Supporting Information

for

¹H-ENDOR Evidence for a Hydrogen Bonding Interaction That Modulates the Reactivity of a Nonheme Fe^{IV}=O Unit

Muralidharan Shanmugam,[#] Genqiang Xue,¹ Lawrence Que Jr.,¹* Brian M. Hoffman[#]*

[#]Chemistry Department, Northwestern University, Evanston, Illinois, 60208-3113, ¹Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota-55455

Fig S1: Solid lines: Echo-detected 35 GHz EPR spectra of **1** in OH/OD. Derivative spectra generated by numerical derivatives of absorption-display spectra. **Dashed lines:** Simulations performed using WIN-EPR program; g-values for the fits are listed. *Conditions:* Two-pulse echo, π -pulse = 80 ns, τ = 600 ns, repetition time = 50 ms, 34.698 GHz (OH), 34.75 GHZ (OD), T = 2 K.

Fig S2: Experimental 2-D field-frequency plot of Davies ¹H-ENDOR spectra of **1** in OH (black) and OD (red). All spectra have been centered at ¹H nuclear Larmor frequency. *Conditions:* π pulse length = 120 ns, τ = 600 ns, repetition time = 40 ms, 34.698 GHz (OH), 34.75 GHz (OD), T = 2 K.

Fig S3: Experimental 2-D field-frequency plot of Davies ¹⁴N-ENDOR spectra of **1** in OH (black) and OD (red). *Conditions:* π pulse length = 120 ns, τ = 600 ns, repetition time = 40 ms, 34.713 GHz (OH), 34.722 GHz (OD), T = 2 K.

Fig S4: Experimental 2-D field-frequency plot of Mims ²H and ¹⁴N-ENDOR spectra of **1** in OH (black) and OD (red). The ²H-doublet centered at v_D arises from the deuterated methylene arms of **L** (Scheme 1). *Conditions:* $\pi/2$ pulse length = 50 ns, repetition time = 40 ms, 34.713 GHz (OH), 34.722 GHz (OD), T = 2 K.

Fig S5: Comparisons of experimental 2-D ¹H-ENDOR pattern of 1(OH) with simulation performed by assuming a liner Fe(III)- μ (O)-Fe(IV) geometry. The metrical and Spin-Hamiltonian parameters used to do the simulation are given in table **S1**.

Fig S6: Comparisons of experimental 2-D ¹H-ENDOR pattern of 1(OH) with simulation performed by assuming DFT optimized location of ${}^{1}H_{A}$, whose metrical and Spin-Hamiltonian parameters are given in table S1.

Fig S7: Comparisons of experimental 2-D ¹H-ENDOR pattern of **1**(OH) with simulation performed by assuming a bridging μ (OH) hydroxide, by adding to proton to a μ (O) bridge, whose metrical and Spin-Hamiltonian parameters are given in table **S1**.

Fig S8: Comparisons of experimental 2-D ¹H-ENDOR pattern of **1**(OH) with simulation performed by assuming ¹H_A to be randomly rotated around the Fe(III)-O bond, with the superposition 2-D spectra obtained by summing the simulations, corresponding to multiple ¹H_A orientations whose metrical and dipolar tensors are given in table **S2**.

¹ H _A Hyperfine tensors												
Metrical	Experiment ^a		T: Modified	T: Linear ^c	T: DFT ^d	T: Bridging ^e						
Parameters	Aexp	Texp	DFT ^b	geometry		OH						
A_1/T_1 (MHz)	-25	-24.3	-24.3	-14.0	-22.4	-23.7						
A_2/T_2 (MHz)	-12	-11.3	-11.3	-10.9	-9.0	-3.7						
A_3/T_3 (MHz)	34.8	+35.6	+35.6	+24.9	+31.4	+27.4						
$a_{\rm iso}$ (MHz)	-	0	0	0	0	0						
$\lambda = (T_2 - T_1)/T_3$	0.73	0.365	0.365	0.126	0.427	0.73						
$\frac{d_{\text{Fe-Fe}}(\text{\AA})}{r_1(\text{\AA})}$ $\frac{(\beta_1) \text{ (deg)}}{\gamma \text{ (deg)}}$			2.198 53.8	3.7 2.387 80.6 78.4	3.341 2.387 56.6 53.8	3.341 2.52 44.4 43.1						
$\frac{r_2(\text{\AA})}{(\beta_2) \text{ (deg)}}$				4.1 144.5	2.843 135.5	2.341 131.1						

Table S1: Metrical and ¹H Spin-Hamiltonian Parameters used to simulate 2-D pattern for ¹H_A

^a Tensor used in simulations of experiment, Figure 2, using $\mathbf{g} = [2.008, 2.003, 1.992]$.

^b Tensor calculated using Fe-Fe distance from DFT optimized geometry¹ with slightly repositioned ${}^{1}H_{A}$ exactly matches T derived from experiment.

^c Tensor calculated using metrical parameters of DFT optimized¹ geometry of **1** as modified by linearizing the Fe-O-Fe fragment. Simulations with this tensor, **Figure S5** do not match.

^d Tensor calculated using metrical parameters of DFT optimized¹ geometry of 1; simulations with this tensor, **Figure S6** do not match.

^e Tensor calculated using metrical parameters of DFT optimized¹ geometry of **1** as modified by adding a proton to a μ (O)-bridge. Simulations with this tensor, **Figure S7**, do not match.

	DFT Optimized geometry for X-Model									
Metrical	H_1	H_2	H ₃	H_4	H_5	H ₆	H_7	H_8		
Parameters	(DFT)	(+45°)	(-44°)	(+89°)	(-87°)	(+124°)	(-121°)	(+141°)		
A_1/T_1 (MHz)	-22.4	-18.6	-20.5	-15.5	-16.6	-14.5	-14.9	-14.3		
A_2/T_2 (MHz)	-9.0	-10.6	-9.8	-11.9	-11.4	-12.3	-12.2	-12.4		
A_3/T_3 (MHz)	+31.4	+29.2	+30.3	+27.4	+28.0	+26.8	+27.1	+26.7		
$a_{\rm iso}({\rm MHz})$	0	0	0	0	0	0	0	0		
$\lambda = (T_2 - T_1)/T_3$	0.427	0.274	0.353	0.131	0.186	0.082	0.10	0.071		
d _{Fe-Fe} (Å)	3.341									
$r_1(\text{\AA})$	2.387									
(β_1) (deg)	56.6	68.0	61.3	86.5	77.7	99.4	93.1	102.3		
γ (deg)	53.8	64.6	58.1	83.4	74.4	83.1	89.7	80.1		
$r_2(\text{\AA})$	2.843	3.3	3.0	4.0	3.7	4.4	4.2	4.5		
(β_2) (deg)	135.5	137.9	136.3	143.3	140.5	147.7	145.5	148.8		
(<i>P</i> ₂) (u c <u></u> ₅)										

Table S2: Metrical and ¹H Spin-Hamiltonian Parameters used to simulate the superposition 2-D ¹H-ENDOR pattern displayed in Figure **S8**.

References:

(1) De Hont, R. F.; Xue, G.; Hendrich, M. P.; Que, L.; Bominaar, E. L.; Munck, E. *Inorg. Chem.* **2010**, *49*, 8310-8322.