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ABSTRACT We consider a single locus, and denote by A
the wild-type allele and by A' the mutant allele that is produced
irreversibly in each generation from A at the rate v. Let 1 + s,
1 + h, and 1 be, respectively, the relative fitnesses of mutant
homozygote A'A', mutant heterozygote A'A, and wild-type
homozygote AA. Then, it is shown, on the basis of the diffusion
equation method, that the average time until fixation of the
mutant allele (A') in a randomly mating population of effective
size Ne, given that the initial frequency is p, is

7Ep)= 4Ne f e-(Y)y-vdyf0Ye 1 dx,
in which B(x) = (S/2)x2 + I41- x), S = 4Nes,H = 4Neh, and
V = 4Nev. Of particular interest are the cases in which the
mutant allele is deleterious (s = -s', s' > 0). Three cases are
considered; the mutant is: (i) completely dominant s = h =-s',
(ih) completely recessive s = -st,h =0, and (iii) semidominant
s = -s', h = -s'/2, in which s' is the selection coefficient
against the mutant homozygote. It is shown that the average
time until fixation is shorter when the deleterious mutant allele
is dominant than when it is recessive if 4Nev is larger than 1.
On the other hand, the situation is reversed if 4NeV is smaller
than 1. It is also shown that for a mutant allele for which NeS'
> 10, it takes such a long time until fixation that we can prac-
tically ignore the occurrence of random fixation of a deleterious
allele under continued mutation pressure. To supplement the
analytical treatment, extensive simulation experiments were
performed by using a device called the pseudo-sampling vari-
able, which can enormously accelerate the process of simulation
by a computer. This method simulates the diffusion process it-
self rather than the binominal sampling process (in population
genetics the diffusion model is usually regarded as an approxi-
mation of the discrete binomial sampling process).

It is a well-known observation in evolution that organs and
characters that are no longer in use tend to degenerate with
time. A good example is the loss of eyes and pigmentation in
cave animals. A plausible explanation for this phenomenon is
that amorphic or hypomorphic mutations, which were previ-
ously deleterious, become harmless (neutral) or only slightly
deleterious after the character is no longer in use. Then the
mutant alleles tend to accumulate by mutation pressure (see
ref. 1 and p. 418 of ref. 2) and finally become fixed in the species
with the help of random genetic drift. The loss of vitamin C-
synthesizing ability in some vertebrate species whose diets are
rich in ascorbic acid has similarly been explained by Jukes and
King (3). They claim that, under such diets, mutant alleles that
caused loss of ability to synthesize vitamin C became neutral
(or only very slightly deleterious) and such alleles were fixed
by random drift under mutation pressure.
The purpose of the present paper is to investigate this type

of problem by determining the average length of time required

for a mutant allele to become fixed (i.e., to reach 100% fre-
quency) in the population when such an allele is produced ir-
reversibly from the normal wild-type allele in each generation.
In their study on persistence of common alleles in two related
populations, Li and Nei (4) investigated the same problem for
the case of no dominance. In this paper, we consider a more
general situation, assuming an arbitrary degree of dominance.
We also present a method to simulate the diffusion process in-
volved.
Analytical treatment by diffusion equation method
Throughout this paper we assume a randomly mating popu-
lation consisting ofN diploid individuals and having an effec-
tive size Ne (for the meaning of the effective population size,
see refs. 5 and 6; roughly speaking, Ne is equal to the number
of breeding individuals in one generation).

Consider a particular locus, and letA be the normal wild-type
allele. We assume that A mutates irreversibly to its allele A' at
the rate v per generation. In reality, the mutant allele A' is
usually not a single entity (particularly at the molecular level),
but a set of mutant alleles; however, we designate them col-
lectively as A'. Let us denote the relative fitnesses of the three
genotypes AA, AA', and A'A' as 1, 1+ h, and 1+ s, so that s and
h are the selection coefficients for the mutant homo- and het-
erozygotes. Because we mainly consider, in the present paper,
the situation in which A' is deleterious, we also use the symbol
s' to represent the selection coefficient against the mutant
homozygote. Thus, if the mutant allele A' is completely dom-
inant and deleterious, we have s = h = -s'. If A' is completely
recessive and deleterious, we have s = -s' and h = 0; finally,
if A' is semidominant (i.e., the case of "no dominance"), s =-s'
and h = -s'/2.
We now consider the stochastic process of change of the

mutant allele frequency and make use of the diffusion equation
method (or "diffusion model", see ref. 7) to treat the process.
We shall denote by p the frequency of A' in the population. Let
u(p, t) be the probability that the mutant allele becomes fixed
in the population by the tth generation, given that its initial
frequency (at time t = 0) is p. Then, u(p, t) satisfies the Kol-
mogorov backward equation,

?au(p, t)= 1 V 2a2U(p, t) + MP u(p, [1]
6Jt 2 +M1

in which My, and Vbp stand for the mean and variance of the
change of allele frequency p per generation (see refs. 5-7).

If p is the frequency of A' in the population, then the change
(6p) in one generation by selection is

bp = p(l - p)[sp + h(l - 2p)]/w, [2]
in which w = 1 + 2hp(1- p) + sp2. Also, the change by
mutation is

Abbreviation: PSV, pseudo-sampling variable.
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6p = v(1-p). [3]

Combining these two changes, and assuming that the selection
coefficients are small, we may put

Map = p( -p)[sp + h(1 -2p)] + v(1 -p). [4]

Also, from the assumption of the effective size Ne, we have

V^,p = p(I - p)1(2Ne). [5]

Now, let T(p) be the average time until fixation of the mutant
allele given that its initial frequency is p, so that

T(p) = r t (p, t) dt.

Note that if a population is finite in size, the deleterious a

eventually becomes fixed in the population under irrevers
mutation, although the time required for such fixation ma
extremely long unless the deleterious effect is very small.

In order to derive an equation for T(p), we differentiate
sides of Eq. 1 with respect to t, followed by multiplying e
term through by t, and then integrate with respect to t f,
0 to co. Note that the left-hand side of the resulting equa
becomes

ot au 2(p t)dt = t au(pt)1 tc@ aYu< t)dt
Jo at2 at j=o o at

= -[U(p, t)]t=-o
In this derivation we assume that t u(p, t)/at is Oat the li
t = co. Note also that u(p, co) = 1 and u(p, 0) = 0.

Thus, we obtain the required equation for T(p):
T(p) d____

VP + Mbp 1d=2 dp2 dp)+1=0.
The appropriate boundary conditions are

T'(0) = finite, and T(1) = 0,

in which the prime denotes differentiation. Letting

T(p) = 4Ney(p)
and substituting Eqs. 4 and 5 for Map and Vbp in Eq. 7, we
tain

p(1 p) d2y(P) + (1 - p)[4NeSp2
dp2

+ 4Nehp(l- 2p) + 4NeV] d(p) + 1 = 0.

Note that y(p) depends on the products NeS, Neh, and NeV
not on Ne, s, h, and v separately. The solution of this equati
that satisfies the conditions y'(0) = finite and y(l) = 0, is
follows.

y(p) =
I e-(f)?vdjIfnJ e7bQ V4d, [11]

in which

B(4) = (S/2)42 + H4(1- ) [12]

S = 4Nes, H = 4Neh, and V = 4Nev.
We are particularly interested in the average number of

generations until fixation starting from a population consisting
exclusively of the wild-type allele (see Fig. 1). This is given
by

T(O) = 4Ney(O)

= 4Ne eB(7)r-Vdi l d4. [13]

[6]

FIG. 1. Illustration of the meaning of the length of time until
fixation, T(O), of the mutant allele under irreversible mutation,
starting from a population free of the mutant allele. Eq. 13 gives the
average value of T(O).

For a selectively neutral mutant allele, the formula for y(O) can
be much simplified. Assuming that 4NeV id 1, we have

Y(O) =V- 14 - d4
V -1 '-

[14]= V 1 [ey + {(V)],
V

in which V = 4NeV, and i/(-) stands for the digamma function
(see ref. 8) and y = 0.577 ... is Euler's constant. For 4Nev =
1, we have y(O) = 7r2/6 1.64. When V is a positive integer,
the relationship

y(O) = [ + l/2 + . . . + 1/(V - 1)]/(V-1) [15]

is convenient to compute y(O). In particular, if V = 4Nev = 2,
we get y(O) = 1. In other words, it takes 4Ne generations on the
average until fixation of the mutant allele if one mutant gene
is fed into the population in each generation (assumingN = Ne)
When V is small, the following formula is useful to compute
the average time until fixation:

I_ I= 7r3 _r4
[.8] 1-V V 6 25.79 90

[16]

Thus, if 4NeV is very small, we have

T(O) = 4Ney(O) z 1/v. [171
In Fig. 2, the average time until fixation T(O) is illustrated

for various values of 4NeS' (deleterious case) ranging from 0 to
30, and also for 4NeS (advantageous case) ranging from 0 to 10,
assuming several values of 4NeV. These results are obtained by
numerically integrating Eq. 13 by a computer. It is interesting
to note that, if 4Nev > 1, the average time taken for the mutant
allele to reach fixation is shorter when the mutant is deleterious
in both the heterozygous and homozygous states (dominant)
than when it is deleterious only in the homozygous state (re-
cessive). The situation is reversed if 4Net < 1.
When 4NeV = 1 exactly, it can be shown analytically that the

average time until fixation is the same for the dominant and
recessive mutations. In this case, the average fixation time for
semidominant mutations becomes shorter than the dominant
or recessive ones, contrary to what one might expect intuitively,
for one would expect that if the degree of dominance is inter-
mediate, the time until fixation would also be intermediate.
Furthermore, numerical studies suggest that, in general, the
fixation time is prolonged when the mutant allele is either ov-

erdominant or underdominant, but is shortened when it is
partially dominant. From Fig. 2 we can also see that for a mu-
tant allele having appreciable deleterious effect such that 4Nes'
> 30, the time taken for fixation is so long that we can practi-
cally ignore the occurrence of fixation in evolution. This means
that deleterious mutants that have an effect on fitness of 1% or

more in homozygous condition, whether dominant, recessive,
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FIG. 2. Average number of generations until fixation, T(O), is
illustrated as a function of the selection coefficient (s or s') multiplied
by 4Ne, assuming the values of 4NeV shown for each family of curves.
The solid curves represent the case in which the mutant allele is
completely dominant, the broken curves the case in which it is com-
pletely recessive, and the dotted curves the case in which it is semi-
dominant (the case of no dominance).

or intermediate, are too deleterious to become fixed in an or-
dinary population. Many, if not the great majority, of Mukai's
(9) "viability polygenes" would be in this category (for the
fitness of minor viability mutants, see refs. 10 and 11). Eq. 13
was also used to construct Table 1, in which semidominance is
assumed.

Table 1. Time until fixation of semidominant deleterious
mutation, taking Ne generations as the unit length of time

Vt
S' * 0.01 0.1 1.0 10.0

10 1.2 X 104 1.0 X 103 4.0 X 101 1.9
20 8.6 X 105 6.8 X 104 1.1 X io3 2.7
30 8.4 X 107 6.4 X 106 6.8 X 104 5.1
40 9.4 X 109 6.9 X 108 5.4 X 106 1.8 X 10'
50 1.1 X 1012 8.0 X 1010 5.0 X 108 1.4 X 102
60 1.4 X 1014 9.7 X 1012 5.1 X 1010 2.1 X 103
80 2.3 X 1018 1.6 X 1017 6.2 X 1014 1.5 X 106
100 4.0 X 1022 2.7 X 1021 8.6 X 1018 2.4 X 109
200 1.0 X 10" 6.5 X 1042 1.1 X 1040 4.8 X 1027

Note: -S in table 3 of ref. 4 corresponds to S'12 in this table.
*S' = 4Nes' = 4Nes.
t V = 4Nev.

Numerical treatment by the finite Markov chain
method
In order to corroborate the treatment in the previous section
and particularly to confirm the result that, if 4NeV > 1, the
deleterious allele reaches fixation more quickly when it is
dominant than when it is recessive, the process of fixation was
treated as a finite Markov chain. Let us assume that the popu-
lation consists of N breeding individuals (more precisely, let N
= Ne) and let Ft(i) be the probability that the population
contains i mutant genes and (2N - i) wild-type genes in the tth
generation, inwhich i = 0,1. 2N and t = 0, 1, 2, .... Then
the transformation of the gene frequency distribution from one
generation to the next can be expressed by the following
equation.
Ft+ 1(0)
Ft+ 1(1)

Ft+ '(2N)
a(0,0) a(0,1) ... a(0,2N) Ft(0)
a(1,0) a(IJ) ... a(1,2N) Ft(1)

a(2N.,0) a(MNl) ..a(2N,2N) F(2N)
in which the matrix element a(j, i), j = 0, 1, . . ., 2N is

a(iw i)=L((2NJ)!(p''Y(l-pi')2N-i [19]j=p2N-2N
in which P-' = p + p(l - p)[sp + h(l - 2p)]/w, p = Pi + v(1
-PO), and Pi = i/(2N).

Then, the average number of generations until fixation is
computed by

co

T(0) = , (t + 1)[Ft + 1(2N)-Ft(2N)- ,
t=O

[20]

starting from a population consisting exclusively of the wild-
type allele [Fo(0) = 1]. By using a computer, the values of T(0)
were evaluated numerically for various values of 4Ns', as-
suming N = 20 and 4Nv = 2, for both recessive and dominant
mutations. In Fig. 3, these values are plotted together with the
corresponding values derived by the diffusion equation method.
The agreement between the results obtained by these two
methods is satisfactory. The small discrepancies for the cases
4Nes' > 8 must have come from the larger selection coefficients
that had to be assumed because of a small population size (N
= 20) used in the matrix multiplication.

Simulation experiments using pseudo-sampling
variable
The results obtained by the diffusion equation method were
also checked by Monte Carlo experiments using a device called
the "pseudo-sampling variable" (PSV), which can enormously
speed up the simulation process. The gist of this method is that
instead of sampling in each generation 2N gametes to produce
the population in the next generation, as is usually done in the
Monte Carlo experiments simulating a diploid population of
size N, a single uniform random number is generated with a
suitable mean and a variance to produce the gene frequency
after sampling drift. Specifically, if p is the frequency of the
mutant allele in the present generation (but after mutation and
selection), then the frequency in the next generation (at fer-
tilization) is given by

=
/,

P + ~Psv, [21]
in which (psv is a uniform random variable with mean 0 and
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FIG. 3. 2Nev = 1. Results obtained by a discrete treatment (finite

Markov chain method), assuming a population of 20 individuals, are
shown by e for the dominant deleterious mutation and by 0 for the
recessive deleterious mutation. The corresponding results obtained
by a continuous treatment (diffusion equation method) are also
plotted by solid and broken curves. The ordinate represents the av-
erage number of generations until fixation and the abscissa the se-
lective disadvantage multiplied by 4Ne.

variance p(l - p)/(2N). If p' happens to become negative by
chance; which may sometimes happen when p is very near to
0, then p' is set to 0 to continue the experiment. On the other
hand, if p' becomes larger than 1- 1/(2N), then p' is set to
unity, and the experiment is ended [no significant differences
were found when the criterion p' > 1 rather than p' > 1 -
1/(2N) was used]. in terms of the standard random number that
follows uniform distribution in the range between 0 and 1,
which we denote rnd in this paper, PSV in Eq. 21 may be ex-
pressed as

4PSV(a) = o (2mnd - 1),

and in general the (2n + 1)th moment is zero, and the fourth
and in general the 2nth moment is of the order of (2N)-n for
{PSV(a), this is satisfied if N is large (where n = 1, 2,). . .). The
merit of the PSV method is that it makes it possible to perform
simulation experiments assuming a very large population size,
or to try many replicate trials without prohibitive computing
time, or both. Note that the PSV method simulates the diffusion
process itself rather than the discrete binominal sampling
process ("Fisher-Wright model") for which the diffusion model
is usually regarded as an approximation.

In Fig. 5, the results of Monte Carlo simulation experiments
using {PSV(W) are plotted as squares, assuming that the mutant
allele is semidominant-that is, s = -s' and h = -s'/2. The
solid curve represents the corresponding values obtained by the
diffusion equation method, assuming semidominance. In order
to demonstrate that only the mean and the variance and not the
detailed shape of the distribution of the change 5p really matter,
we also tried PSV with a negatively skewed triangular distri-
bution as depicted in Fig. 4b, and with a positively skewed one
in Fig. 4c. They are given respectively by

4PSV(b) = /18U (-VI -) [23]
and

(PSv(c) =-(PSV(b), [24]

in which u2 = p(l - p)/(2N) and rnd is a random variable
which follows a uniform distribution between 0 and 1. Results
of simulation experiments using these two types of skewed

0 2 4 6 8 10
4Nes'

FIG. 5. 2Nev = 1. Results of simulation experiments using three
types of PSVs, as depicted in Fig. 4, are plotted together with the
corresponding result (solid curve) obtained by the diffusion equation
method. For example, a o is a result of an experiment using PSV(a)
in Fig. 4. Each symbol is the average of 100 replicate trials withN =
100. The mutant allele is assumed to be semidominant. Ordinate: the
average time until fixation T(0); abscissa: selective disadvantage
multiplied by 4Ne.

l5Ne

1 ONe

a1o
[22]

in which 2 = p(l - p)/(2N). This pseudo-random number is
illustrated in Fig. 4a. The rationale of substituting 4Psv(a), rather
than a more realistic-looking variable (such as a normal variate)
for the binomial variate comes from the nature of the contin-
uous stochastic process (see p. 374 of ref. 5). In the diffusion
equation method, only the mean and variance of the change
(6p) in gene frequency determine the process as long as the
higher moments of the change are negligible. Because the third

a b c

0 0 0
FIG. 4. Three types of pseudo-sampling variables (PSV) used in

the simulation experiments.
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distributions are plotted as triangles in Fig. 5 corresponding to
the shapes in Fig. 4. It is clear that the agreement between the
experimental results and the analytical solutions is excellent,
and that the detailed shape of the PSV distribution does not
matter.
Discussion
We investigated the time taken for a slightly deleterious mutant
allele to reach fixation by random drift under continued
mutation pressure, starting from a population initially consisting
exclusively of the wild-type allele. The results show that, for
4Net2 of about 1 or less, the time until fixation is extremely long
unless 4Nes' is less than about 20. If 4Nes' is larger, particularly
beyond 40, the time until fixation is so long that we can neglect
the occurrence of fixation in evolution. For example, assuming
4NeV = 1, if 4Nes' = 80, it takes about 6.2 X 104Ne generations
(see Table 1) until fixation, which is an enormously long time,
considering the fact that the earth is only some 4.6 X 109 years
old. Thus, for fixation of a deleterious mutant allele to occur,
its deleterious effect must usually be extremely smalL However,
in a small isolated population, accumulation of mildly detri-
mental mutant alleles may occur, leading to deterioration and
eventual extinction of the species. A biologically more inter-
esting situation is that, through change of environment,
mutations at a certain locus become no longer harmful. Then,
a mutant allele becomes fixed in the population, taking on the
average 4Ney(O) generations with y(O) given by Eq. 14. If 4NeV
is small, as is likely in an isolated population living in a spe-
cialized environment, such as a fish population in an under-
ground cave, the average time until fixation of a mutant allele
is roughly 1/v generations, the reciprocal of the mutation rate.
This means hundreds of thousands of generations for a given
locus. This problem is also discussed by Li and Nei (4). In ad-
dition, as pointed out by Muller (1), gene mutations often have
deleterious pleiotropic effects and this may prolong the fixation
time. For example, the white-eyed flies are less viable as larvae
(before they have eyes), and thus, degeneration of eyes in a cave
may take longer time than expected merely from the mutation
rate considerations. However, under the alternative hypothesis
that the loss of eyes is adaptive and occurred by positive natural
selection, it may take much less time.
The problem of the time until fixation of a slightly deleterious

allele might have some bearing on "Muller's ratchet" mecha-
nism, which Felsenstein (12) considers important in promoting
recombination in evolution (see also refs. 13 and 14). For this
to work, 4Nes' values must be very small. But then the effect
of random fixation of mutant alleles on the population fitness
may be quite small.

Finally, I would like to remark on the PSV method. Although
we treated a single variable case in this paper, the method can
be extended to treat cases with more than one variable. For
example, to treat the three-variable case (such as arises when
we consider four chromosome types involving two loci, or four
nucleotide bases at a single site), we can geherate three corre-
lated PSVs, (psv(1), 6'SV(2), and 4PSV(3), as follows:

SV(1) = lUl
4SV(2) = oy2(C21U1 + C22U2)
PSV(3) = U3(C31Ul + C32U2 + C33U3).

In these equations, di is the standard deviation of 4psv(i), (i =
1, 2, 3), and the Ujs are mutually independent, uniformly dis-
tributed, random numbers each with mean 0 and unit variance:
Us = x/'[2rnd(i) - 1]. The coefficients cjjs, (j = 1, 2, 3), are
given in terms of correlation coefficient pA between (psv(j) and
TPsvY) as follows: C21 P12, C22 = C13-1c, C~1 = P13, C32 =
(P23- Pl2Pl3)/C22, C33 = /1 - C312 - C322.
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