Fonseca, 2012).

Proteins with RNA-recognition motifs (RRM) are an important

class of RNA-binding proteins that control posttranscriptional

gene expression. Intriguingly, RRM protein abundance was

4-fold higher than TF abundance (Figure 5E), evocative of the

4-fold difference between mRNA molecules and protein-coding

genes during G2-phase. Thus, the numbers of RRM proteins

and TFs scale with the numbers of their respective binding

partners. The detected RRM proteins showed large differences

in abundance, ranging from only 175 copies for the methyltrans-

ferase Set1 to 139,690 copies, more than mRNA molecules,

for the uncharacterized Vip1. As for TFs, RRM proteins with

meiotic functions (Mug24, Spo5, Crp79, Mug28, Mde7) where

tightly repressed during proliferation and not detected as

proteins. These findings suggest that some RRM proteins have

transient or specialized roles by targeting few specific tran-

scripts, whereas others have more ubiquitous roles, in line with

genome-wide binding data (Hogan et al., 2008). Accordingly,

the cytoplasmic Pabp, which binds to poly(A) tails of all mRNAs,

showed the second highest expression at 87,000 copies/cell.

This result suggests that approximately two Pabp proteins bind

to average mRNAs, in line with findings that poly(A) tails in yeast

contain�50 residues on average (Lackner et al., 2007) and every

Pabp covers 27 adenine residues (Baer and Kornberg, 1983).

Protein Expression Reflects Cellular Function
We also analyzed protein copy numbers with respect to different

functional categories. Discrete patterns of protein expression

distributions were evident, with proteins of different functions

being significantly enriched for distinct abundance ranges (Fig-

ure S7). Thus, proteins of similar functions are often expressed

at similar copy numbers. Three general protein expression
678 Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc.
groups were apparent. Lowly expressed proteins (<5,000

copies/cell) were enriched for regulators of biological processes

such as TFs and protein kinases, and for proteins involved

in chromosome structure and DNA repair. An intermediate

group of proteins, expressed at �0.5–1 3 104 copies/cell, often

functioned in RNA metabolism, including splicing, processing

or degradation. Highly expressed proteins (�1 3 104–1.1 3

106 copies/cell) were enriched for functions related to transla-

tion, growth, and metabolism. We conclude that, like mRNAs,

proteins functioning together or in related biological processes

typically share similar expression levels, and these levels reflect

cellular requirements for different tasks or complexes.

Transcriptome Shrinks Globally during Quiescence
To analyze quantitative RNA and protein changes in a distinct

physiological state, we also acquired data from cells after

24 hr of nitrogen starvation. Upon nitrogen removal, cells stop

growth, divide twice, and arrest as postmitotic, quiescent cells.

These cells remain metabolically active by recycling nitrogen,

become highly resistant to multiple stresses, and survive for

months (Yanagida, 2009).

Quiescent cells are stubby compared to proliferating cells,

showing a median volume reduction of �40%–50% within 12 hr

of nitrogen removal (Figures S4A–S4D). Strikingly, during the

same period, the RNAmass is reduced by�85% to that of prolif-

erating cells (Figure S4E). We measured a total of 89,470 rRNAs/

quiescent cell, representing merely 11.2% of the number in pro-

liferating cells (Figure 6A). The protein-coding transcriptome

showed a somewhat lower reduction, shrinking to 7,419 total

mRNAs (18% of proliferating cells; Figures 6A and 6B). Taking

into account their smaller volumes, quiescent cells contained

�19.6% rRNA and 31.3%mRNA compared to proliferating cells.

The reduction in mRNA copy numbers was global, and remark-

ably coordinated, with abundance in proliferating and quiescent

cells remaining highly correlated (Figure 6C). We conclude that

quiescent cells rely on a substantially smaller transcriptome,

both with respect to RNA abundance and concentration.

Nevertheless, most mRNAs were still expressed within zones

2 or 3 during quiescence (49.8%and 15%, respectively), but with

a median of only 0.69 copies. Thus, although shrinking by 82%

in number, mRNAs retained�72%of the diversity in proliferating

cells. Only 81 mRNAs (1.6% of all) were >2-fold more abundant

in quiescent than in proliferating cells, whereas 4,266 mRNAs

(83.5%) were R2-fold less abundant. Thus, quiescent cells

harbor a diminished but diverse transcriptome, with the majority

of mRNAs being expressed at only �1 copy/cell. It is possible

that low mRNA concentrations represent a more robust expres-

sion during quiescence when cells do not grow and divide, and

mRNAs might be stabilized for long-term endurance (Pluskal

et al., 2011).

Figure 6D compares median mRNA copy numbers for

selected functional categories in proliferating and quiescent

cells. Most categories were substantially downregulated in

quiescence, whereas a few retained similar numbers, including

stress response and sexual differentiation (Figure 6D). Further-

more, three highly expressed categories, all related to protein

translation, were downregulated more than average, yet these

mRNAs remained the most abundant with respect to absolute



Figure 6. Transcriptomes and Proteomes in Proliferating versus Quiescent Cells

(A) Cell volume and rRNA, mRNA, and protein copy numbers in quiescent cells as percentage of corresponding values in proliferating cells.

(B) Distribution of mRNA (left) and protein (right) copies/cell during proliferation (blue) and quiescence (green), with median mRNA and protein abundance during

proliferation and quiescence indicated by horizontal blue and green lines, respectively.

(C) mRNA abundance in quiescent versus proliferating cells. Red and black lines delimit expression zone 2 (0.5–2 mRNA copies/cell) and 2-fold expression

changes, respectively.

(D) Median mRNA abundance of selected functional categories in quiescent versus proliferating cells. Red and black lines as in (C). Red and green dots indicate

lowly and highly repressed categories, respectively (Table S14).

(E) Protein abundance in quiescent versus proliferating cells. Black diagonal lines delimit 2-fold expression changes.

(F) Median protein abundance of selected functional categories in quiescent versus proliferating cells. Black lines as in (E). Red and green dots indicate induced

and repressed categories, respectively (Table S14).
copy numbers (Figure 6D). In conclusion, quiescence is charac-

terized by a global reduction in mRNA numbers, but much less

so in mRNA diversity. mRNAs involved in cell maintenance,

such as adaptation to stress and nutrient limitation, become

relatively more prevalent during quiescence, whereas those

involved in translation become relatively less prevalent, although

they remain highly abundant.

Proteome Does Not Shrink Globally but Is Remodeled
during Quiescence
We detected a total of 31.2 million protein molecules/quiescent

cell, representing 51.7% of the number measured in proliferating

cells. Adjusting for the decreased volume of quiescent cells,

however, protein numbers were only reduced by �9.5%. Thus,

the proteome largely scaled with volume, and, in stark contrast

to the RNAs, quiescent cells maintained similar protein concen-

trations (Figures 6A and 6B). The median number of protein

copies/quiescent cell was 4,851, which is actually higher than
for proliferating cells. This apparent paradox is explained by

a disproportionate reduction of the 10% most highly expressed

proteins, involved in translation and growth, which account for

87.2% of all proteins lost in quiescent cells (Figures 6B and

6E). We detected 53.2% of all proteins during quiescence,

�13% less than during proliferation. The 897 proteins detected

only in proliferating cells were enriched for mitochondrial trans-

lation and organization (Table S11). This finding suggests that

quiescent cells have decreased oxidative metabolism, consis-

tent with effects on mitochondrial translation and respiration on

chronological lifespan (Pluskal et al., 2011). On the other hand,

the 221 proteins detected only in quiescent cells were enriched

for stress and nitrogen starvation functions.

The proteome was substantially remodeled during quies-

cence, with 47% of all proteins changing their copy numbers

>2-fold (Figure 6E). Figure 6F illustrates this remodeling by

comparing median protein copy numbers for selected functional

categories between proliferating and quiescent cells. Several
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Figure 7. Regulatory Dynamics during

Quiescence Entry

(A) Microarray time course to analyze changes in

mRNA levels at 16 time points, before and 30 min

to 7 days after nitrogen removal. Red profiles,

mRNAs induced >1.5-fold within 3 hr after nitrogen

removal; blue profiles, mRNAs repressed

throughout time course. Data are normalized to

0 hr and corrected for total cellular RNA content.

(B) Average expression profiles of stress- and

growth-related genes, and average expression

changes of all genes.

(C) Absolute nCounter measurements of stress-

and growth-related genes, and average profile for

all 49 test genes.

(D) Protein abundance in quiescent versus prolif-

erating cells. Lower right: significance of overlap

between mRNAs induced >1.5-fold within 3 hr

after nitrogen removal (red dots) and proteins

induced >2-fold at 24 hr after nitrogen removal.
cellular maintenance functions, such as stress response,

nitrogen starvation, DNA repair, vacuoles and cell wall, showed

actually increased protein abundance in quiescence (Figure 6F;

Table S14), in stark contrast to the global shrinking observed

for mRNAs (Figure 6D). Categories with decreased protein

abundance were related to translation and growth, similar to

those strongly repressed at the mRNA level (Figure 6F). Notably,

the top 50 most highly expressed proteins during proliferation

were enriched for roles in glucose metabolism and translation,

while during quiescence these proteins were only enriched for

glucose metabolism (Table S11). This finding illustrates that

quiescent cells remain metabolically active, while reducing the

energetic costs of protein synthesis (Shimanuki et al., 2007).

The differences in transcriptome and proteome regulation in

quiescent cells resulted in a lowered correlation between

mRNA and protein copies (R2 = 0.36) compared to proliferating

cells (R2 = 0.55).

In conclusion, quiescent cells upregulate proteins implicated

in a dormant lifestyle, while maintaining an abundant, yet

strongly reduced, translational machinery. Together with the

drastic reduction in overall mRNA abundance, this finding

highlights the change in cellular physiology from a growth

program for proliferation to a maintenance program for stress
680 Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc.
protection and long-term endurance.

These two fundamental programs are im-

plemented by balancing the expression

of stress- versus growth-related genes,

regulated by antagonistic signaling path-

ways such as the stress-activated protein

kinase (SAPK) and target of rapamycin

(TOR) (López-Maury et al., 2008).

Early mRNA Burst Sustains High
Protein Numbers during
Quiescence
We showed that 24 hr after nitrogen

removal quiescent cells reached a state
of a globally diminished transcriptome and a remodeled pro-

teome. How do these cells manage to upregulate numerous

proteins while downregulating most of the corresponding

mRNAs (Figure 6)? We pursued this question by analyzing

dynamic changes in mRNA levels at high temporal resolution.

This time course experiment revealed that within 12 hr of

nitrogen removal most mRNAs decreased whereas others

transiently increased, followed by largely constant mRNA levels

from 12–186 hr (Figure 7A). Although many stress-related genes

were induced within 2 hr of nitrogen removal before becom-

ing repressed, growth-related genes became immediately

repressed (Figure 7B). We also measured absolute mRNA abun-

dance for 49 genes from the same cell samples that reiterated

the global data, excluding a normalization artifact (Figure 7C).

Note that the average expression of all genes, and the absolute

expression of the 49 test genes, decreased during the time

course, with the stress-related genes showing a lower decrease

and the growth-related mRNAs a higher decrease relative to all

genes (Figures 7B and 7C). This pattern is also reflected in

relative expression changes from microarray data (Mata and

Bähler, 2006; Shimanuki et al., 2007). The absolute data pre-

sented here, however, expands and refines our understanding

of this gene expression program, revealing that the upregulation



of stress-related genes is only transient, followed by a global

repression of most genes.

Entry into quiescence thus consists of two phases: (1) a rapid

adaptation where selected genes are induced, and (2) a global,

but differential, repression of most genes. The burst in stress-

related mRNAs could contribute to the proteome reshuffling

observed at 24 hr. Indeed, a significant number of proteins

with increased levels during quiescence corresponded to the

transiently-induced mRNAs (Figure 7D). Thus, the early mRNA

burst leads to a sustained increase of selected proteins, long

after the corresponding mRNAs have decreased again. This

mode of regulation depends on longer half-lives for proteins

than for mRNAs, and it is plausible that proteins become further

stabilized during quiescence. We conclude that cells, upon

nitrogen removal, immediately repress the growth-related

mRNAs while transiently inducing stress-related mRNAs, which

in turn help to adjust the proteome for extended quiescence.

Conclusions
We comprehensively quantified the average numbers of RNAs

and proteins in two fundamental cellular states of a eukaryotic

model system. Besides providing a lasting resource for follow-

up-studies, our data provide unique insight into cell regulation

and function. Although mRNA and protein levels are well corre-

lated overall, more strongly in proliferating than in quiescent

cells, different mRNAs are �10 to 60,000-fold less abundant

than the corresponding proteins. This finding highlights the

substantial amplification and regulation occurring during trans-

lation and protein turnover. Given that most RNAs are ex-

pressed at single-digit copy numbers, they are much more

susceptible to stochastic events than proteins expressed at

thousands of copies. Distinct expression zones for mRNAs

and proteins reflect functional demands. Most mRNAs are ex-

pressed at �1–10 copies/cell, whereas mRNAs present at

well below 1 copy/cell are enriched for tightly repressed differ-

entiation and regulatory genes that typically do not produce

detectable proteins. This finding contrasts with data from

bacteria where productive protein expression is achieved with

such low mRNA concentrations (Taniguchi et al., 2010). Ulti-

mately, population average measurements will need to be inte-

grated with single-cell data to understand more complex

cellular distributions of RNAs and proteins (Hebenstreit et al.,

2011).

lncRNAs are generally present at well below 1 copy/cell,

although �200 lncRNAs, including �40 nonpolyadenylated

RNAs, are more robustly expressed at �1–200 copies/cell and

are thus prime candidates for functional analyses. However,

the abundance of these lncRNAs is still much lower than for

most proteins, suggesting functions with different biochemical

characteristics. For instance, �1 lncRNA copy/cell could be

sufficient for roles in cis, where the RNA acts where it is tran-

scribed, whereas higher expression levels could suggest roles

in trans.

The transcriptome is larger in proliferating than in quiescent

cells, reflecting the higher need for transcription during growth

and division, and suggesting the existence of a global regulatory

mechanism coordinating overall RNA abundance. In contrast,

the proteome size is similar in proliferating and quiescent cells,
after adjusting for differences in cell volume. However, the rela-

tive levels of numerous proteins show striking antagonistic

changes in proliferating and quiescent cells, adapted for cellular

growth or maintenance, respectively. Proteome remodeling

during quiescence is enabled by a transient burst of stress-

related mRNAs that leads to sustained high levels of the corre-

sponding proteins. Protein concentrations are optimized to

avoid molecular crowding for biochemical reactions (Dill et al.,

2011). Constant protein concentrations during growth imply

that protein numbers increase with cell volume, as do rRNA

and ribosome numbers (Maclean, 1965) as well as mRNA

numbers (Zhurinsky et al., 2010). Thus, the absolute cellular

numbers of mRNA and protein molecules are not fixed by the

genome but are globally tuned to cell volume and physiology.

Genome-wide data on RNA and protein quantities are therefore

vital to decipher the complex relationships linking genome

regulation with cell physiology and growth, and to understand

how different cells with identical genomes achieve the enor-

mous diversity of functions. The findings reported here highlight

elementary features of transcriptome and proteome regulation

and provide a valuable platform to support future studies and

quantitative biology.

EXPERIMENTAL PROCEDURES

Full methods are available in Extended Experimental Procedures.

Cell Cultures

Wild-type 972 h� fission yeast cells were grown in Edinburgh minimal medium

(EMM) at 32�C to mid-log phase; for quiescence experiments, such cells

were shifted to EMM without nitrogen at 32�C and harvested at different

times after nitrogen removal. Several cell pellets from the same cultures

were frozen and used for RNA-seq, nCounter, and proteomics.

Quantitative Transcriptomics

RNA was extracted using the hot-phenol technique. Strand-specific RNA-seq

libraries were prepared from total or poly(A)+ RNA using an early version of

the Illumina TruSeq Small RNA Sample Prep Kit. Sequencing scores were

calculated as number of reads/kilobase. Scores derived from total RNA

libraries were calibrated using absolute data acquired for 49 mRNAs, in whole

cell extracts, on a nCounter instrument (NanoString), with external controls

spiked in known quantities.

Quantitative Proteomics

Extracted proteins were enzymatically digested using trypsin, the peptides

were separated into 12 fractions using an OFF-GEL Fractionator (Agilent),

and analyzed on an Orbitrap Velos LC-MS platform (Thermo Scientific).

Peptides were quantified and identified using the Progenesis LC-MS

(Nonlinear Dynamics) andMascot software, respectively. Absolute abundance

for 39 proteins was determined using spiked-in heavy reference peptides

to translate the summed MS-intensities of all peptides to copies/cell for all

identified proteins.

Modeling of Cell-Cycle-Regulated mRNA Abundance

Periodic mRNA abundance was modeled for different cell-cycle phases

using (1) average mRNA copies/cell in asynchronous cultures, (2) fraction of

cell cycle with mRNA peak expression, and (3) amplitude of periodic mRNA

regulation.

Quiescence Entry Time Course

RNA was extracted using the hot-phenol technique. Labeled cDNA of each

sample was hybridized against a pool of all samples on a custom-designed
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Agilent microarray. Absolute data for 49 test genes were acquired from the

same cell samples using nCounter as described above.

ACCESSION NUMBERS

The ArrayExpress accession numbers for the RNA-seq and microarray data

reported in this paper are MTAB-1154, and E-TABM-1075, respectively. The

LC-MS data are available from ProteomeCommons.org Tranche using

these hashes:

Proliferating cells OGE-fractions:

jsVcj9T6yAfpS80nYRueuobP0iOdpQzk/IgyYCYf+EZpj6fAE7dx9JoKvkhCfmQ

J5d5NuGLfriFt YEKJcB4rw+egFFcAAAAAAAACAw==

Quiescent cells OGE-fractions:

1gNlqHIUVaHU8S8yqpR8tvKvq6m0jySALyTlBxte1YvIo/N8IPXlMsgRKu2ZTg

sdPHPG0Z0jrrWtiDJ1CEXSb/fQY0kAAAAAAAACHg==

Unfractionated samples:

rSK2uX3cA5h/YrSal0U3y6Y0VneHG7p3J6fdXWAeLYC6HbnIejsgoKTgUNZL

We2Q+GRNQcc+xogxlG723ayC88ONM1cAAAAAAAAClg==
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López-Maury, L., Marguerat, S., and Bähler, J. (2008). Tuning gene expression

to changing environments: from rapid responses to evolutionary adaptation.

Nat. Rev. Genet. 9, 583–593.

Lovell, D., Muller, W., Taylor, J., Zwart, A., and Helliwell, C. (2011). Proportion,

percentages, PPM: do the molecular biosciences treat compositional data

right? In Compositional Data Analysis: Theory and Applications, V. Pawlow-

sky-Glahn, A. Buccianti, D. Lovell, W. Müller, J. Taylor, A. Zwart, and C. Helli-

well, eds. (New York: John Wiley & Sons), pp. 193–206.

Maclean, N. (1965). Ribosome numbers in a fission yeast. Nature 207,

322–323.
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Rustici, G., Mata, J., Kivinen, K., Lió, P., Penkett, C.J., Burns, G., Hayles, J.,

Brazma, A., Nurse, P., and Bähler, J. (2004). Periodic gene expression

program of the fission yeast cell cycle. Nat. Genet. 36, 809–817.

Schmidt, A., Beck, M., Malmström, J., Lam, H., Claassen, M., Campbell, D.,

and Aebersold, R. (2011). Absolute quantification of microbial proteomes at

different states by directed mass spectrometry. Mol. Syst. Biol. 7, 510.

Schmidt, M.W., Houseman, A., Ivanov, A.R., and Wolf, D.A. (2007). Compar-

ative proteomic and transcriptomic profiling of the fission yeast Schizosac-

charomyces pombe. Mol. Syst. Biol. 3, 79.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Cell Culture Conditions
Three cultures of wild-type 972 h- cells were grown in Edinburghminimal medium (EMM) at 32�C to 7.0-7.4 x106 cells/ml (calledMM1

toMM3). Cells were harvested, and several pellets from same cultures were frozen for RNA-seq, NanoString, and proteomics exper-

iments. The remaining of the cultures were then washed twice in EMMwithout nitrogen source (NH4Cl), and cultured for 24h in EMM

without nitrogen at 32�C; multiple pellets were then harvested as above (called MN1-MN3). For the entry into quiescence timecourse

experiments, cells were treated as above andmultiple pellets were frozen before and at 15 time points after nitrogen removal from the

medium (30min, 1h, 2h, 3h, 4h, 6h, 9h, 12h, 16h, 20h, 24h, 48h, 3 days, 5 days, and 7 days).

Measurement of Relative RNA Levels
Relative RNA abundance of two cell cultures grown in EMM (MM1 and MM2) and two cultures incubated in absence of nitrogen for

24h (MN1, MN2) were obtained by RNA-seq. For each sample, we created two libraries: one from total RNA (no poly(A)+ selection or

rRNA depletion step), and one from poly(dT)-enriched RNA. Strand-specific RNA-seq libraries were prepared using an unreleased

early version of the Illumina TruSeq Small RNA Sample Prep Kit. Briefly, total RNA was isolated by hot-phenol extraction, and

RNA quality was assessed on a Bioanalyzer instrument (Agilent). For the poly(dT)-enriched libraries, 10 mg of total RNA was used

as starting material, and poly(A)+ RNA was enriched by two rounds of poly(dT) Sera-Mag magnetic bead purification. For the total

RNA libraries, 100ng of total RNA was used as starting material without any prior treatment. RNA was fragmented to an average

size of �200nt. Fragmented RNA was 30 de-phosphorylated with Antartic phosphatase and 50 phosphorylated with polynucleotide

kinase; this treatment prepares RNA fragments for subsequent ligation of Illumina RNA adaptors to their 50 and 30 ends using a 30 RNA
ligase and a T4 RNA ligase, respectively. First-strand cDNA was produced using a primer specific for the Illumina 30 adaptor. The
library was amplified with 15 PCR cycles using primers specific for the Illumina adaptors and purified using SPRI-beads (Agencourt,

Beckman Coulter). Library size distributions and concentrations were determined on a Bioanalyzer (Agilent), RNA-seq libraries were

sequenced on an Illumina Genome Analyzer IIx (poly(dT) enriched libraries), or an Illumina HiSeq 2000 instrument (total RNA libraries).

Between 238.6 and 288.8 million reads were obtained for the total RNA libraries, and between 33.3 and 41.8 million reads for the

(poly(dT) enriched libraries (Table S1).

Reads were aligned to the fission yeast genome (Wood et al., 2002) with the exonerate software (Slater and Birney, 2005), and

reads matching to multiple locations in the genome were assigned at random to only one of these locations. Reads containing up

to 5 mismatches (not clustered at read ends) were kept for further analysis (‘‘Genomic set’’). The remaining sequencing reads

were then mapped against fission yeast spliced CDS (Wood et al., 2002) and filtered as above (‘‘Spliced set’’). Pools of both sets

of reads were used for further analyses. We obtained between 172.7 and 201.4 million mappable reads for the total RNA libraries

and between 28.2 and 33.3 mappable reads for the poly(dT) enriched libraries (Table S1). To compare data sets with similar

mRNA coverage, 5.5 million reads were randomly selected from the poly(dT)-enriched data and used for further analysis. The corre-

lation between expression levels in RPKM computed from the poly(dT) data before and after sub-sampling was very high (RPearson >

0.99). Figure S1A shows the distribution of the number of reads per annotated features fromdifferent RNA categories in both total and

poly(dT) enriched MM1 libraries. Figure S1A indicates that poly(dT) enrichment has minor global effects on read numbers for ncRNA

and long terminal repeats (LTR) derived transcripts, while reads matching rRNA, tRNA, snRNA, snoRNA, and mitochondria-encoded

RNA are depleted by the poly(dT) treatment. Table S1 contains the distribution of reads in these categories for all 8 data sets and

confirms these observations. In all data sets, > 93% of mRNAs were hit by > 10 reads and > 74% were hit > 100 times. Finally, in

all 8 data sets, at least 90% of all exons had coverage of 50% and above.

Relative sequencing expression scores were calculated for spliced transcripts, introns, and regions antisense to open reading

frames, using the genome annotation available in GeneDB (http://old.genedb.org/, now PomBase http://www.pombase.org/) on

9th May 2011. The number of reads mapping to each feature was divided by the length of the feature in kilobase [RPK]. Sequencing

scores were based on annotated exon boundaries excluding UTRs to avoid variability due to alternative UTR usage and to increase

accuracy (Ramsköld et al., 2009). The scores were corrected for inaccuracies arising for possible uneven mappability across the

genome and biases introduced during score calculation. Briefly, simulated reads covering the fission yeast genome were produced

using the ‘maq simulate’ function of theMaq package (Li et al., 2008). This data set was then processed exactly as the RNA-seq data.

Relative sequencing expression scores derived from this simulated data set weremedian-centered and used as correction factors for

the RNA-seq data. Figure S1B shows the distribution of simulated sequencing scores as a function of feature size, indicating that

shorter features are characterized by increased biases, although overall correction factors remained close to unity. Note that three

RNA families (tRNAs, snRNAs, snoRNAs), despite being present at native levels in total RNA samples (Figure S1A), are not only very

short but also highly modified, implying additional, uncontrolled biases that might affect the accuracy of their quantification. Cor-

rected scores spanned 7 and 5 orders of magnitude, for total and poly(dT) enriched libraries, respectively, and showed strong corre-

lation between biological replicates (rpearson > 0.98 in each data set; Table S2).

In order to identify and flag genes in regions of the genomemore difficult to sequence, we have compared read counts in RPKM for

each gene, calculated from a set of simulated reads based on the fission yeast reference sequence, with read counts for each gene

derived from DNA sequencing from the same strain. Read counts were median-centered, and a ‘‘DNA over simulated’’ ratio was
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calculated. Genes with ratios largely below 1 were likely derived from regions difficult to sequence and were enriched for tRNAs and

lncRNAs. Genes with ratios largely above 1 were mainly rRNAs, mitochondrially encoded, or located in subtelomeric regions. This

pattern reflects the lack of information on the exact number of duplicated rRNA genes in the fission yeast genome, the presence

of multiple mitochondrial genomes per cell, and the probable gene duplications occurring in subtelomeric regions. The ratios

from this analysis are provided in Table S4 in a column called ‘‘sequencibility.’’

Genome-wide Measurement of Absolute RNA Copies/Cell
To calibrate relative RNA-seq scores and to obtain absolute RNA abundance for the entire transcriptome, we first measured the

absolute copy numbers of 49 mRNAs using an nCounter instrument (NanoString) (Table S3). This calibration set was designed

such that sequencing scores of > 90% of all mRNA were within the expression interval covered by the 49 calibration mRNAs. The

NanoString technology uses two sets of probes: one is coupled to fluorescent barcodes and permits to tag individual mRNAs, while

the other one is used to immobilise barcode-bound mRNAs to a glass slide on which individual barcoded mRNAs are counted using

an optical camera. This approach is digital and highly quantitative, does not require any enzymatic reactions, and is performed on

whole-cell extracts, bypassing the need of RNA purification.

Cells from the same cultures used for RNA-seq library preparation were resuspended in RLT buffer (QIAGEN) and counted by an

automated cell counter (Coulter) and haemocytometer. Cells were broken using a FastPrep instrument (MP Biomedicals) on setting

6.5 for 23 1min. Total cell lysis was > 90% for all samples. Cell extract volumes corresponding to 53 104 cells were used for mRNA

quantification on nCounter (NanoString) using the manufacturer’s instructions for samples MM1, MM2, MN1, and MN2. Data were

extracted and normalized according to the manufacturer’s instructions. Three technical repeats for each sample were obtained from

two independent nCounter runs. To convert nCounter counts to copies/cell, 13 external controls were added at known concentra-

tions to the cell extracts. Six external controls were provided by the manufacturer as part of the NanoString mastermix (Figures S1C

and S1D, gray circles), while 7 external controls were bought separately (AM1780, Ambion) and were added directly to the cell

extracts (Figures S1C and S1D, gray triangles). Spike concentrations were designed to cover the expression range of the 49 calibra-

tion mRNAs and were confirmed on a Bioanalyzer (Agilent) before being added to the extracts. The average of 12 measurements/

slide for each external control was used for normalization. In both runs some external controls appeared outside the dynamic range

of the nCounter. To avoid biases, we discarded extreme data points while making sure that the calibration curve would be supported

experimentally throughout the concentration spectrum of the 49 mRNAs used for calibration of the RNA-seq data (quantity of lowest

and highest expressed genes from the 49mRNA set aremarked by blue lines on Figures S1C andS1D). Correlation between absolute

spike copies and nCounter counts was high in both runs (rpearson > 0.98). The copies/cell for the calibration set were then calculated

using linear regression of the log2 transformed external control values. Figures S1E–S1H shows the distribution of the coefficient of

variation (s/m) of the measured concentrations in copies/cell between the 3 technical repeats for each sample. The absolute

measurements of calibration mRNAs from the 3 technical repeats were averaged (first within and then between runs) and used

for calibration of the RNA-seq data.

Corrected relative sequencing scores from RNA-seq libraries derived from total RNA were calibrated using using linear regression

of the log2 transformed absolute expression values (copies/cell) obtained for the 49 calibrationmRNAs (see above, Table S3). Figures

S1K and S1M show the strong correlation between absolute copies/cell and relative sequencing scores for the MM1 and MN1

samples, respectively. Figures S1L and S1N show the distribution of measurement error using a linear model described here

(Schmidt et al., 2011) and indicates that the mean measurement error is 2-fold or lower. The correlation of absolute values between

biological replicates was high (rpearson > 0.98, Figures S1I and S1J). For that reason, the average of the biological repeats was used for

all downstream analysis.

Entry into Quiescence Time Course Experiments
Cells were harvested before and at 15 time points after nitrogen removal from the medium (see above). For microarray analysis, total

RNA was extracted by the hot-phenol method (Lyne et al., 2003), and purified once using the RNeasy purification kit, and twice using

RNeasy mini-elute kits (QIAGEN). These extended washes minimized the carryover of contaminants present in quiescent cells which

can inhibit cDNA labeling (Bähler lab observation). Total RNA was labeled using a SuperScript Plus Direct cDNA Labeling System

(Invitrogen), using a reduced amount of labeled nucleotides to minimize dye-bias (Juan Mata, personal communication). Labeled

samples were hybridized against a pool of all samples on a custom-designed Agilent platform containing all coding and non-coding

features present in GeneDB (http://old.genedb.org/, now PomBase http://www.pombase.org/; Wood et al., 2012) in April 2011. Mi-

croarrays were hybridized and washed according to manufacturer’s instructions, and scanned on an Axon 4000B scanner using the

GenePix 6.0 software. Background was subtracted, and arrays were normalized using the loess-based method available in the bio-

conductor package limma (http://www.bioconductor.org). A pooled reference was included for technical reasons, and ratios for all

genes were divided by their ratios at time point zero before nitrogen removal to obtain biologically meaningful expression ratios. To

take into account the global reduction of total RNA concentration per cell during entry into quiescence (see main text), expression

ratios for each time point were multiplied by the fraction of total RNA/cell present at the given time point compared to cells before

nitrogen removal (Table S15).

For time points 0, 30min, 1h, 2h, 4h, 6h, 12h, 16h, 20h, 24h, 48h and 7 days, we performed nCounter measurements of absolute

abundance for 49 mRNAs as described above using cells from the same cultures as for microarrays (Table S16).
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Sample Preparation for Proteome Analysis
Around 108 cells of each of the 6 samples (MM1-3 and MN1-3) were washed twice with PBS buffer, harvested by centrifugation at

2,000 g, and resuspended in 100ml lysis buffer (100 mM ammoniumbicarbonate, 8M urea, 0.1% RapiGest) containing 100ml of glass

beads. The cells were disrupted first by strong vortexing for 33 30 s using a FastPrep� FP120 Cell Disrupter (Thermo Fisher Scien-

tific) followed by sonication for 33 20 s. A small aliquot of the supernatant was taken to determine the protein concentration of each

sample using a BCA assay (Thermo Fisher Scientific). Proteins obtained from the different samples were reduced with 5mM TCEP for

60min at 37�C and alkylated with 10mM iodoacetamide for 30min in the dark at 25�C. After quenching the reaction with 12 mM

N-acetyl-cysteine, the proteins were proteolyzed for 4h at 37�C using sequencing-grade Lys-C (Wako Chemicals) at 1/200 w/w.

Then, the samples were diluted with 100mM ammoniumbicarbonate buffer to a final urea concentration of 1.5M and further digested

by incubation with sequencing-grade modified trypsin (1/50, w/w; Promega, Madison, Wisconsin) over night at 37�C. The samples

were acidified with 2M HCl to a final concentration of 50mM, incubated for 15min at 37�C and the cleaved detergent removed by

centrifugation at 10,000 g for 15min. Subsequently, an aliquot of the 39 AQUA peptide mix (see Table S5 for details) containing

200/20 fmol of heavy peptides per 1mg of endogenous proteins was spiked in each sample. All peptide samples were then desalted

by C18 reversed-phase spin columns according to the manufacturer’s instructions (Macrospin, Harvard Apparatus), dried under

vacuum and stored at �80�C until further use. For direct LC-MS analysis, samples were solubilized in solvent A (98% water, 2%

acetonitrile, 0.15% formic acid) at a concentration of 0.5 mg/ml and 2 ml were injected per run.

Off-Gel Electrophoresis
Two peptide mixtures for each growth condition (MM and MN), containing equal aliquots of 100 mg dried peptides of the 3 biological

replicates (MM1-3 and MN1-3), respectively, were resolubilized in 1800 ml Off-Gel electrophoresis buffer according to the manufac-

turer‘s instructions (3100 OFFGEL Fractionator, Agilent Technologies). Both peptide samples were then separated on a 12cm pH 3-

10 IPG strip (GE Healthcare), respectively, using a protocol of 1h rehydration at maximum 500V, 50 mA and 200 mW. Peptides were

separated at maximum 8000V, 100 mA and 300mW until 20kVh was reached. Subsequently, each of the 12 peptide fractions was

desalted using C18 reversed-phase columns according to the manufacturer’s instructions (Microspin, Harvard Apparatus), dried

under vacuum and subjected to LC-MS/MS analysis.

LC-MS/MS Analysis
The setup of the mRPLC-MS system was as described previously (Schmidt et al., 2011; Beck et al., 2011) with some modifications.

The hybrid Orbitrap-Velos mass spectrometer was interfaced to a nanoelectrospray ion source coupled online to an Easy-nLC

system (all ThermoScientific). 1mg of peptides were separated on a RP-LC column (75 mm x 20 cm) packed in-house with C18 resin

(Magic C18 AQ 3 mm; Michrom BioResources) using a linear gradient from 95% solvent A (98%water, 2% acetonitrile, 0.15% formic

acid) and 5% solvent B (98% acetonitrile, 2%water, 0.15% formic acid) to 30% solvent B over 90min for OGE-fractions and 120 min

for unfractionated samples at a flow rate of 0.3ml/min. Each survey scan acquired in the Orbitrap at 60,000 FWHM was followed by

10MS/MS scans of themost intense and 2 additional MS/MS scans of the spiked in AQUApeptide pair precursor ions in the linear ion

trap using a mass inclusion list. Preview mode was enabled and dynamic exclusion was set for 60 s. Charge state screening was

employed to select for ions with at least two charges and rejecting ions with undetermined charge state. The normalized collision

energy was set to 32%, and one microscan was acquired for each spectrum.

Protein Identification and Quantification
The acquired raw-files were imported into the Progenesis LC-MS software (v3.0, Nonlinear Dynamics Limited), which was used to

extract peptide precursor ion intensities across all samples applying the default parameters. The generated mgf-files were searched

using MASCOT against a decoy database (consisting of forward and reverse protein sequences; Elias and Gygi, 2007) of the pre-

dicted S. pombe proteome (ftp://ftp.sanger.ac.uk/pub/yeast/pombe/Protein_data/pompep). The database consists of 5143

S. pombe proteins as well as known contaminants such as porcine trypsin, human keratins and high abundant bovine serum proteins

(Non-Redundant Protein Database, National Cancer Institute Advanced Biomedical Computing Center, 2004, ftp://ftp.ncifcrf.gov/

pub/nonredundant), resulting in a total of 10,584 protein sequences. The search criteria were set as follows: full tryptic specificity

was required (cleavage after lysine or arginine residues, unless followed by proline); 2 missed cleavages were allowed; carbamido-

methylation (C) was set as fixed modification; oxidation (M) was applied as variable modifications; mass tolerance of 10 ppm

(precursor) and 0.6Da (fragments). The database search results were filtered using the ion score to set the false discovery rate

(FDR) to 1% on the peptide and protein level, respectively, based on the number of reverse protein sequence hits in the data

sets. The quantitative data obtained were further normalized and statistically analyzed according to Brusniak et al. (2008).

Absolute Protein Quantification
Absolute quantification was carried out according to (Schmidt et al., 2011). In brief, the raw files were converted tomzXML file format,

the database searched using XTandem/PeptideProphet followed by isotope ratio calculation by the Xpress software tool. All soft-

ware tools are part of the trans-proteomics pipeline (Deutsch et al., 2010). The median peptide ratios were used to determine the

endogenous protein levels in the individual samples. Based on the number of disrupted cells counted in triplicates for each sample

before and after cell lysis, absolute abundances for the selected proteins (in copies/cell) could be calculated across all samples
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(Tables S7 and S8). These were aligned with the summed protein intensities as provided by the Progenesis LC-MS software (v3.0,

Nonlinear Dynamics Limited) divided by the number of expected tryptic peptides. The thus generated models were applied to esti-

mate absolute protein levels for all quantified proteins in the individual samples (see Tables S5–S9). To assess the technical as well as

technical & biological variability of our label-free quantification approach, we performed duplicate LC-MS analyses of each biological

triplicate sample and determined the expected mean, average lower and upper endpoint of 95% confidence interval (L95 and U95)

expression variations as a function of the number of available peptides per protein (Figures S3A–S3D). Additionally, hierarchical clus-

tering of protein concentrations confirmed the low technical and biological variations in our quantitative data set (Figure S3E).

For further evaluation of our absolute protein quantities, we compared abundances of proteins being present in five stable protein

complexes with an expected stoichiometry of 1:1. In all cases, the protein abundances matched the expected values within calcu-

lated error rates for both growth conditions (Table S18), providing further evidence that the estimated protein levels are accurate.

Measurement of Cell Size and Volume
Cells were fixed for 15 min in culture medium supplemented with�4% formaldehyde, and washed 3 times in PBS. Cell pictures were

obtained on a Zeiss Axioskop microscope with plan-Apochromat 63x 1.4 NA oil immersion objective, and cell lengths and widths

were measured by hand using the ImageJ software (http://rsbweb.nih.gov/ij/) and the plugin ObjectJ (http://simon.bio.uva.nl/

objectj/). Cell volume was calculated as in (Shimanuki et al., 2007):

V =

pD2

�
L� D

3

�

4

where V is the cell volume, D the cell diameter and L the cell length.

Analysis of Cell-Cycle-Regulated Genes
First, the total number of molecules of a given mRNA in an asynchronous culture can be expressed as relation (1), assuming two

different cell types with distinct levels of a transcript i and the absence of detectable intermediate states:

Ci
tot 3Ntot =

�
Ci

bas 3Nbas

�
+
�
Ci

peak 3Npeak

�
(1)

Where, Ci
tot represents the average number of mRNA copies/cell in the culture, Ci

bas the average number of mRNA copies/cell in the

phase(s) of the cell-cycle were expression is low or ‘basal’, and Ci
peak the mRNA copies/cell in the phase of the cell-cycle were gene

expression peaks.Ntot,Nbas,Npeak are the numbers of cells in the culture, in the ‘basal’ phase(s) of the cycle and in the ‘peak’ phase of

the cycle. Second, the average number of copies in cells with ‘peak’ transcript level can be expressed as:

Ci
peak =Ai 3Ci

bas (2)

Where A is the fold difference between mRNA levels at the ‘peak’ and ‘basal’ state. Combining the two equations gives us:
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Relationship (2) and (5) together demonstrate that average copy number/cell in cells with ‘basal’ and ‘peak’ levels of mRNA expres-

sion can be deduced from the average mRNA copy number/cell in the asynchronous population ðCi
totÞ, the fraction of cells expected

to be in the phase of the cell cycle where expression peaks ðNpeak=NtotÞ, and the amplitude of transcript level regulation ðAiÞ.
We derived ‘basal’ and ‘peak’ copy number/cell for 241 periodic genes using amplitudes of regulation (A) from 6 cell-cycle time

courses (Table S12) (Rustici et al., 2004). To detect genes with switch-like behavior, we took for each gene the median of the number

of mRNA copies/cell derived using each 6 cell-cycle time courses (Rustici et al., 2004). Switch-like behavior was defined by the

median mRNA copy number going from zone 1 (basal level) to zone 2 or 3 (peak level).
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We also investigated the impact of transition kinetics between ‘basal’ and ‘peak’ expression on the deduced ‘basal’ and ‘peak’

mRNA expression levels. To do so, instead of assuming two discrete expression states (‘on’ and ‘off’), we allowed a ‘ramping’ period

were mRNA expression levels gradually transit between ‘‘basal’’ and ‘‘peak’’ levels. In this case, Equation (5) becomes:

Ci
bas =

Ci
tot�

Ai 3
Npeak

Ntot

�
+

�
1� Npeak�Nramp

Ntot

�
+R

(6)

Where Nramp is the fraction of the cell-cycle during which mRNAs gradually increase between the two expression states, and R is

a ramping term defined as:

R=Ai 3
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Ntot

3
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WhereNstep is the fraction of cells in a given intermediate stage, nstep is the number of intermediate stages. Each intermediate expres-

sion level has an expression level Ai=nstep higher than the preceding (Figure S5E). If a ‘peak’ length of 10% of the cell cycle and ramp-

ing periods lasting form 0% up to 90% of the ‘basal’ stage are considered with nstep = 1000, the number of genes with switch like

behavior increases from 3 to a maximum of 7 for the M phase cluster, from 6 to 13 for the G1 cluster and stays equal to 0 for the

S-phase cluster (Figure S5F). This analysis indicated that the number of genes categorized as showing a switch-like behavior with

our model is only marginally affected by including a ramping period and that our estimate of the number of these genes is probably

conservative.

Fluorescence Microscopy Analysis of Proteins with Periodic mRNA Expression
Eight strains expressing GFP-tagged proteins (National BioResource Project, Japan; Bähler et al., 1998) under control of their native

promoters (Table S12) were grown in YES media at 32�C, 1 ml cells were spun down at 8,000rpm for 30 s and a 1 ml cell pellet slurry

mounted onto a glass slide and mixed with 1 ml DAPI/Calcofluor suspension (1 in1000). Live cells were immediately visualized with

a Zeiss Axioskop2 Plus fluorescence microscope using an EC Plan-Neofluar 63X/1.25 oil objective with FITC and DAPI filters. Five

strains showed no detectable GFP signal, indicating very low protein expression; the remaining 2 strains, with GFP-tagged Cnp1 and

Ark1, showed detectable GFP signals (Table S12). Expression of both proteins could only be observed in a small number of cells and

was associated with features characteristic of defined cell-cycle stages as previously described (Petersen et al., 2001; Takayama

et al., 2008). This analysis therefore supports the idea that the cell-cycle regulated proteins not detected in our proteome data

show low expression restricted to specific cell-cycle stages (making them difficult to detect when measured in an asynchronous

population).

Functional Enrichment Analyses
All analyses for functional enrichments were performed using a set of GO lists based on fission and budding yeast GOslim annota-

tions (release September 2011). This set was complemented with a series of lists based on gene expression. Five lists of cell-cycle

regulated genes were derived from (Rustici et al., 2004) and contain either all periodic genes, or periodic genes peaking in G1, S,M, or

G2 phases of the cell cycle. Two lists contained genes of the core environmental stress response (CESR), either induced (’’stress-

related’’) or repressed (’’growth-related’’) during stress (Chen et al., 2003). Four lists contained genes regulated upon nitrogen

removal or during early, middle, or late meiosis (Mata et al., 2002). Finally 4 lists were computed in our laboratory and contained

the 10% shortest and the 10% longest mRNAs, a list of transcription factors, and a list of proteins containing RNA-recognition

(RRM) motifs (based on annotation available in PomBase) (Wood et al., 2012). Table S17 provides a list of the genes included in

each functional category used in this study.

For the sliding-window analysis in Figure 2, all fission yeast mRNAs were ranked based on absolute expression. The level and

significance of the overlap between a sliding window of 200 genes of increasing absolute expression levels and specific functional

categories/gene lists were recorded. Significance of the overlaps was tested using a Fisher exact test, and p-values were corrected

for multiple testing using the ‘FDR’ method.
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Figure S1. Analysis of Total and Poly(dT)-Enriched Transcriptomes by Strand-Specific RNA-Seq and Calibration of RNA-Seq Data Using

Absolute Measurements, Related to Figure 1

Data presented in this figure are described in detail in the Extended Experimental Procedures section.

(A) Box plot of absolute reads counts in RNA-seq libraries derived from total (green) or poly(dT)-enriched (red) transcriptomes for different RNA categories. The

lower and upper red lines indicate 10 and 100 sequencing reads, respectively.

(B) Plot for transcript length and the correction score derived from simulated data. The red vertical lines represent, from left to right, 100, 500, and 1000

nucleotides.

(C) Plot of copies of external nCounter controls used for calculation of absolute copy numbers of the 49 calibration mRNAs (nCounter run I). Grey circles represent

external controls present in the nCounter mastermix. Grey triangles represent external controls added to the cellular extracts. The controls marked by a red dot

were used for absolute copy number calculation. The blue dotted lines represent the most lowly and most highly expressed mRNAs for the 49 calibration genes,

showing that the spikes used for copy number calculation support the whole dynamic range of the calibration set.

(D) Same as (B) for nCounter run II.
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(E–H) Distribution of the coefficient of variations (s/m) of absolute copy numbers for the 49 mRNAs from the calibration set, calculated from three nCounter

technical replicates split between two individual runs. (E) proliferating cells (MM1), (F) proliferating cells (MM2), (G) quiescent cells (MN1), (H) quiescent cells

(MN2).

(I) Plot of mRNA copies/cell for two independent biological repeats of proliferating cells (MM1 and MM2).

(J) Plot of mRNA copies/cell for two independent biological repeats of quiescent cells (MN1 and MN2).

(K) Natural logarithm of corrected RPK scores plotted against the natural logarithm of copies per cell for 49 mRNAs quantified by nCounter for proliferating cells.

(L) Distribution of error rates determined by bootstrapping for mRNA quantities from proliferating cells.

(M) Natural logarithm of corrected RPK scores plotted against the natural logarithm of copies per cell for 49 mRNAs quantified by nCounter for quiescent cells.

(N) Distribution of error rates determined by bootstrapping for mRNA quantities from quiescent cells.

S8 Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc.



Figure S2. Calibration of Proteomics Data and Functional Properties of Fission Yeast Proteome, Related to Figure 5

(A) Natural logarithm of extracted precursor ion intensities plotted against the natural logarithm of copies per cell for 39 proteins quantified by heavy peptide

standards for proliferating cells.

(B) Distribution of error rates determined by bootstrapping for protein quantities from proliferating cells.

(C) Natural logarithm of extracted precursor ion intensities plotted against the natural logarithm of copies per cell for 39 proteins quantified by heavy peptide

standards for quiescent cells.

(D) Distribution of error rates determined by bootstrapping for protein quantities from quiescent cells.

(E) Distributions of Identified (blue bars) and all Database Protein Entries (red bars) for Clusters of orthologous groups (COG).

(F) Distributions of Identified (blue bars) and all Database Protein Entries (red bars) for number of transmembrane domains per protein.

(G) Distributions of Identified (blue bars) and all Database Protein Entries (red bars) for number of predicted MS-suitable peptides based on a precursor mass of

700–6000 daltons.

(H) Comparison of expression levels of 17 cytokinesis proteins in asynchronous cultures as measured in this study or in a quantitative fluorescence microscopy

study (Wu and Pollard, 2005). Dotted lines represent 2 and 4 fold difference. The coefficient of determination is shown in the bottom right corner.
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(I) Cumulative plot of the percentage of total protein count in proliferating cells as a function of the percentage expression rank of individual proteins (red curve),

and of the percentage of total mRNA count as a function of the percentage expression rank of individual mRNAs (black curve). Blue and green lines mark 20 and

80% respectively.

(J) Log-log plots of mRNA frequencies as a function of their expression rank. Numbers indicate the exponents of selected power-law distributions shown as black

curves. The red vertical lines on the left panel delimitate the three mRNA expression zones (see main text). For more information about Pareto and Zipf laws, see

(Furusawa and Kaneko, 2003; Kuznetsov et al., 2002; Newman, 2005).

(K) Log-log plots of protein (right panel) frequencies as a function of their expression rank. Numbers indicate the exponents of selected power-law distributions

shown as black curves. Our data thus extend Zipf’s law to protein abundance.
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Figure S3. Technical and Biological Variability in Proteomics Data, Related to Figure 5

(A) Technical variability determined from replicate LC-MS/MS analyses for MM samples (proliferating). The median, mean, lower and upper endpoints of 95%

confidence interval (L95 and U95) are displayed for proteins being quantified by 1, 2, 3 or more peptides.

(B) Expression variability (technical and biological) between the three MM biological replicates (proliferating).

(C) Technical variability determined from replicate LC-MS/MS analyses for MN samples (quiescent). The median, mean, lower and upper endpoints of 95%

confidence interval (L95 and U95) are displayed for proteins being quantified by 1, 2, 3 or more peptides.

(D) Expression variability (technical and biological) between the three MN biological replicates (quiescent).

(E) Hierarchical clustering of absolute protein abundance in copies per cell (log10) for all 6 samples (3x MM, 3x MN) measured in duplicates each. The column

dendrogram representing the clustering of the different samples is displayed.
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Figure S4. Cell Morphology during Proliferation and Quiescence, Related to Figure 6

(A) Proliferating fission yeast cells stained with calcofluor to highlight the division septa.

(B) As in (A) for quiescent cells, 24h after nitrogen removal.

(C) Plot of lengths and widths for 260 cells during proliferation (blue: all cells, green: septated cells), and quiescence (red).

(D) Plot for distribution of cell volume for 260 cells during proliferation (blue: all cells, green: septated cells), and quiescence (red).

(E) Plot for changes in cell length (blue), cell diameter (green), cell volume (gray) and total cellular RNA content (red), before and at multiple time points after

nitrogen removal. Data are plotted as percentages of proliferating cells.
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Figure S5. Basal and Peak Expression of Periodic Genes, Related to Figure 3

(A) Genes from M cluster, ranked according to their median basal expression levels. The horizontal red lines delimit expression zone 2 (0.5-2 mRNA copies/cell),

and the three expression zones are indicated at right.

(B) Same as (A) for genes from G1 cluster.

(C) Same as (A) for genes from S cluster.

(D) Plot of the number of genes with median basal expression switching from expression zone 1 to expression zones 2 or 3 as a function of the assumed duration

of the peak phase in percent of the cell cycle for the three gene clusters (black: M phase, red: G1 phase, green: S phase). The vertical dotted line marks a ‘peak’

phase length of 10% of the cell cycle.

(E) Cartoon showing three example transition patterns between ‘basal’ and ‘peak’ expression levels: An instantaneous change between the two expression states

(red), expression level increases during 50% (gray) or 90% (dotted red) of the non-peak window. Ai : Amplitude of periodic variation in expression for gene i

(Rustici et al., 2004).

nstep : Number of intermediate states between ‘basal’ and ‘peak’ levels.

(F) Impact of ramping time on the number of genes switching from zone 1 to zones 2-3 in three clusters of periodic genes as in (D), when either no ramping (red),

ramping times between 10% and 80% (gray), or 90% (dotted red) of the ‘basal’ phase are incorporated in the model (nstep = 1000). The vertical dotted line marks

a ‘peak’ phase length of 10% of the cell cycle.
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Figure S6. Additional Analyses on Ribosomal Protein Paralogs and Transcription Factors, Related to Figure 5

(A) Expression variability of ribosomal proteins. Percent coefficient of variation inmRNA and protein expression of paralog genes from different ribosomal proteins

families. Red dots: families containing repeated sequences (ambiguous mapping by RNA-seq). Blue squares: families with non-repeated sequences (un-

ambiguousmapping by RNA-seq). Dots are labeled with ribosomal protein family. Black arrows: families with over 3-fold difference in protein expression between

lowest and highest expressed member. Green arrows: as black arrows but for 10-fold difference.

The median mRNA expression of single-copy ribosomal proteins is significantly higher than the median mRNA expression of duplicated ribosomal proteins (1.7-

fold, Pwilcox < 10�4). This patterns holds also for protein expression (1.7-fold, Pwilcox < 0.02). As most paralogs are found in two copies, this finding suggests that

each paralog might contribute to about half of the ribosomes. Fission yeast ribosomes could therefore be heterogeneous complexes with respect to paralogs.

However, possible technical or classification artifacts could contribute to this observation, as RNA-seq and the proteomics approach cannot unambiguously

assign expression levels to paralogs with almost identical sequences. To look in more detail into paralog expression, we calculated the percent coefficient of

variation (%CV) of mRNA and protein expression for each ribosomal protein family. High %CV indicates large differences in expression between paralogs. This

analysis indicates that families with low%CV, where both paralogs are likely to contribute to ribosomes, can be found in cases where sequences were sufficiently

diverged to permit reliable read assignment (blue squares). Moreover, some families showed vastly divergent protein expression between paralogs (arrows),

suggesting either the existence of rare specialized ribosomes or extra-ribosomal functions of the lowly expressed paralogs.

(B) Comparison of TF expression levels with the occurrence of their DNA-bindingmotifs in the genome. Expression levels of TFs for which the DNA-binding motifs

are available in PomBase were plotted against the number of their respective motifs found in the genome. Each dot represents a TF with its common name

indicated in blue. It is problematic to localize true TF binding sites based on genome sequence alone, and ChIP-chip or ChIP-seq data are required to identify

accurately the number of functionally relevant motifs.
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Figure S7. Functional Categories and Protein Copy Numbers, Related to Figure 5

(A) Hierarchical cluster of the percentage overlap between different functional categories and sliding windows of 200 proteins of increasing abundance. Cate-

gories with at least one window containing > 15% of the proteins in a category are plotted.

(B) Hierarchical cluster of the p-values of Fisher exact tests assessing the significance of the overlap between different functional categories and sliding windows

of 200 proteins of increasing abundance.

Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc. S17


	Quantitative Analysis of Fission Yeast Transcriptomes and Proteomes in Proliferating and Quiescent Cells
	Introduction
	Results and Discussion
	Transcriptome and Proteome Quantification in Two Conditions
	Most mRNAs Are Expressed in Narrow Range above 1 Copy/Cell
	Characteristics of Three mRNA Expression Zones
	Effect of Cell-Cycle-Regulated Gene Expression on mRNA Numbers
	Long Noncoding RNAs Are Typically Present below 1 Copy/Cell
	Proteins Greatly Exceed mRNAs in Abundance and Dynamic Range
	Coordinated Expression at mRNA and Protein Levels
	Protein Abundance in Context of Cellular Landmarks and Functions
	Protein Expression Reflects Cellular Function
	Transcriptome Shrinks Globally during Quiescence
	Proteome Does Not Shrink Globally but Is Remodeled during Quiescence
	Early mRNA Burst Sustains High Protein Numbers during Quiescence
	Conclusions

	Experimental Procedures
	Cell Cultures
	Quantitative Transcriptomics
	Quantitative Proteomics
	Modeling of Cell-Cycle-Regulated mRNA Abundance
	Quiescence Entry Time Course

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References

	Supplemental Information
	Extended Experimental Procedures
	Cell Culture Conditions
	Measurement of Relative RNA Levels
	Genome-wide Measurement of Absolute RNA Copies/Cell
	Entry into Quiescence Time Course Experiments
	Sample Preparation for Proteome Analysis
	Off-Gel Electrophoresis
	LC-MS/MS Analysis
	Protein Identification and Quantification
	Absolute Protein Quantification
	Measurement of Cell Size and Volume
	Analysis of Cell-Cycle-Regulated Genes
	Fluorescence Microscopy Analysis of Proteins with Periodic mRNA Expression
	Functional Enrichment Analyses

	Supplemental References




