
Freetext Matching Algorithm: Manual

Anoop D. Shah
Clinical Epidemiology Group, University College London, London, UK

June 2012

The Freetext Matching Algorithm extracts structured information in the form of Read terms,
dates and numerical values from unstructured free text. The algorithm is implemented as a
Visual Basic program in a Microsoft Access database. The program was developed initially
in 2003-2005 by Anoop Shah working for the General Practice Research Database (GPRD)
Division of the Medicines and Healthcare products Regulatory Agency, and subsequently with
the Clinical Epidemiology Group, University College London. The source code is licensed
under the GNU General Public License Version 3 (http://www.gnu.org/copyleft/gpl.
html). The database includes the ‘2of4brif’ dictionary of common English words, part of the
12dicts set of wordlists compiled by Alan Beale (http://wordlist.sourceforge.net/
12dicts-readme.html).

Contents

I. GENERAL DESCRIPTION AND USER GUIDE 7

1. Overview 7

2. Analysis modes 9

3. Rationale for design of the system 9
3.1. Standardisation of Read/OXMIS terms . 10
3.2. Selection of terms . 11
3.3. Why we included OXMIS terms . 11
3.4. Adding new codes . 11

4. Analysis sequence 11
4.1. Sub main_termref . 12
4.2. Sub main . 13

1

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://wordlist.sourceforge.net/12dicts-readme.html
http://wordlist.sourceforge.net/12dicts-readme.html

Freetext Matching Algorithm: Manual, June 2012 Page 2

4.3. Negation . 14
4.4. Spelling correction . 14
4.5. Scoring of candidate Read term matches . 15

4.5.1. Technical details of readscore scoring system. 15

5. Database tables 16
5.1. Core tables . 16

5.1.1. Terms table . 16
5.1.2. Attrib2 table . 18
5.1.3. Synonym table . 18
5.1.4. Checkterms table . 19
5.1.5. Ignore table . 19
5.1.6. Ignore_phrase table . 20

5.2. Machine-generated tables . 22
5.2.1. Singlewords . 22
5.2.2. Doublewords . 22
5.2.3. Wordlist . 22

5.3. Input and output tables . 23
5.4. Maintenance . 23

5.4.1. List of common English words: 2of4brif table 23
5.4.2. Read_attr1 table . 25
5.4.3. Read_attr2 table . 25
5.4.4. Oxmis_termref table . 26

6. How to use the program 26
6.1. Form freetext . 26
6.2. Analysing a single text . 26
6.3. Viewing the results . 27
6.4. Analysing a set of texts . 27
6.5. Importing texts to the input table . 29
6.6. Using text files . 29

7. Examples of analysis 29
7.1. Normal mode . 29
7.2. Append mode . 29
7.3. Death mode ‘D’ . 30
7.4. Lab test mode ‘L’ . 30
7.5. Investigation result mode ‘N’ . 30
7.6. Pregnancy mode ‘P’ . 31
7.7. Sicknote mode ‘S’ . 31
7.8. Time or date mode ‘T’ . 31

8. Attributes 31
8.1. Read terms . 31
8.2. Dates . 32

Freetext Matching Algorithm: Manual, June 2012 Page 3

8.3. Duration . 32
8.4. Lab tests . 33

9. How to modify the algorithm tables 34
9.1. Form terms2: terms . 34
9.2. Form terms2: synonyms . 34

9.2.1. Data entry fields . 35
9.2.2. Buttons . 35
9.2.3. How to add a new synonym . 36

9.3. Form add_termlist . 37
9.3.1. Set Include=TRUE for a single term 37
9.3.2. Set Include=TRUE for a set of terms 37
9.3.3. Set the Read term category for a set of terms 38
9.3.4. To regenerate the terms table . 38

9.4. Form attrib2 . 38
9.4.1. Buttons . 39
9.4.2. Format of attribute patterns . 40
9.4.3. Data entry fields . 41
9.4.4. How to add a new pattern for an existing attribute 41
9.4.5. How to add a new attribute . 42

9.5. Other tables . 42

10.Testing the algorithm 42
10.1. Using the freetext form . 42
10.2. Analysis reports . 43

10.2.1. Overall analysis . 43
10.2.2. Readscore . 45

10.3. Aggregate reports . 46

11.Program development 47
11.1. Overview . 47
11.2. Major changes . 48

11.2.1. Information extracted . 48
11.2.2. User interface . 48
11.2.3. Changes made to increase speed . 48

II. GUIDE TO VISUAL BASIC CODE 49

12.Module freetext_core 49
12.1. Global variables and constants . 49
12.2. Sub init_all . 49
12.3. Function outfile_all As Boolean . 50
12.4. Sub main_termref . 50
12.5. Sub main . 51

Freetext Matching Algorithm: Manual, June 2012 Page 4

12.6. Sub initial_search . 51
12.7. Sub attrib_search . 52
12.8. Sub analyse_pd . 52
12.9. Function remove_ignorable As String . 52
12.10.Function readscore As Single . 53
12.11.Function fuzzylink As Long . 53

13.Module attrib 54
13.1. Global variables and constants . 54
13.2. Sub init . 54
13.3. Sub infile . 54
13.4. Sub outfile . 54
13.5. Function dissect2_options As String . 55
13.6. Sub pd_search2 . 55

14.Module checkterms 55
14.1. Global variables and constants . 55
14.2. Sub init . 56
14.3. Sub infile . 56
14.4. Sub outfile . 56
14.5. Sub check_all . 56
14.6. Function in_list As Long . 57
14.7. Function if_qualify As Boolean . 57
14.8. Function if_dequalify As Boolean . 57

15.Module list 57
15.1. User-defined data types . 57
15.2. Global variables and constants . 58
15.3. Function bestmatch As String . 58
15.4. Function expand As termlist . 58
15.5. Sub test . 59
15.6. Sub display . 59
15.7. Function add_termlists As termlist . 59
15.8. Function getlist As termlist . 60
15.9. Function wordtermrefs_count As Long . 60

16.Module pd 60
16.1. Global variables and constants . 60
16.2. Sub check_compressed . 61
16.3. Sub remove_from_compressed . 61
16.4. Sub compress . 61
16.5. Function correct_attr As Boolean . 62
16.6. Sub show_all_2 . 62
16.7. Function true_ As Long) . 62
16.8. Function Attr As String . 62

Freetext Matching Algorithm: Manual, June 2012 Page 5

16.9. Function mean As String . 63
16.10.Sub del_attr . 63
16.11.Sub set_attr . 64
16.12.Sub set_mean . 64
16.13.Sub add_attr . 64
16.14.Sub add_mean . 64
16.15.Function part_nopunc As String . 65
16.16.Function part_punc_nospace As String . 65
16.17.Function matchpattern As Boolean . 65
16.18.Function matchposition As Boolean . 66
16.19.Function matchoption As Boolean . 66
16.20.Sub init_read . 66
16.21.Function st_type As Long . 67
16.22.Sub clear . 67
16.23.Sub remove . 67
16.24.Function text As String . 67
16.25.Sub set_text . 68
16.26.Function punct As String . 68
16.27.Function max As Long . 68
16.28.Function part_punc As String . 69

17.Module strfunc 69
17.1. Global variables and constants . 69
17.2. Function get_date As String . 69
17.3. Function get_date_average As String . 69
17.4. Function words As String . 70
17.5. Function in_set As Boolean . 70
17.6. Function is_text As Boolean . 71
17.7. Function numwords As Long . 71
17.8. Function is_acronym As Boolean . 72
17.9. Function all_punc As Boolean . 72
17.10.Function matchindex As Single . 72
17.11.Function num_diff_char As Long . 72
17.12.Function dissect As String . 73
17.13.Function dissect2 As String . 73
17.14.Function is_numeric As Boolean . 74
17.15.Function phrase_match_pattern As Long . 74

18.Module synonym 74
18.1. Global variables and constants . 74
18.2. Sub infile . 75
18.3. Sub outfile . 75
18.4. Sub init . 75
18.5. Sub del . 75
18.6. Sub add . 76

Freetext Matching Algorithm: Manual, June 2012 Page 6

18.7. Sub add_with_acronym . 76
18.8. Function get_search_summary As String . 76
18.9. Function trylink_2 As String . 76
18.10.Function s2_pos As Long . 77
18.11.Function s1_pos As Long . 77
18.12.Function s2 As String . 77
18.13.Function s1 As String . 78
18.14.Function s1_priority As Long . 78

19.Module terms 78
19.1. Global variables and constants . 78
19.2. Sub infile . 78
19.3. Sub outfile . 79
19.4. Sub init . 79
19.5. Function true_term As Boolean . 79
19.6. Function exact_read_termref As Long . 79
19.7. Function read_type As String . 79
19.8. Function std_term As String . 80
19.9. Function attrib_str As String . 80

20.Module wordlist 80
20.1. Global variables and constants . 80
20.2. Sub infile . 81
20.3. Sub outfile . 81
20.4. Sub init . 81
20.5. Sub init_ignore . 82
20.6. Function in_wordlist As String . 82
20.7. Function in_wordlist_OLD As Boolean . 82
20.8. Function approx_wordlist As Long . 82
20.9. Function pos_wordlist As Long . 83
20.10.Function pos_singlewords As Long . 83
20.11.Function pos_doublewords As Long . 83
20.12.Function sng_termref As Long . 84
20.13.Function dbl_termref As Long . 84
20.14.Function dbl_numwd As Long . 84
20.15.Function wordlist_termref As Long . 84
20.16.Function termref_in_singlewords As Boolean 84
20.17.Function termref_in_doublewords1 As Boolean 85
20.18.Function termref_in_doublewords2 As Boolean 85
20.19.Function wordsearch As String . 85
20.20.Function ignorable As Boolean . 85
20.21.Function ignore_max As ignore_max() . 86
20.22.Function ignore_words As String . 86
20.23.Function remove_ignore_phrases As String 86
20.24.Function initial_process As String . 86

Freetext Matching Algorithm: Manual, June 2012 Page 7

21.Module in_out 87
21.1. Function filepath As filepath() . 87
21.2. Function input_string As String . 87
21.3. Function read_term As String . 87
21.4. Sub import_input_table . 87
21.5. Sub do_input_table . 88
21.6. Sub results_output . 88
21.7. Sub do_text_file . 89

22.Module maintenance 89
22.1. Global variables and constants . 89
22.2. Sub init_read_attr_tables . 89
22.3. Function read_attribute As String . 90
22.4. Function make_std_term As String . 90
22.5. Function make_std_term_with_attr As String 91
22.6. Sub rm_attr . 91
22.7. Sub delete_long_terms . 91
22.8. Sub delete_superfluous_terms . 91
22.9. Function find_similar_term As Long . 92
22.10.Sub make_wordlist . 92
22.11.Function count_t As Integer . 92
22.12.Sub term_remove_BATCH . 92
22.13.Sub term_remove_NEW . 93
22.14.Function read_code_oxmis As String . 93
22.15.Sub process_termlist . 93
22.16.Sub expand_rightleft . 94

Part I.
GENERAL DESCRIPTION AND USER
GUIDE

1. Overview

The The Freetext Matching Algorithm processes unstructured free text and produces a table of
structured data elements (data type, attribute, value), as shown in Table 1. In order to do so it
uses tables of Read and OXMIS terms, as well as several custom tables for detection of phrase
patterns and synonyms.

Freetext Matching Algorithm: Manual, June 2012 Page 8

Data type Possible attributes Value Description
READ Death mode:

Deathcause,

deathcause1a,

deathcause2 etc.
Others:
Family,

negfamily, query

+ others

Termref_uid of
matched Read term

Match to Read
diagnostic term (i.e.
lettered chapter).
Tests, family history,
personal history,
investigations and
administrative terms
are currently not
used.

DATE_full,

DATE_year,

DATE_time

Death mode:
deathdate,

certdate

Others:
admitdate,

followup, dob,

edd, lmp,

dateprev,

datenext

Date Date in various
formats.

DURA_yrs_,

DURA_mths,

DURA_wks_,

DURA_days

duraprev,

duranext,

followup, age

Number Duration in various
formats.

LABS gest, sysbp,

diabp,

haemoglobin, mcv,

pulse and others

Numerical value or
‘normal’,
‘abnormal’, ‘low’,
‘high’

Laboratory values.
‘gest’ is gestational
age in weeks.

ATTR family, negative,

query

none If the text suggests
that the Read Term
does not refer to a
definite diagnosis for
this patient (e.g.
“Death of mother”,
“Pneumonia
possible”)

Table 1: Structured data format

Freetext Matching Algorithm: Manual, June 2012 Page 9

2. Analysis modes

The text can be analysed in different ‘analysis modes’ depending on the expected type of infor-
mation. This can be selected automatically based on the Read code associated with the text.

Death searches for the cause of death and interprets 1a, 1b etc. as death certificate entries.
Laboratory results are not extracted.

Pregnancy a duration given in weeks is interpreted as gestational age if it is less than 43
weeks.

Labtest a numerical value or ‘normal’, ‘abnormal’ etc. can be interpreted as the test result.
This may be used for blood tests or clinical measures such as peak flow or pulse rate.

Normal / abnormal ‘normal’, ‘abnormal’, ‘nad’, ‘positive’ etc. can be interpreted as the
investigation result, but numerical values cannot. This may be used for radiology reports.

Date only a single date is allowed in the output. This is used for Read codes such as 13XC.00
‘Date of return from travel’.

Sicknote dates are regarded as medical certificate start or end dates.

3. Rationale for design of the system

The UK General Practice Research Database (GPRD) is a large database of primary care records
and is an important source of clinical information for epidemiology and drug safety research.
It contains details of consultations, diagnoses, test results, prescriptions and referrals. General
practitioners (GPs) code important diagnoses using a structured clinical terminology. Currently
the ‘Read’ clinical terminology is used, but OXMIS (Oxford Medical Information System) was
used previously, and SNOMED-CT (Systematized Nomenclature of Medicine–Clinical Terms)
will be used in the future. Additional information is entered in free text associated with the
coded entries.

Our aim was to develop a natural language processing system to extract diagnoses as Read
terms from free text in the GPRD, thus allowing researchers to combine information in coded
and unstructured data in research studies using primary care data. We chose to develop our
system independently rather than adapting an existing system so that we would have access
to all the code and would be able to optimise its performance. Our eventual aim is to develop
software suitable for use by doctors when entering data. This will enable the majority of clinical
information to be coded at the time of data entry, with minimal cost on the doctor’s time.

Our ‘Freetext Matching Algorithm’ uses manually entered lookup tables of phrases and syn-
onyms, and simple semantic information from the Read terms themselves (e.g. negation) to
identify appropriate Read terms for diagnoses stated in the text. The Read and OXMIS dictio-
naries were designed for coding by GPs and already incorporate variations in the way doctors
may express common diagnoses. We manually created a synonym table to allow the program
to interpret a greater range of alternative phrases.

Freetext Matching Algorithm: Manual, June 2012 Page 10

The algorithm was developed by an iterative process. After writing the initial program, we used
it to analyse samples of several hundred randomly chosen free text entries, and reviewed the
output manually. As well as the final structured output, the program produced a detailed report
of the intermediate stages of analysis to make it easier to find the root cause of any mistake.
We modified the lookup tables and program code based on the results of each test, re-tested the
program on the same sample to verify that the errors had been resolved, and then tested it on a
new sample of texts. See section 11 on page 47 for further details of program development.

Clinical terminology

The algorithm was principally designed to encode diagnoses in the free text to terms in the Read
Clinical Terminology, which is the system used for the existing coded entries in the GPRD.
Apart from diagnoses, the Read terminology includes codes for other categories of information
such as history, examination findings, procedures and test results. Our algorithm was designed
to extract some of these entries but the main focus was on diagnoses.

When GPRD started collecting data from general practice computer systems in 1987, practices
were using the OXMIS dictionary (OXford Medical Information System) to encode clinical
entries. Practices switched over to the Read dictionary at varying dates in the 1990s. The
current GPRD (in 2012) uses only Read terms (with OXMIS terms having been converted to
the Read equivalents), but when we started developing the software in December 2003, GPRD
contained a mixture of Read and OXMIS terms, with a total of 104,802 terms available.

3.1. Standardisation of Read/OXMIS terms

We standardised the wording of Read terms by replacing abbreviations such as ‘a/n’ (antena-
tal) with the full word, and removing phrases such as ‘NEC’ (not elsewhere classified) which
would not be found in ordinary clinical text; the list of such replacements is in database table
Read_Attr1 (subsubsection 5.4.2). If some Read terms became identical after this process of
standardisation, only one of them was retained. We categorised each word in a Read term as
positive, negative, optional or ignorable, using the Read_Attr2 table (subsubsection 5.4.3). For
example, for the Read term K510000 ‘Cystocele without uterine prolapse’, the word ‘cystocele’
would have to have a positive attribute, ‘uterine prolapse’ would have a negative attribute and
‘without’ would be ignored. We used these allocations to define which words in a Read term
need to be present in the text in order for the term to be matched. For example, in order to
match the Read term B723z00 ‘Benign neoplasm of bronchus or lung NOS’, a phrase would
only need to include one of the words ‘bronchus’ or ‘lung’. Short words which would not alter
the meaning of the term if omitted (e.g. ‘of’, ‘or’ and ‘NOS’ in the example), and words which
influence the true / false status of nearby words but have no other meaning (e.g. ‘lack of’) were
designated as ignorable and did not need to be present in the text.

Standardised Read/OXMIS terms were generated by function make_std_term in the
maintenance module (subsection 22.4 on page 90) and stored in the std_term field of the
Terms table.

Freetext Matching Algorithm: Manual, June 2012 Page 11

3.2. Selection of terms

We manually defined a subset of terms which the algorithm was allowed to select. Terms with
more than 5 non-ignorable words were excluded as they are too long and complex to match and
are infrequently used. The final list contained 42,931 terms which the algorithm was allowed
to select. Of these, 38,981 encoded medical diagnoses. This is particularly the case for Read
Chapter ‘T’, which contains over 3000 terms describing specific (and often rare) external causes
of injury, e.g. ‘T546000 Sucked into jet - occupant of spacecraft injured’.

3.3. Why we included OXMIS terms

The OXMIS dictionary is no longer used by GPs to encode information, and these codes have
been replaced by their Read equivalents in most recent version of GPRD. However, we retained
OXMIS codes in our program because they provide additional ways of expressing common
diagnoses, and in some cases the mapped Read term is not exactly equivalent. For example,
Read contains the term K510000 ‘Cystocele without uterine prolapse’, but there is no Read
term for cystocele without a statement of uterine prolapse. However, OXMIS contains the lone
term ‘CYSTOCELE’, and this would be the preferred match to an unqualified statement about
cystocele in the text. More than one OXMIS term may map onto a single Read term, thus some
precision is lost with code conversion. We therefore retained OXMIS terms in the algorithm,
but the output can easily be converted to Read terms if required.

3.4. Adding new codes

Our system was designed to enable the easy addition of new codes, which may be useful for
coding emerging diseases even before they are recognised in official coding terminologies. To
demonstrate this concept, we created the terms ‘Recently in hospital’ and ‘Rhabdomyolysis’
because they were not included in Read or OXMIS, but can encode clinically useful information
which may be present in free text.

4. Analysis sequence

Figure 1 gives an overview of the analysis sequence, which is described in more detail in the
following sections.

Freetext Matching Algorithm: Manual, June 2012 Page 12

Input free text

Output structured data

Remove computer-
generated phrases

Identify dates, numbers
and words which may

be part of clinical terms.
Attempt to correct
spelling mistakes

Search for word patterns
to assign attributes

Extend attributes (e.g. negation)
to a sequence of words, guided by

punctuation and stop words (e.g. 'but')

Attempt to match
sequences of words

to Read terms

Check for common
errors

Lookup tables
used at each stage

Example analysis

ignore_phrase

wordlist (list of words
in any Read term)

2of4brif (non medical
English dictionary)

attrib2 (attribute phrases)

singlewords (maps words to Read terms)

doublewords (maps two words at a
time to Read terms for faster matching)

synonym

checkterms

ignore (list of words which
can be ignored, e.g. 'the'

ignore

'START_1.00 Previpus MI in 2003'

1. Read G30..00 Acute myocardial infarction
2. Date of previous event (dateprev): year 2003

Previpus MI in 2003

Previpus → previous (spelling
correction, word in 2of4brif)

MI → mi (word in synonym table)
in 2003 → year 2003 (date)

synonym (manually
generated list of similar
words and phrases)

Attribute phrase match:
[CLINICAL WORD] in [DATE] : dateprev
(past medical history)
matches: 'mi in 2003'

Synonym match:
mi → acute myocardial infarction

Read term match:
G30..00 Acute myocardial infarction

Figure 1: Overview of the steps involved in analysing a text, showing the lookup tables used at
each stage and an example analysis

4.1. Sub main_termref

This Sub calls main (see below) with the appropriate analysis options based on the termref of
the original Read term.

One of the options is append, which can be set to TRUE if the free text should be appended to
the Read term text (to appear as it would on the doctor’s computer). Text is not appended if the
Read term type is LABS, DATE or SICKNOTE. The Read term is analysed separately, and the
first interpreted value from the main text is removed if it is the same as that from the Read term
alone or the existing termref and there is no attribute.

MYOCARDIAL INFARCT “Anterolateral”→
(no output)

MYOCARDIAL INFARCT “Father”→
1 READ family 303768 MYOCARDIAL INFARCT

Freetext Matching Algorithm: Manual, June 2012 Page 13

See subsection 12.4 on page 50 for technical details.

4.2. Sub main

Carries out the analysis of instring according to the analysis options. The results are stored in
the arrays in module pd (see section 16 on page 60). If debug_ is TRUE, the intermediate pro-
cesses are documented in the global variable debug_string (see page 43). See subsection 12.4
on page 50 for technical details. The analysis sequence is as follows (see Figure 1):

1. Initialise the readscore function (because it stores previous results); (subsection 12.10
on page 53)

2. Meaningless computer-generated phrases (e.g. “Hide=N”) are removed from the free
text by remove_ignore_phrases (see subsection 20.23 and subsubsection 5.1.6). If the
text appears to be from a structured data area, the function wordlist.initial_process

(subsection 20.24) extracts the useful information and converts it to a form suitable for
further analysis.

3. The words and punctuation are assigned to arrays (module pd; by Sub pd.init_read;
see subsection 16.20.

4. The array of words is searched for dates, numbers, and entries in the synonym, ignore
and wordlist tables. A data type is assigned to each word, which is CLIN (i.e. may be
part of a Read term) for words in the synonym and wordlist tables. This search is carried
out by (Sub initial_search; see subsection 12.6. If a word in the text does not match
any common or medical word in the dictionaries, an attempt is made to correct spelling
mistakes (subsection 4.4).

5. The procedure attrib.pd_search2 uses the attrib2 list (described on page 18) to
find matching patterns, and attributes are assigned to phrases which match (see subsec-
tion 13.6).

6. The attributes are extended to nearby words according to certain rules in the program (e.g.
a negative attribute is continued until a full stop, colon or the word ‘but’ is reached; see
subsection 4.3).

7. The text is analysed in sequences of up to 5 words with the data type CLIN. The words
may be adjacent or may have ‘ignore’ words in between, such as ‘the’, ‘and’ etc. This is
carried out by Sub attrib_search (see subsection 12.7 on page 52).

8. Call codeanalyse_pd to attempt to match sequences of clinical words to Read terms (sub-
section 12.8 on page 52). The program tries to find a Read term which matches the largest
possible number of adjacent words, using the synonym table to link alternative phrases
with the same meaning. Each word or phrase in the text is mapped to an individual word
or phrase in the Read term, so the order of words does not matter. Negative parts of the
text must map to negative parts of the Read term.

Freetext Matching Algorithm: Manual, June 2012 Page 14

9. Call pd.compress to filter to include only the structured data extracted (subsection 16.4
on page 61).

10. Call pd.check_compressed to check that each structured data element has an appropriate
attribute and value for its data type (subsection 16.2 on page 61).

11. The output is condensed into a sequence of converted dates and Read terms with asso-
ciated attributes. In some cases the output consists solely of an attribute, e.g. if the text
consists of “father” then the output is ATTR family without a Read term.

12. Call checkterms.check_all for a final validity check for a selected set of Read terms
(subsection 14.5 on page 56).

4.3. Negation

Negation detection is incorporated into the part of the program which detects other contexts
such as past medical history, suspected conditions and family history. Words and phrases de-
noting negation are listed in the attrib2 table, a table of phrase patterns for context detection
(subsubsection 5.1.2 on page 18). These results are further processed by Visual Basic code to
carry forward a negative attribute to incorporate all the terms that it applies to. The negative
attribute persists through comma separated lists such as “no breathlessness, oedema, or chest
pain”, and stops on encountering a full stop, colon, semi-colon or dash, or on encountering a
word signifying a new phrase such as “but”, “has”, “some”, “slight”, “seems” etc. (e.g. “not
febrile slight abdominal pain”). This is implemented in the procedure attrib_search (subsec-
tion 12.7 on page 52).

4.4. Spelling correction

FMA initially checks each word in the text against a list of clinical words and common words.
If an exact match is not found, an attempt is made to find the closest match according to a set of
rules implemented in the functions wordsearch (subsection 20.19 on page 85). This function
evaluates quantifies the difference between the text and dictionary words using the function
fuzzylink (subsection 12.11 on page 53):

• Spelling must be exact if the word has fewer than 6 letters

• The first letter must be correct

• An ‘error’ is defined as a single letter omission or substitution, or exchange of two adja-
cent letters

• The text word can be shorter than the dictionary word, with at most one error if fewer
than 10 letters or at most two errors if 10 or more letters

• The ‘fuzzylink score’ is defined as the position of the first error. If there are multiple
possible matches with different fuzzylink scores, the match with the highest score is cho-
sen (i.e. preferring the match with the error nearer the end of the word). If the highest

Freetext Matching Algorithm: Manual, June 2012 Page 15

fuzzylink score is shared by two matches, neither is chosen, and the function returns that
the text word is unknown (see Table 2).

Dictionary word Text word Fuzzylink score
pneumonia pnuemonia 3
pneumonia pnuemoniae 2
pneumonia pnuemoniaeg No match
pneumonia pnuemnoia No match
staphylococcus staphykococcuz 6
staphylococcus staphykococcurs No match

Table 2: Examples of ‘fuzzylink’ scores for matching text words to dictionary words using
spelling correction

4.5. Scoring of candidate Read term matches

We wrote a function called readscore to grade the closeness of a match between a text phrase
and the standardised version of a Read term (std_term). The function attempts to map each
word or phrase in the text to a word or phrase in std_term, and vice versa, taking into account
whether each word is negated, optional or can be ignored. Points are deducted from the read-
score for each ignorable or negative word not matched, and for matching via synonyms rather
than identical words.

FMA generates potential candidate matches for each phrase in the text of up to 7 words, and
calculates the readscore for each one. The values of readscore can range from 0 to 100, an the
minimum threshold for an acceptable match is set at 87. The match with the highest score above
the threshold is chosen, unless a match has readscore greater than threshold_high, set at 91,
in which case it is automatically accepted without an attempt to find other potential matches (in
order to save processing time).

4.5.1. Technical details of readscore scoring system.

The function calculates the following measures of match quality. Each ‘SCORE’ measure is
calculated on a word-by-word basis for the text and std_term. It is equal to 6 if the words
in the text phrase and standardised Read term are identical; otherwise it takes the value of
the ‘priority’ field in the synonym table (a value between 1 and 5) if the match is made via
synonyms.

OKread number of non-ignorable true words or set of options in std_term matched – 0.1 per
unmatched non-ignorable word + 0.5 per unmatched false word 1

1This means for long texts and Read terms, it may be possible to have a match even if one of the negative
words in the Read term is not matched (e.g. the Read term ‘Pregnancy induced oedema+proteinuria without
hypertension’ matches “pregnancy induced oedema and proteinuria” with readscore 93.7).

Freetext Matching Algorithm: Manual, June 2012 Page 16

SCOREread sum of scores divided by 6 for each word in std_term matched

TOTread number of non-ignorable words in standardised Read term

OKtext number of non-ignorable words in text matched

SCOREtext sum of scores divided by 6 for each text word matched

TOTtext number of non-ignorable words in text phrase

The readscore is then calculated thus:

Readscore=max
(

100,
63×OKread+7×SCOREread

TOTread
+

52×OKtext+5×SCOREtext
TOTtext

−27
)

If the negation status changes in the middle of the text (e.g. “hypertension without proteinuria”),
the corresponding words of the Read term must have the same true/false status for it to be
considered a match. If the text contains the word ‘left’ or ‘right’, this is ignored unless the
candidate Read term also contains ‘left’ or ‘right’, in which it is necessary for the sidedness
to be the same. The function can be tested from the Terms table by following the instructions
in subsubsection 10.2.2 on page 45. Examples of readscore for various potential matches are
given in Table 3.

The readscore was developed empirically and the scoring weights are somewhat arbitrary; it
will be refined in future versions of the program.

5. Database tables

5.1. Core tables

5.1.1. Terms table

A list of all Read and OXMIS terms used in the GPRD. It will need to be updated when new
terms are used in the future. This table is used to derive the appropriate analysis mode and to
test the text against candidate Read terms for conversion. Fields:

Termref GPRD term reference Uid

Code Read or OXMIS code

Term Original text version of term

Readcode For Read terms, this is the same as Code. For OXMIS codes, it is the Read code of
the corresponding Read term. It enables the use of the Read hierarchy for term viewing
and selection.

chap1 First character of Readcode, for fast filtering by the terms2 form (see page 34).

chap2, chap3 Second and third characters of Readcode

Freetext Matching Algorithm: Manual, June 2012 Page 17

Free text
phrase

Standardised
Read/OXMIS
term

Raw
Read/OXMIS
term

Readscore Comments

fractured left
femur

fracture femur FRACTURE
FEMUR

99.1 ‘Left’ is ignored

right
ventricular
failure

left ventricular
failure

Left ventricular
failure

0 ‘Left’ or ‘right’ in the text is
not ignored if it is also in
the Read term

mi acute
myocardial
infarction

Acute
myocardial
infarction

96.0 ‘MI’ is listed as a synonym
of ‘acute myocardial
infarction’ with priority 4

breast cancer malignant
neoplasm
breast

[X]Malignant
neoplasm of
breast

95.5 ‘Malignant neoplasm’ is a
synonym for ‘cancer’
(priority 4)

cva stroke and
cerebrovascular
accident

Stroke and
cerebrovascular
accident
unspecified

93.9 ‘CVA’ is a synonym for
both ‘stroke’ and
‘cerebrovascular accident’

no left
posterior tibial
pulse

left post tib
pulse absent

O/E - L.post.tib.
pulse absent

99.5 Synonym table maps ‘post’
to ‘posterior’ and ‘tib’ to
‘tibial’

Table 3: Examples of readscore calculated for potential matches between free text phrases and
Read/OXMIS terms

Freetext Matching Algorithm: Manual, June 2012 Page 18

Type Read term type:

D death

L investigation result which may have a numerical value

M medical (diagnostic) term (i.e. Read lettered chapter)

N investigation result which can only have a non-numerical value

P pregnancy

T time or date

S sick note

Attr Code describing whether each word of the Read term is true, false or ignorable (see page
34)

std_term standardised version of the Read term

Read TRUE if it is a Read term, FALSE if it is OXMIS.

Include TRUE means that the terms is used for text conversion output. This includes most of
the Read lettered chapters and selected terms from immunisations, symptoms, laboratory
results and physical examination. Many terms have been set to Include=FALSE, either
manually if they are ambiguous, or automatically if they are too long.

5.1.2. Attrib2 table

Context patterns. Modified using form attrib2 (page 38). Fields:

w1, w2, w3, w4, w5 up to 5 words in the pattern. See Table 6 on page 40 for details.

p1, p2, p3, p4, p5 punctuation following the 5 words.

a1, a2, a3, a4, a5 attribute to assign.

order search order. Lower numbered patterns can overwrite the changes made by higher num-
bered patterns.

death_only TRUE if this pattern is only used in ‘Death’ mode.

text for reference only; not used by program

date date pattern entered.

5.1.3. Synonym table

A manually generated list of similar words and phrases, modified using form Terms2 (page 34).
Fields:

s1 word or phrase (up to 5 words) which might occur in free text

Freetext Matching Algorithm: Manual, June 2012 Page 19

s1_num number of words in s1

s2 word or phrase (up to 5 words) which might occur in Read term

s2_num number of words in s2

priority number coding the accuracy of the link (see page 36)

date date entry made

5.1.4. Checkterms table

This table lists ‘qualifying’ and ‘dequalifying’ strings for some termrefs. It has the following
fields:

termref termref (link to terms table)

qualify comma separated list of qualifying words

dequalify comma separated list of dequalifying words

Some Read terms may appear in the text but may not apply to the current patient, according
to the context. For example, “malaria” in the context of “prophylaxis” should not be converted
to the Read term for malaria, or should have an attribute which shows that it is not a current
diagnosis for this patient. The current version of the program does not have a specific attribute
for ‘prophylaxis’, so in this case the word should simply be ignored.

Another example is “AF”, which usually means “atrial fibrillation”, but could also mean “ante-
rior fontanelle” or something else. The program would convert this to ‘atrial fibrillation’ using
the synonym table, which would be encoded as READ 261645 (Atrial fibrillation). This termref
is allowed only if the original text or Read term contains “ischaemic”, “heart”, “hypertens” etc.
so that other instances of “AF” are not erroneuosly converted.

If a term has ‘qualifying’ words, then one of those words must be present in the original Read
term or associated free text in order for the converted term to be allowed. If a qualifying word
is not present, the Read term is removed from the output.

If a term has ‘dequalifying’ words, it is removed from the output if any of the dequalifying
words is present. If both a qualifying and dequalifying word is present, the output is marked
with the attribute machinequery, which marks it as requiring manual checking.

The table is edited using the form checkterms (see Figure 2).

5.1.5. Ignore table

This table consists of a single field (word) which lists ‘ignorable’ words and phrases (stop-
words). These are words which frequently occur in medical notes but do not relay any important
information. For example, the word ‘of’ is ignorable to enable ‘injury of knee’ to map to ‘knee
injury’. This table can be edited using the ignore form (see Figure 3).

Freetext Matching Algorithm: Manual, June 2012 Page 20

Figure 2: Checkterms form

Examples: ‘and’, ‘as’, ‘at’, ‘became’, ‘becoming’, ‘by’, ‘caused’, ‘causing’, ‘complains of’

5.1.6. Ignore_phrase table

This table also has just one field (text) which lists exact phrases (including specific spacing
and correct case) which are to be ignored because they are part of a structured data format.
This format may be specific to VM or Vision; modifications to this table may be required if the
program is to be used with other data sources. Words or phrases can be preceded by START_ to
indicate that they apply only at the beginning of the free text string.

Examples:

Text
Con: 0
Episode=O
Hide=N
Location=Elsewhere (non GMS)
START_1.00
START_1.00 Episode : O
START_SUMMARY:

Freetext Matching Algorithm: Manual, June 2012 Page 21

Figure 3: Form for editing the ignore and ignore_phrase tables

Freetext Matching Algorithm: Manual, June 2012 Page 22

5.2. Machine-generated tables

These tables are generated by sub make_wordlist() in module maintenance. They are gener-
ated from the std_term of the subset of Read terms for which Include=TRUE.

5.2.1. Singlewords

Each termref contributes one row per non-ignorable word. The table has 3 columns:

words a single word which appears in a Read std_term

termref the termref in which the word appears

numwd the number of non-ignorable words in the std_term

5.2.2. Doublewords

This table is similar to singlewords except that the words column contains every pair of non-
ignorable words that appears in a Read term, with each pair in alphabetical order. For example,
Read term 279879 ‘Infective otitis externa due to erysipelas’ would generate the following rows:

termref numwd words

279879 4 infective otitis
279879 4 externa otitis
279879 4 externa infective
279879 4 erysipelas externa
279879 4 erysipelas otitis
279879 4 erysipelas infective

5.2.3. Wordlist

This table has 2 columns:

words every word which occurs in a std_term

wordlength the number of letters in the word

It is used in conjunction with the 2of4brif table (see subsubsection 5.4.1 on page 23). The
actual lookup table is generated by the union of the two tables:

SELECT wordlist.words, wordlist.wordlength, TRUE As Clinical FROM
wordlist UNION
SELECT [2of4brif].words, [2of4brif].wordlength, FALSE FROM [2of4brif]
ORDER BY wordlength ASC, words ASC, Clinical ASC;

The list is sorted by wordlength and then by words alphabetically, enabling the program to
search for a particular word and quickly find similar words of the same length.

Freetext Matching Algorithm: Manual, June 2012 Page 23

Field name Data type Description
id Integer text_uid or automatic id
text rrMemo

(long string)
free text to be interpreted

termref Integer associated Read term
checked Boolean whether manually checked
read_missed Integer number of Read diagnoses not detected
dates_missed Integer number of dates with attributes not detected
labs_missed Integer number of lab results not detected
comments Text comments entered during checking
term_extra Boolean whether the converted term is more detailed

than the original term
term_corr_happ Boolean whether analysis of the free text correctly shows

that the original Read term does not apply to
this patient

Table 4: Input table fields

5.3. Input and output tables

The database contains tables which can be used to analyse a batch of texts and check the results.

Input Text files can be imported into this table, and it also stores individual texts added sepa-
rately. See Table 4.

Output Output from analysis. See Table 5.

Debug This table stores the analysis reports generated from analysis of each individual text if
the appropriate option is selected (see subsection 10.2 on page 43).

Reports A list of SQLs, descriptions and accuracy results based on manual checking of the
program output. The queries can be modified and run from the form reports (see sub-
section 10.3 on page 46). Fields: ID, description, sqltext, result

File_location Fields file type and path. The path for ‘Data’ is the default entry in the data
entry fields of form batch (see subsection 6.4 on page 27). The path for ‘Wordlist’ is for
a temporary text file used by the program for storing lookup tables.

5.4. Maintenance

5.4.1. List of common English words: 2of4brif table

This is a publicly available list of common English words compiled by Alan Beale, download-
able from http://wordlist.sourceforge.net/.
The Jan 2003 edition is used in this version of the Freetext Matching Algorithm. This list is used
in conjunction with wordlist for the spell checker, to ensure that common non-medical words

http://wordlist.sourceforge.net/

Freetext Matching Algorithm: Manual, June 2012 Page 24

Field name Data type Description
id Integer links to id column of input table
order Integer order of output row from a single text
type Text data type (see Table 1)
attribute Text attribute (see section 8)
value Text termref, date or lab value
extra Text Read term, if data type is READ
auto_happ Boolean whether the algorithm considers that this Read

term is an event which happened to this patient
(i.e. attribute not ‘family’, ‘negpmh’, ‘negative’
or ‘query’). Positive for all dates with attribute
and all lab results.

actual_happ Boolean whether Read term is correct and actually hap-
pened to this patient (based on manual review),
or whether the date or lab result is correct and
applies to this patient

important Boolean can be manually set to FALSE if the term is a
duplicate; otherwise TRUE. If set to FALSE,
the term is not considered in calculations of sen-
sitivity or specificity.

corr_attr Boolean whether the attribute is optimal
corr_value Boolean whether the Read term is optimal

Table 5: Output table fields

Freetext Matching Algorithm: Manual, June 2012 Page 25

are not misinterpreted as mis-spelt medical words. The two fields are words and wordlength,
which correspond to the fields in the wordlist table (see subsubsection 5.2.3 on page 22).

5.4.2. Read_attr1 table

This table gives exact phrases or patterns in Read terms which may need to be ignored or
replaced in order to generate the std_term. Phrases can be removed or replaced (e.g. ‘a/n’ by
‘antenatal’), and the patterns can apply only at the start or end of the Read term if necessary.
Part of the table is reproduced below.

Raw_pattern Replacement Order Position Comment

[x] 4 START ICD-10 codes
[so] 5 START Site of operation
other 6 START
nos 7 END
nec 8 END
symptom 9 END
not otherwise specified 10 END
not elsewhere classified 11 END
site not specified 12 END
a/n antenatal 13
h/o history of 14

The Read_attr1 and read_attr2 tables can be modified using the form read_attr. Both tables
are sorted by the Order column which must contain unique integers. The search order can be
altered by rearranging these numbers.

5.4.3. Read_attr2 table

This table consists of a list of rules for producing the Read attribute string. This denotes whether
each word in the std_term version of the Read term is True (T), False (F), ignorable (I) or is
an option (O) (e.g. ‘Retained placenta or membranes’ = TOIO). The following special codes can
be used: #=number, *=text, ?=anything. Punctuation is treated as a word at this stage but is
coded P; these letters are removed from the final attribute string because the std_term to which
it refers does not have any punctuation. Here are some examples from this table:

Freetext Matching Algorithm: Manual, June 2012 Page 26

Pattern Attribute Order Comment

* or * OIO 1
* / * / * OIOIO 2
* / * OIO 3
* # / * # TTITT 11 e.g. c6/c7
requires a * TIT 12
not yet * IIF 13
not yet * * IIFF 14
not signifying * IIF 40
, * neg PFI 51
not specific * * IIFF 52
not specif * * IIFF 53
without * IF 54

5.4.4. Oxmis_termref table

This table lists the termrefs of OXMIS terms (field: termref) and the Read terms to which they
map (field: read_termref). More than one OXMIS term can map to a single Read term.

6. How to use the program

Open the form freetext (see Figure 4). This displays one text at a time with the results of the
analysis. There is a window which displays an analysis report, which can be used to diagnose
the problem if there is an error in the analysis. The error can be prevented in the future by
modifying the terms, attributes or synonym tables, which are accessible via buttons on the
freetext form.

6.1. Form freetext

This form cycles through the rows in the input table. The analysis report is stored in the debug
table, and the output subform is based on the output table. The associated Read term is obtained
by linking to the terms table.

6.2. Analysing a single text

Click Test new phrase . This will bring up a dialog box in which the phrase can be pasted or
typed. Further dialog boxes will be brought up for analysis options:

• whether to use spelling correction

• the termref or type of the associated Read term

Freetext Matching Algorithm: Manual, June 2012 Page 27

Figure 4: Freetext form

• whether to append the free text on the end of the Read term and analyse both together

The text and the analysis results are added to the input and output tables. The analysis report
is added to the debug table, and displayed to the right of the freetext screen. To re-analyse the
current text, click Re-analyse current phrase .

6.3. Viewing the results

• Click Goto in the top left-hand corner to go to a specific ID.

• Click Show all to make the form cycle through all texts (default).

• Click Show unckecked to cycle through all texts with ‘checked’=FALSE.

6.4. Analysing a set of texts

Open the form batch (this can be done by clicking Batch analysis on the form freetext); see
Figure 5.

There are two options for analysing a set of texts: either importing them to the input table and
placing the structured output in the output table, or using text files. The former option allows
the form freetext to be used to inspect the analysis results one text at a time.

Freetext Matching Algorithm: Manual, June 2012 Page 28

Figure 5: Form for selecting batch analysis options

Freetext Matching Algorithm: Manual, June 2012 Page 29

6.5. Importing texts to the input table

Text ID and termref are optional. If the file does not contain either of these variables, set the
relevant column to 0. Ids will be generated automatically if not provided. If IDs are provided,
they must be unique. When a file is imported, existing data in the input, debug and output

tables are erased.

6.6. Using text files

Type the full filepath of the input and output files in the boxes provided. The options to the right
of the table apply when analysing the input table or when using text files. The output file format
is tab delimited: id, order, data type, attribute, value. Note that a single input row
can generate several output rows, which are numbered in the order field.

7. Examples of analysis

7.1. Normal mode

“re,pill on loestrin and antibiotics could she be pregnant ? will wait 1 week before starting
ovran”→
1 READ query 283679 PREGNANT
2 DURA_wks_ 1

“wound still sloughy at the bottom. cleaned and dressed w idoflex and dd, see 2/7”→
1 READ 305620 WOUND(S)
2 DURA_days followup 2

“160/90 SEE 1/12”→
1 LABS sysbp 160
2 LABS diabp 90
3 DURA_mths followup 1

“warfarin 4mg od - inr 3.3 - rev 2/52”→
1 LABS inr 3.3
2 DURA_wks_ followup 2

7.2. Append mode

The original Read or OXMIS term is in italics

Freetext Matching Algorithm: Manual, June 2012 Page 30

ALLERGY “PENICILLIN RASH”→
1 READ 305707 ALLERGY PENICILLIN

Osteoarthritis “right knee. Advised weight reduction, gentle exercise etc. Paracetamol for pain
relief.” →
1 READ 244091 Knee osteoarthritis NOS
2 READ 309078 Pain

Chest pain “CHEST WALL”→
1 READ 309182 Chest wall pain

7.3. Death mode ‘D’

“1a mi 1b coronary atherosclerosis 2 renal impairment, diabetes”→
1 READ deathcause1a 298318 Acute myocardial infarction
2 READ deathcause1b 298326 Coronary atherosclerosis
3 READ deathcause2 234604 Renal impairment
4 READ deathcause2 303256 DIABETES

“died on 25/7/04. cert at 18:30. R.I.P. Sudden unexpected death - Refer to coroner.” →
1 READ 302004 DIED
2 DATE_full deathdate 25-Jul-2004
3 DATE_time 18:30
4 READ 230556 Death
5 READ 296901 Referral to coroner

7.4. Lab test mode ‘L’

Gamma - G.T. level “Original result: ‘GGT’ = 19(5 - 50)”→
1 LABS 19

Red blood cell distribution width “*** NUMERIC VALUE SUPPLIED: = 13.3 ***”→
1 LABS 13.3

7.5. Investigation result mode ‘N’

Urinalysis - general “nad”→
1 LABS nad

Freetext Matching Algorithm: Manual, June 2012 Page 31

7.6. Pregnancy mode ‘P’

Antenatal care “28/40+4 no problems, fundus=dates, fmf, dipstick neg, BP 124/72”→
1 LABS gest 28
2 LABS sysbp 124
3 LABS diabp 72

PREGNANT “34wks”→
1 LABS gest 34

7.7. Sicknote mode ‘S’

MEDICAL CERTIFICATE “6 month”→
1 DURA_mths sicknote 6

MED3 - doctor’s statement “3 weeks injured ankle”→
1 DURA_wks_ sicknote 3
2 READ 218088 Other ankle injury

7.8. Time or date mode ‘T’

Date ceased smoking “23.8.97”→
1 DATE_full date 23-Aug-1997

Patient date of birth “15 February 1945”→
1 DATE_full date 15-Feb-1945

8. Attributes

8.1. Read terms

deathcause1a, deathcause1b, deathcause1c Cause of death – death certificate cate-
gories; e.g. ‘1a) MI b) coronary atheroma’ → ’MI’ has attribute deathcause1a; ‘coro-
nary atheroma’ is deathcause1b

deathcause1c

deathcause1

deathcause2

Freetext Matching Algorithm: Manual, June 2012 Page 32

deathcause Specifically stated as cause of death; e.g. “Cause of death: bronchopneumonia”

negative Associated clinical term is negative, e.g. “not cancer”

family Clinical term is associated with family member, not patient e.g. “wife has cancer”

negfamily negative family history; e.g. “no family history of stroke”

pmh past medical history e.g. “asthma age 7”

negpmh negative past medical history e.g. “no previous MI”

query Uncertainty about diagnosis (’query’ or ‘rule out’), e.g. “rule out MI”

dueto previous condition was caused by this condition, e.g. “MI due to atherosclerosis”

causing this condition was caused by previous condition e.g. “Septicaemia complicated by
renal failure”

8.2. Dates

certdate or time when death was certified

admitdate admission or readmission date

dischdate discharge date

deathdate death date or time

lmp last menstrual period

dob date of birth (date of birth is not available in GPRD for confidentiality reasons. However it
may be useful for verification exercises requiring record linkage, such as linking to death
certificates or the mother-baby link.)

edd expected date of delivery

datenext date refers to next Read term (e.g. “1990 stroke”)

dateprev date refers to preceding Read term (e.g. “MI in 1982”)

followup follow up date

sicknote any date in a medical certificate entry (may be start or end date of certificate)

Only certdate and deathdate are allowed to be times. If the program is not operating in
death mode, no attempt is made to extract times. This is to reduce the risk of a number (e.g. a
test result) being incorrectly interpreted as a time.

8.3. Duration

duranext duration refers to next Read term

Freetext Matching Algorithm: Manual, June 2012 Page 33

duraprev duration refers to preceding Read term

followup follow up time (e.g. “see in 3 months”)

age e.g. “this 40-year-old man”

ageprev age at event relating to previous Read term, e.g. “diagnosed with asthma aged 10”

sicknote e.g. “MED3 1 week”

8.4. Lab tests

Note that laboratory results are not extracted in ‘Death’ analysis mode.

calcium

cholestesterol

cobalamin Vitamin B12

creatinine

diabp, sysbp Blood pressure. The program recognises a format such as ‘150/80’ without
‘blood pressure’ stated explicitly, but only if the systolic pressure is higher than diastolic
and both are in sensible ranges (sysbp 80–230, diabp 40–150)

esr Erythrocyte sedimentation rate

fbc Full blood count

ferritin

folate

gest Gestational age (duration in weeks, less than 43. In ‘pregnant’ mode, the program will
interpret any duration in weeks as gestational age, as long as it does not have another
attribute, and there no different duration in the text. Fractions are ignored by the function
strfunc.get_date which converts durations into a structured format, e.g. “32/40 + 6” is
converted to ‘32 weeks’.)

glyhb HbA1c

haemoglobin

hdl HDL cholesterol

inr International normalised ratio

ldl LDL cholesterol

mcv Mean cell volume

pefr Peak flow (’predicted’ or ‘best’ peak flow is ignored)

platelets

Freetext Matching Algorithm: Manual, June 2012 Page 34

pulse pulse rate in beats per minute, must be within the range 20 to 300

tetrathyroid Thyroxine, T4

trithyroid T3

tsh Thyroid stimulating hormone

triglycerides

urea

wbc White blood cells, leucocytes (may apply to blood, urine or other fluids, depending on
associated Read term)

The function pd.correct_attr controls whether an attribute is correct for a particular meaning,
except for LABS data type where this check is not used. It is possible to introduce a new LABS

attribute without modifying the program code.

9. How to modify the algorithm tables

9.1. Form terms2: terms

The table of Read Terms is used for three purposes:

1. To decide the analysis options for the current text, based on its associated termref

2. To enable the free text to be appended to the text of the Read Term, in order to produce a
complete statement which is similar to what the doctor would have seen when using the
practice management system. This applies when using the analysis option ‘Append’.

3. To derive the list of terms to which text can be converted (those with Include=TRUE).

The form terms2 displays the terms table and allows manipulation of the synonym table. By de-
fault it displays the entire table but it can be filtered on term, termref or std_term (standardised
term).

9.2. Form terms2: synonyms

The table of synonyms is used for three purposes:

1. Searching for candidate text in s1 to see if it is possibly part of a clinical term (from sub
freetext_core.initial_search).

2. Generating a variation of the free text by substituting s1 components by their s2 links
(function list.expand).

Freetext Matching Algorithm: Manual, June 2012 Page 35

Figure 6: Form terms2

3. Trying to match a Read term segment to part of the free text, as part of a test of match ac-
curacy (function freetext_core.readscore). This comparison is between the original
free text segment (including ignorable words) and the Read term.

9.2.1. Data entry fields

Text word word or phrase to search for in unstructured text

Read word word or phrase to search for in Read term

Use acronym terms such as ‘mi – myocardial infarction’ will also be added as ‘m i – my-
ocardial infarction’.

9.2.2. Buttons

Delete entry deletes the link between Text word and Read word

Search for linked terms searches synonym table for s2-READ links to the entry in Text
word, and also s1-TEXT links to the entry in Read word, and displays both sets of re-
sults. In the results the s1-TEXT terms are not directly linked to the s2-READ terms, but
the s1-TEXT terms are linked to the Read word and s2-READ to Text word.

Freetext Matching Algorithm: Manual, June 2012 Page 36

1 , 2 , 3 adds the match between Text word and Read word with the selected priority

Opposites adds the match with a priority of -100

1 both , 2 both etc. adds the match and also the same match with Read word and Text word
swapped around.

Rebuild lookup tables regenerates the temporary text file used for rapid loading of the
lookup tables. This needs to be done before analysing text, if any changes have been
made to the tables.

9.2.3. How to add a new synonym

• Type the text phrase in the Text word box (lower case, with one space between words,
no punctuation).

• Type the standardised Read phrase to which it will match in the Read word box.

• Click one of the buttons (e.g. 4 , 5 etc.) under ‘Add to synonym table with priority’ to
add the link to the table. If the link already exists, it will be over-written with the new
priority.

• Just before analysing the next text, click Rebuild lookup tables to ensure that all the
changes are implemented.

Priorities

5 exact match e.g. ‘chronic obstructive pulmonary disease’↔ ‘copd’; the match is automati-
cally made both ways.

4 almost exact match e.g. ‘abnorm’↔ ‘abnormal’; the match is automatically made both ways.

3 moderate match (e.g. text phrase is mis-spelt or is more specific than Read phrase); e.g. ‘b
pne’→ ‘bronchopneumonia’; ‘carcinoma’→ ‘malignant neoplasm’

2 non-standard abbreviation or distorted form; possible one-way match (Read phrase is wider
than text phrase); e.g. ‘rsi’→ ‘repetitive strain injury’

1 loosely associated (Read phrase much wider than text phrase); e.g. ‘foot’→ ‘lower limb’

-100 Opposite; e.g. ‘left’ 6= ‘right’, ‘finger’ 6= ‘toe’

When searching for the best Read term match, links with higher priority are used where possi-
ble.

When the function list.expand searches on s1 for alternative words, the search text has been
stripped of ‘ignorable’ words, so for example if the free text contained ‘A and E’, the search
text would be ‘a e’. This means that for any synonym link involving ‘a and e’ there should be
a corresponding link with ‘a e’. This additional match is made automatically, with priority 1,
whenever a synonym link is added ‘both ways’.

Freetext Matching Algorithm: Manual, June 2012 Page 37

Figure 7: Form add_termlist

9.3. Form add_termlist

Used for setting the read term type, and adding terms for conversion (see Figure 7).

9.3.1. Set Include=TRUE for a single term

1. In the terms2 form, tick the Include check box for each term to add.

2. Open add_termlist and click 4. Regenerate wordlists .

After setting Include=FALSE using the Delete button on the terms2 form, there is no need to
regenerate the wordlists.

9.3.2. Set Include=TRUE for a set of terms

1. Either paste a list of the termref Uids (comma separated) in the text box, or use the Terms2
form and filter it to show only the required terms, then click Get list of termrefs .

2. Click Set include=TRUE for these terms .

3. If these terms have blank std_term or attribute strings, click
2. Generate attrib_str and std_term for these terms then
3. Convert ‘l’ and ‘r’ to ‘right’ and ‘left’ .

Freetext Matching Algorithm: Manual, June 2012 Page 38

4. Click 4. Regenerate wordlists . This regenerates the singlewords and doublewords

tables using the std_term in the

5. ‘Compact and repair’ the database using the main Microsoft Access menu. This should
be carried out regularly, and especially after modifying a large amount of data.

6. After setting Include=TRUE for a large number of terms, run the following procedures:

a) Set Include=FALSE for duplicate terms

b) Set Include=FALSE for excessively long terms .

9.3.3. Set the Read term category for a set of terms

1. Generate the set of termlist Uids as in step 1 above.

2. Click on the Read term category to set. ‘Nothing’ sets the category to blank.

3. Click Assign category to these terms .

9.3.4. To regenerate the terms table

Once std_term and attrib_str have been generated for all the terms, there would be no
reason to change them unless an error is discovered. However if it is necessary, it can be done
by deleting any termrefs in the box, then clicking buttons 2 , 3 , and 4 in order. Generating
the attrib_str and std_term for the entire table takes about 30 minutes.

9.4. Form attrib2

The form attrib2 displays the contents of the attrib table, which contains a list of word
patterns which are used to derive the context of Read terms, lab results and dates (see Fig.
fig:attrib2form). The boxes and buttons at the top are used to enter new terms. Existing terms
can be edited directly in the main body of the form. The Filter list button can be used to restrict
the patterns displayed to particular attributes or search positions for ease of use.

The attribute search takes place after detection of dates and durations but before analysis of
Read terms. However, words which might form part of a Read term are marked with data
type CLIN. Lab results are extracted during the attribute search. Some attributes are further
manipulated by the core program.

Each row of the attrib2 table contains up to 5 words with punctuation, and the attributes to
which they map.

Freetext Matching Algorithm: Manual, June 2012 Page 39

Figure 8: Form for editing the attrib2 table

9.4.1. Buttons

Add term adds a new pattern with words and attributes as in the appropriate boxes (see below
for format)

Requery refreshes the query for the form

Filter list brings up a dialog box asking which attribute to filter by. Type in the attribute and
click OK (* can be used as a wildcard; e.g. ‘death*’ would search for ‘deathcause1a’,
‘deathdate’ etc.).

Move brings up a dialog box asking for the new search position of the pattern. Type the
new position or 999 to delete the pattern. On clicking OK, the patterns are re-arranged
automatically.

Rebuild lookup tables regenerates the temporary text file used for rapid loading of the
lookup tables. This needs to be done before analysing text, if any changes have been
made to the tables.

Freetext Matching Algorithm: Manual, June 2012 Page 40

9.4.2. Format of attribute patterns

The pattern can match up to 5 words. For each word you can specify a choice of words or data
types which are acceptable for the match. If a data type rather than a specific word is given, it
must be in square brackets (see Table 6).

Example or code Meaning

* Any word or punctuation
thisword Specific word: ‘thisword’
this|that|[NUMB] Either ‘this’, ‘that’ or a number
2 Specific number: 2
[CLIN] Any word which might be part of a Read term
[IGNO] An ignorable word, e.g. ‘and’, ‘as’, ‘at’, ‘by’
[NUMB] Any word with data type ‘number’, which in-

cludes some lab results such as ‘normal’
[NUMB_70_230] Number between 70 and 230
[DATE] Date in any format
[DATE_full] Full date
[DATE_year] Year
[DURA] Duration in any format
[DURA_wks_] Durations in weeks
[ATTR attribute] Any word with specified attribute

Table 6: Attribute patterns

Punctuation is shown in the small boxes to the immediate right of the word. The asterisk (*)
is a wildcard character which meany that any punctuation, or blank is acceptable. Underscore
(_) represents no punctuation. For other punctuation elements, if the punctuation is part of the
pattern, it is accepted. For example, if the pattern is _:= then ‘:’, ‘=’, ‘:=’ or no punctuation
would be allowed.

Attributes can be assigned to each of the words in the pattern. The following special codes can
also be used:

anon Anonymise; do not analyse this part of the text (e.g. if it may contain the name of a
doctor, patient or hospital)

ignore Ignore

normalrange Ignore any following lab values unless they have their own attribute

possiblity Ignore any following diagnoses unless they have their own attribute

_ (underscore) Retain current attribute

. (full stop) Set attribute to blank

DATATYPE attribute Set attribute to attribute and data type to DATATYPE (e.g. LABS inr;
DURA_wks_ followup)

Freetext Matching Algorithm: Manual, June 2012 Page 41

The search position is the order in which the patterns are used; those with higher search posi-
tions are used first. Attributes of patterns which are used later (i.e. with lower numbers) can
overwrite attributes set by earlier patterns.

The death only check box means that this pattern is only used if the text is being analysed in
‘death’ mode.

9.4.3. Data entry fields

To add an attribute: type the text in the top text box, and the attributes below it. Leave a space
between each word and punctuation.

New words type in the words for the new pattern, leaving one space between each word and
the next, or a word and punctuation (e.g. tsh * [NUMB])

Apply attribute to all words (check box) tick if all the words in the pattern have the same
attribute, and type the attribute once only in the ‘new attribute’ box.

New attribute either word by word or just one for all words. Attributes can only be entered
as one word using this system. If an entry is to have two words (e.g. ‘LABS tsh’), where
the first word is the data type and the second is the attribute, it has to be altered manually
in the form after first entering it using the automatic system.

Search position Search position for new term. If this position is already taken, the existing
patterns are moved out of the way to make room.

9.4.4. How to add a new pattern for an existing attribute

• Type in the pattern in the ‘New words’ box. Leave a space between words and punctua-
tion. Use the codes described above.

• Type in the new attribute, with one space between words. If the new pattern has the same
attribute for all words, tick the check box apply attribute to all words .

• If the rule should set the data type as well as the attribute, modify the entry in the attribute
table afterwards.

For example, “chol [NUMB]”→ LABS cholesterol:

1. Add attribute: words = ‘chol * [NUMB]’; new attribute = cholesterol, Apply attribute
to all words = TRUE; Search position = whatever desired

2. Scroll down the form (or use filter list) to find the new pattern, and change the sec-
ond attribute entry from cholesterol to LABS cholesterol. This entry corresponds to
[NUMB], the actual value of the lab result.

Freetext Matching Algorithm: Manual, June 2012 Page 42

9.4.5. How to add a new attribute

• Add the attribute pattern using the attrib2 form as described above.

• For data type LABS this is all that is required. For other data types, modify the function
correct_attr in module pd to allow the new attribute for that particular data type.

• Modify the program code if it is necessary to set the attributes in a way which is not
possible using the attrib table.

9.5. Other tables

The other core tables have simple data entry forms corresponding to their names; please see the
appropriate paragraph in subsection 5.1.

checkterms see subsubsection 5.1.4 on page 19.

ignore, ignore_phrase see subsubsection 5.1.5 on page 19.

Read_attr1, Read_attr2 see subsubsection 5.4.2 on page 25.

10. Testing the algorithm

10.1. Using the freetext form

The freetext form can be used to analyse a single text or check the results of a set of texts
in turn. For a general guide to using this form, see subsection 6.1 on page 26. This section
describes the data fields for recording conversion accuracy.

Each output data element has the following check boxes, which correspond to fields in the
output table (see Table 5 on page 24):

Happened: auto For READ terms, this is whether the program thinks the event actually
happened to this patient, as evidenced by the attribute. It is negative if the attribute
is ‘negative’, ‘family’, ‘query’, ‘negfamily’, ‘negpmh’. This variable is set by sub
results_output (see subsection 21.6 on page 88) and can not be altered manually from
the form. For dates, this is TRUE if the date has an attribute. For Lab results it is always
TRUE.

Happened: actual This is initially set to be the same as ‘Happened: auto’ but can be altered
manually. If it does not correspond to ‘Happened: auto’ it means the computer has made
an error.

Important Whether this output entry should be ignored because it is a duplicate. This is set to
TRUE as default.

Freetext Matching Algorithm: Manual, June 2012 Page 43

Correct attribute For READ terms, whether the attribute is the best possible choice. De-
fault=TRUE. (If the attribute is completely wrong it might also affect ‘Happened: ac-
tual’.) Dates and Lab results are considered to be wrong if the attribute is wrong.

Correct value For READ terms, whether the chosen Read term is the most specific and ac-
curate term available. Default=TRUE. If the choice is completely wrong, ‘Happened:
actual’ should also be set to FALSE.

There are also several fields in the input table (see also Table 4 on page 23):

Comments Click the button to add a comment.

Read missed, Dates missed, Labs missed Number of pieces of data not detected in
each category. Click the buttons to increase the number by 1.

Original term false If the original term did not apply to this patient as evidenced by the free
text (e.g. Read term ‘DEATH’ with free text ‘of mother’).

New term better Whether the new term combining the original Read term and free text is
more specific than the original Read term (see subsection 7.2 on page 29 for examples).

10.2. Analysis reports

10.2.1. Overall analysis

Module freetext_core contains a global variable ‘debug_string’, which can be used to store an
analysis report if this option is chosen. When analysing a single text using the freetext form
interface, the program automatically uses the debug option, and when analysing a batch of texts
from the input table or a text file, this option is switched off to save time.

Various functions add entries to debug_string to document the stages of analysis. Line breaks
are inserted by appending ASCII character 13 then character 10. This example is based on the
following free text:

“another hospital admission- still having daily symptoms and using salbutamol ++++.To in-
crease symbicort to 200/6 2pufbd and rev 1m if no improvement.Man /plan discussed.”

The analysis report contains the following items (only selected portions of the analysis report
are shown, to save space):

1. Heading INITIAL_SEARCH, ATTRIB.PD_SEARCH2

2. Attribute patterns which match to the text (show attrib phrase ’Matches to:’ text phrase).
Example:

Attrib phrase (search position 424): 1|[ATTR followup]
2|[DURA]|[DATE]*
Matches to: rev 1

Utility: shows which attribute patterns were used and the text they recognised. If a context
is detected incorrectly, this part of the report shows whether the context was detected in

Freetext Matching Algorithm: Manual, June 2012 Page 44

the first place. Modification or addition of patterns to the attribute table might reduce
errors seen at this stage.

3. Listing of arrays in module pd, containing words, punctuation, attribute and meaning in
separate arrays. This listing is after the words have been given provisional data types, and
the attributes have been allocated according to the arrays. Example:

Word : Punctuation : Meaning : Attribute
another : : CLIN another :
hospital : : CLIN 3 2 :
admission : - : CLIN 3 2 :
still : : IGNO : ignore
having : : WORD having :
daily : : WORD daily :
symptoms : : CLIN 2 1 :

Utility: ’Word’ column shows text after remove_ignore_phrases and initial_process.
’Meaning’ shows initial allocation of data types, particularly dates (function str-
func.get_date is called to try to extract a date from every sequence of up to 5 words).
’Attribute’ shows the result of attrib.pd_search2 i.e. after recognition of patterns using
the attribute table.

4. Heading ATTRIB_SEARCH, ANALYSE_PD

5. Show each sequence of words of data type ‘CLIN’ (possibly with ‘IGNO’ or ‘NUMB’
words in between) tested i.e. words which might be part of a Read term. Each section
headed ‘List of candidate terms’ is the record of a single call to the function ‘bestmatch’
(see subsection 15.3 on page 58). This function is called with a sequence of up to 8
contiguous words from the text, and returns the match with the highest readscore or the
first match found with readscore higher than threshold_high. If a Read match is found,
the report contains the readscore, termref Uid, Read term text, and the text to which it
matches. Example of listing:

List of candidate terms
0 0 [another hospital]
0 0 [another hosp]
0 0 [another hospital care]
0 0 [another hosp l]
Total 3 terms

List of candidate terms
0 0 [another]
Total 0 terms

List of candidate terms
0 0 [hospital admission]
100 309362 HOSPITAL ADMISSION

[hospital admission]

Freetext Matching Algorithm: Manual, June 2012 Page 45

Total 1 terms

Utility: Shows which sequences of words were chosen for conversion to Read terms (sub
freetext_core.analyse_pd). Shows which alternative texts were generated by using the
synonym table. Shows the converted text from which the Read term match was made,
and the readscore (calculated with reference to the original text). Errors at this stage
might be reduced by adding or editing synonym entries.

6. Listing of pd arrays, now containing linked Read termref Uids alongside text. Example:

Word : Punctuation : Meaning : Attribute
another : : CLIN another :
hospital : : READ 309362 100 :
admission : - : READ 309362 100 :
still : : READ 309362 100 :
having : : WORD having :

...

and : : IGNO : ignore
rev : : WORD rev : followup
1 : : DURA_mths 1 : followup
m : : : followup
if : : WORD if : followup
no : : IGNO : possibility

Utility: shows the original text which was linked to a Read term.

7. Heading: PD.COMPRESS, PD.CHECK_COMPRESSED

8. Listing of pd arrays, now containing one row per structured data element. Ignore the
’Word’ and ’Punctuation’ columns - at this stage the original text entry is no longer used
by the program. Example:

Word : Punctuation : Meaning : Attribute
another : : READ 309362 100 :
hospital : : DURA_mths 1 : followup

Utility: useful for checking the effect of the sub pd.check_compressed (see subsec-
tion 16.2 on page 61), which rejects attributes and/or the data elements themselves if
they do not make sense.

10.2.2. Readscore

The form terms2 contains a button Test next to every term which can be used to test the
readscore function (see subsection 12.10 on page 53). This calls up a dialog box in which you
can enter text which the Read term will be scored against. The procedure involves initialising
the arrays as for a normal analysis. However, rather than trying out possible Read term matches,
only the term of interest is used, and the score is calculated.

Freetext Matching Algorithm: Manual, June 2012 Page 46

Figure 9: Dialog box displaying results of readscore test for the text “fracture of right femur”
against the OXMIS term ‘FRACTURE FEMUR’ (Figure 9). The std_term is ‘frac-
ture femur’. The word ’right’ in the text is ignored as long as there is no word ’left’ in
the Read term.

The score is based mostly on the proportion of non-ignorable words in the candidate text
mapped to a word in the Read term and vice versa, with a few extra points available for the
priority of synonym matches, and whether ignorable words were mapped also (see subsec-
tion 4.5 on page 15). The result is displayed in a dialog box, showing the link made to each
word of the original text and the Read term (Figure 9).

The readscore is interpreted in view of the following thresholds, which are declared as constants
in the module list (section 15):

threshold_high = 91; if match with this readscore is found, the program does not search
for other matches.

threshold = 87; minimum readscore for a satisfactory match. The maximum score is 100
for a perfect match.

10.3. Aggregate reports

The reports form provides a convenient way to organise a set of queries and calculations to
give an overall report of the algorithm performance. The data is stored in the table reports,
which has the following fields:

ID autonumber

sqltext Either:

• An SQL ‘SELECT COUNT’ query which returns the answer in a variable called
result

Freetext Matching Algorithm: Manual, June 2012 Page 47

Figure 10: Reports form

• A calculation using the results of other queries. The formula must start with ‘=’,
and references to previous results must be enclosed in braces { }.

result Output from the sqltext query or calculation

description Description of the outcome variable

The ‘reports’ report displays the ID, description and results from the reports table, in a for-
mat suitable for printing. When the report is opened, it prompts for analysis options and a
description of the test sample, which are then displayed in the report.

11. Program development

11.1. Overview

A computer program (freetext3.mdb) was developed to extract structured information from
free text entries associated with death entries. The output was in the form of Read Clinical
Terms with an associated context flag denoting the death certificate category of the diagnosis,
or whether it was due to another condition, whether it was uncertain (‘query’) or negative or
referred to someone other than the patient (‘family’). Dates and times were also extracted. The

Freetext Matching Algorithm: Manual, June 2012 Page 48

algorithm was tested on a random sample of texts containing 625 diagnoses, and it converted
86% to the correct Read Term and context flag.

The program was further developed in July-November 2005 for use with other types of free
text and extract information on referrals and hospitalisations. This documentation refers to the
current version of the program: freetext10.mdb.

11.2. Major changes

11.2.1. Information extracted

Symptoms, examination findings, tobacco and alcohol consumption, immunisations, hospitali-
sation and referrals. (Therapeutic procedures and contraception are currently not converted to
Read terms).

11.2.2. User interface

Forms re-designed for ease of use, and to make it easy to view the intermediate results of
analysis, and add attribute patterns and synonyms to increase accuracy in the future.

11.2.3. Changes made to increase speed

1. All tables are now loaded into RAM before analysis. Lists are searched using direct
reference to sorted lists held in arrays, rather than using SQL to access the database tables.
A further change made in Jan 2006 was to export all the lookup tables to a text file, which
is quicker to load. It will also make it possible to produce an ‘end-user’ version of the
program which does not use database tables at all. The text file has to be regenerated after
making any changes to the tables.

2. A new table ‘doublewords’ was added, which consists of all pairs of two words which
appear in Read terms, and their associated termref Uids. Previously the program would
generate a set of termref Uids from each individual word, and then calculate the intersec-
tion of the two sets in order to generate the list of termref Uids present in both words.

3. The old wordlist table was renamed ‘singlewords’. A new ‘wordlist’ table was generated
which contained just a list of all the words in the Read terms, and was used for initial
spelling correction.

4. A modified function enabling single character spelling mistakes in long words to be cor-
rected.

Freetext Matching Algorithm: Manual, June 2012 Page 49

Part II.
GUIDE TO VISUAL BASIC CODE

The source code is licensed under under the GNU General Public License Version 3. The Visual
Basic documentation was produced using the ‘Documentation’ Visual Basic program (included
with the source code for this project) which extracts comments, arguments and function calls
from Visual Basic code and produces documentation using LATEX.

12. Module freetext_core

Main subs and functions for the program

12.1. Global variables and constants

Const wordmatchthreshold = 0.73 (used by readscore)
debug_string – String (stores analysis report for an individual text, when running in debug
mode)
death – Boolean (whether Read term implies death)
gest – Boolean (whether Read term refers to weeks gestation)
spell – Boolean (whether to use spelling correction)

12.2. Sub init_all

Initialises all the arrays from the data text file. If filepath is not provided, it is obtained from the
table ‘file_location’. Arrays must be loaded in the same order that they are saved in the file.

Arguments: filepath – String (Optional)

Subs and functions called: attrib.infile subsection 13.3 on page 54
synonym.infile subsection 18.2 on page 75
wordlist.infile subsection 20.2 on page 81
terms.infile subsection 19.2 on page 78
checkterms.infile subsection 14.3 on page 56
freetext_core.outfile_all subsection 12.3 on page 50

Called by: in_out.filepath subsection 21.1 on page 87
in_out.do_input_table subsection 21.5 on page 88
in_out.do_text_file subsection 21.7 on page 89

Freetext Matching Algorithm: Manual, June 2012 Page 50

12.3. Function outfile_all As Boolean

Initialise all lookup arrays from database tables, and (if dont_export is False or not given) save
them to a text file. The text file is specified in the table file_location, with the [file type] of
‘Wordlist’. The value returned is whether or not the new file was successfully generated.

Arguments: filepath – String (Optional)
dont_export – Boolean (Optional)

Subs and functions called: attrib.init subsection 13.2 on page 54
synonym.init subsection 18.4 on page 75
wordlist.init subsection 20.4 on page 81
terms.init subsection 19.4 on page 79
checkterms.init subsection 14.2 on page 56
attrib.outfile subsection 13.4 on page 54
synonym.outfile subsection 18.3 on page 75
wordlist.outfile subsection 20.3 on page 81
terms.outfile subsection 19.3 on page 79
checkterms.outfile subsection 14.4 on page 56

Called by: freetext_core.init_all subsection 12.2 on page 49
maintenance.make_wordlist subsection 22.10 on page 92

12.4. Sub main_termref

If append = True, text is appended to Read term (to appear as it would on the doctor’s computer)

Arguments: instring – String
Termref – Long
spell_ – Boolean (Optional)
debug_ – Boolean (Optional)
append_term – Boolean (Optional) (ByVal)

Subs and functions called: terms.read_type subsection 19.7 on page 79
terms.std_term subsection 19.8 on page 80
strfunc.in_set subsection 17.5 on page 70
freetext_core.main subsection 12.5 on page 51
pd.mean subsection 16.9 on page 63
strfunc.dissect2 subsection 17.13 on page 73
pd.Attr subsection 16.8 on page 62
pd.remove subsection 16.23 on page 67

Called by: in_out.filepath subsection 21.1 on page 87
in_out.do_input_table subsection 21.5 on page 88
in_out.do_text_file subsection 21.7 on page 89

Freetext Matching Algorithm: Manual, June 2012 Page 51

12.5. Sub main

Main analysis, using all the options

Arguments: instring – String (ByVal)
death_ – Boolean (Optional)
pregnant_ – Boolean (Optional)
debug_ – Boolean (Optional)
labtest – String (Optional)
spell_ – Boolean (Optional)
date_only – Boolean (Optional)
termstring – String (Optional)
append_term – Boolean (Optional)
sicknote – Boolean (Optional)

Subs and functions called: freetext_core.readscore subsection 12.10 on page 53
wordlist.remove_ignore_phrases subsection 20.23 on page 86
pd.init_read subsection 16.20 on page 66
freetext_core.initial_search subsection 12.6 on page 51
attrib.pd_search2 subsection 13.6 on page 55
pd.show_all_2 subsection 16.6 on page 62
freetext_core.attrib_search subsection 12.7 on page 52
freetext_core.analyse_pd subsection 12.8 on page 52
pd.compress subsection 16.4 on page 61
pd.check_compressed subsection 16.2 on page 61
checkterms.check_all subsection 14.5 on page 56

Called by: freetext_core.main_termref subsection 12.4 on page 50
in_out.filepath subsection 21.1 on page 87
in_out.do_input_table subsection 21.5 on page 88
in_out.do_text_file subsection 21.7 on page 89

12.6. Sub initial_search

Analyses pd for Read terms, synonyms, attributes and dates

Arguments: debug_ – Boolean (Optional)

Subs and functions called: pd.max subsection 16.27 on page 68
pd.part_nopunc subsection 16.15 on page 65
strfunc.get_date subsection 17.2 on page 69
pd.part_punc_nospace subsection 16.16 on page 65
pd.add_mean subsection 16.14 on page 64
synonym.get_search_summary subsection 18.8 on page 76
pd.text subsection 16.24 on page 67
wordlist.ignorable subsection 20.20 on page 85

Freetext Matching Algorithm: Manual, June 2012 Page 52

pd.add_attr subsection 16.13 on page 64
strfunc.is_numeric subsection 17.14 on page 74
wordlist.wordsearch subsection 20.19 on page 85
pd.set_text subsection 16.25 on page 68

Called by: freetext_core.main subsection 12.5 on page 51

12.7. Sub attrib_search

Assigns attributes to actual read terms, dates etc.

Arguments: debug_ – Boolean (Optional)

Subs and functions called: pd.max subsection 16.27 on page 68
pd.Attr subsection 16.8 on page 62
strfunc.in_set subsection 17.5 on page 70
pd.mean subsection 16.9 on page 63
pd.text subsection 16.24 on page 67
pd.punct subsection 16.26 on page 68
pd.set_attr subsection 16.11 on page 64

Called by: freetext_core.main subsection 12.5 on page 51

12.8. Sub analyse_pd

Analyses pd after the initial search; attempts to convert terms into Read codes.

Arguments: debug_ – Boolean (Optional)
labtest – String (Optional)

Subs and functions called: strfunc.in_set subsection 17.5 on page 70
pd.mean subsection 16.9 on page 63
pd.Attr subsection 16.8 on page 62
pd.max subsection 16.27 on page 68
pd.punct subsection 16.26 on page 68
pd.text subsection 16.24 on page 67
list.bestmatch subsection 15.3 on page 58
pd.set_mean subsection 16.12 on page 64
strfunc.words subsection 17.4 on page 70
pd.set_attr subsection 16.11 on page 64

Called by: freetext_core.main subsection 12.5 on page 51

12.9. Function remove_ignorable As String

Removes ignorable words from a phrase. Requires one space between words; no punctuation

Freetext Matching Algorithm: Manual, June 2012 Page 53

Arguments: instring – String (ByVal)
remove_right_left – Boolean (Optional)

Subs and functions called: strfunc.numwords subsection 17.7 on page 71
strfunc.dissect2 subsection 17.13 on page 73
wordlist.ignorable subsection 20.20 on page 85
strfunc.in_set subsection 17.5 on page 70

Called by: list.getlist subsection 15.8 on page 60
synonym.add subsection 18.6 on page 76

12.10. Function readscore As Single

Produces a score based on the accuracy and completeness of match between free text (from
partdata) and candidate Read term. Score between 0 and 100

Arguments: pd_start – Long
pd_fin – Long
Termref – Long
debug_ – Boolean (Optional)
clear_memory – Boolean (Optional)

Subs and functions called: terms.std_term subsection 19.8 on page 80
strfunc.numwords subsection 17.7 on page 71
pd.part_nopunc subsection 16.15 on page 65
terms.attrib_str subsection 19.9 on page 80
pd.Attr subsection 16.8 on page 62
strfunc.dissect2 subsection 17.13 on page 73
synonym.trylink_2 subsection 18.9 on page 76
strfunc.words subsection 17.4 on page 70
pd.text subsection 16.24 on page 67
pd.true_ subsection 16.7 on page 62
strfunc.in_set subsection 17.5 on page 70
wordlist.ignorable subsection 20.20 on page 85

Called by: freetext_core.main subsection 12.5 on page 51
list.getlist subsection 15.8 on page 60

12.11. Function fuzzylink As Long

Whether the two words are almost the same (maximum one character difference). Assume the
first character is the same and they differ in length by at most 1. Gives a score (letter position
of difference, zero if too different). See secspelling f ormorein f ormation.

ref_word – String
test_word – String

Freetext Matching Algorithm: Manual, June 2012 Page 54

none

wordlist.wordsearch subsection 20.19 on page 85

13. Module attrib

13.1. Global variables and constants

Const maxattrib = 400
w(5, maxattrib) – String
p(5, maxattrib) – String
a(5, maxattrib) – String
death_only(maxattrib) – Boolean
numwd(maxattrib) – Long
order(maxattrib) – Long (for debug purposes only)
num – Integer

13.2. Sub init

Initialises arrays for attribute search

Arguments: none

Subs and functions called: attrib.dissect2_options subsection 13.5 on page 55

Called by: freetext_core.outfile_all subsection 12.3 on page 50

13.3. Sub infile

Inputs everything from filenumber 1

Arguments: none

Subs and functions called: none

Called by: freetext_core.init_all subsection 12.2 on page 49

13.4. Sub outfile

Outputs arrays to filenumber 1

Arguments: none

Subs and functions called: none

Called by: freetext_core.outfile_all subsection 12.3 on page 50

Freetext Matching Algorithm: Manual, June 2012 Page 55

13.5. Function dissect2_options As String

Counts the options and puts it at the front for future use by the dissect2 function when using
these words: i.e. 3|word|another|option.

Arguments: instring – String

Subs and functions called: none

Called by: attrib.init subsection 13.2 on page 54

13.6. Sub pd_search2

Death=true means include death certificate terms. Search by attrib term rather than by word
in original text. Searches pd using attrib2 table; results are added to attribute fields of pd. See
subsection 4.3 for description of negation detection.

Arguments: debug_ – Boolean (Optional)
death – Boolean (Optional)

Subs and functions called: pd.max subsection 16.27 on page 68
pd.matchpattern subsection 16.17 on page 65
pd.set_attr subsection 16.11 on page 64
pd.set_mean subsection 16.12 on page 64
strfunc.dissect2 subsection 17.13 on page 73
pd.text subsection 16.24 on page 67
pd.part_punc_nospace subsection 16.16 on page 65

Called by: freetext_core.main subsection 12.5 on page 51

14. Module checkterms

Checks for occurence (or not) of words in the text to validate or invalidate some termrefs

14.1. Global variables and constants

Const maxcheckterms = 100
Termref(maxcheckterms) – String
Qualify(maxcheckterms) – String
Dequalify(maxcheckterms) – String
used – Long (number of entries)

Freetext Matching Algorithm: Manual, June 2012 Page 56

14.2. Sub init

Loads entries from checkterms table into arrays

Arguments: none

Subs and functions called: none

Called by: freetext_core.outfile_all subsection 12.3 on page 50

14.3. Sub infile

Inputs everything from filenumber 1

Arguments: none

Subs and functions called: none

Called by: freetext_core.init_all subsection 12.2 on page 49

14.4. Sub outfile

Outputs arrays to filenumber 1

Arguments: none

Subs and functions called: none

Called by: freetext_core.outfile_all subsection 12.3 on page 50

14.5. Sub check_all

Carries out the actual checking

Arguments: checkstring – String
debug_ – Boolean (Optional)
sicknote – Boolean (Optional)
death – Boolean (Optional)
date_only – Boolean (Optional)

Subs and functions called: pd.max subsection 16.27 on page 68
pd.mean subsection 16.9 on page 63
pd.set_attr subsection 16.11 on page 64
pd.Attr subsection 16.8 on page 62
pd.remove subsection 16.23 on page 67
strfunc.dissect2 subsection 17.13 on page 73
checkterms.in_list subsection 14.6 on page 57

Freetext Matching Algorithm: Manual, June 2012 Page 57

checkterms.if_qualify subsection 14.7 on page 57
checkterms.if_dequalify subsection 14.8 on page 57

Called by: freetext_core.main subsection 12.5 on page 51

14.6. Function in_list As Long

Returns the position of the termref in the table

Arguments: in_termref – Long

Subs and functions called: none

Called by: checkterms.check_all subsection 14.5 on page 56
list.expand subsection 15.4 on page 58
list.display subsection 15.6 on page 59

14.7. Function if_qualify As Boolean

Whether one of the qualifying terms is present in the text

Arguments: pos – Long
checkstring – String

Subs and functions called: strfunc.dissect2 subsection 17.13 on page 73

Called by: checkterms.check_all subsection 14.5 on page 56

14.8. Function if_dequalify As Boolean

Whether one of the dequalifying terms is present in the text

Arguments: pos – Long
checkstring – String

Subs and functions called: strfunc.dissect2 subsection 17.13 on page 73

Called by: checkterms.check_all subsection 14.5 on page 56

15. Module list

15.1. User-defined data types

termlist

Data elements:

Freetext Matching Algorithm: Manual, June 2012 Page 58

Termref(maxtermlist) – Long
words(maxtermlist) – String
score(maxtermlist) – Single
num – Long (number of terms in termlist)

15.2. Global variables and constants

Const maxtermlist = 50 (maximum number of terms to consider)
Const threshold_high = 91 ((for readscore - don’t analyse further))
Const threshold = 87 ((for readscore - minimum))

15.3. Function bestmatch As String

Output is the termref of the best Read term match and associated readscore

Arguments: pd_start – Long
pd_fin – Long
debug_ – Boolean (Optional)

Subs and functions called: terms.exact_read_termref subsection 19.6 on page 79
pd.part_nopunc subsection 16.15 on page 65
pd.text subsection 16.24 on page 67
list.getlist subsection 15.8 on page 60
list.display subsection 15.6 on page 59
list.expand subsection 15.4 on page 58

Called by: freetext_core.analyse_pd subsection 12.8 on page 52

15.4. Function expand As termlist

For each term in in_list, generate a new term by using abbreviations or synonyms. Search
maximum 5 words at a time, starting with longer matches. Can expand from s1–>s2 but not the
other way round because s1 words might be more specific

Arguments: in_list – termlist
pd_start – Long (Optional)
pd_fin – Long (Optional)
leeway – Long (Optional)

Subs and functions called: checkterms.in_list subsection 14.6 on page 57
strfunc.numwords subsection 17.7 on page 71
strfunc.words subsection 17.4 on page 70
synonym.s1_pos subsection 18.11 on page 77
synonym.s1_priority subsection 18.14 on page 78
synonym.s2 subsection 18.13 on page 78

Freetext Matching Algorithm: Manual, June 2012 Page 59

list.getlist subsection 15.8 on page 60
list.add_termlists subsection 15.7 on page 59
synonym.s1 subsection 18.13 on page 78

Called by: list.bestmatch subsection 15.3 on page 58

15.5. Sub test

Arguments: phrase – String
pd_start – Long (Optional)
pd_fin – Long (Optional)
leeway – Long (Optional)

Subs and functions called: pd.max subsection 16.27 on page 68
wordlist.init subsection 20.4 on page 81
terms.init subsection 19.4 on page 79
pd.init_read subsection 16.20 on page 66
list.display subsection 15.6 on page 59
list.getlist subsection 15.8 on page 60

Called by: in_out.filepath subsection 21.1 on page 87

15.6. Sub display

Writes the contents of termlist to the debug window

Arguments: in_list – termlist

Subs and functions called: checkterms.in_list subsection 14.6 on page 57
in_out.read_term subsection 21.3 on page 87

Called by: list.bestmatch subsection 15.3 on page 58
list.test subsection 15.5 on page 59

15.7. Function add_termlists As termlist

Arguments: t1 – termlist
t2 – termlist

Subs and functions called: none

Called by: list.expand subsection 15.4 on page 58

Freetext Matching Algorithm: Manual, June 2012 Page 60

15.8. Function getlist As termlist

If no words retrieved, try with left/right removed (AFTERWARDS). Leeway can be set to zero or
1 (if it is OK to select terms which have one more word than ’words’) – currently has a fixed set-
ting of leeway=0. Removal of ignorable words – this should be checked using remove_ignorable
prior to using this function.

Arguments: words – String (ByVal)
pd_start – Long (Optional)
pd_fin – Long (Optional)
leeway – Long (Optional)

Subs and functions called: freetext_core.remove_ignorable subsection 12.9 on page
52
strfunc.numwords subsection 17.7 on page 71
wordlist.pos_singlewords subsection 20.10 on page 83
wordlist.pos_doublewords subsection 20.11 on page 83
freetext_core.readscore subsection 12.10 on page 53
wordlist.wordlist_termref subsection 20.15 on page 84
strfunc.words subsection 17.4 on page 70
wordlist.dbl_termref subsection 20.13 on page 84
wordlist.termref_in_doublewords1 subsection 20.17 on page 85
wordlist.termref_in_doublewords2 subsection 20.17 on page 85

Called by: list.bestmatch subsection 15.3 on page 58
list.expand subsection 15.4 on page 58
list.test subsection 15.5 on page 59

15.9. Function wordtermrefs_count As Long

Arguments: word – String

Subs and functions called: wordlist.pos_singlewords subsection 20.10 on page 83

Called by: none

16. Module pd

Stores words, punctuation and attributes in arrays for analysis

16.1. Global variables and constants

Const maxpartdata = 1000
partdata_used – Long

Freetext Matching Algorithm: Manual, June 2012 Page 61

partdata(maxpartdata) – String
punc(maxpartdata) – String (punctuation)
attrib(maxpartdata) – String (attribute ’ e.g. negative, family etc.)
meaning(maxpartdata) – String (meaning)

16.2. Sub check_compressed

Use after sub compress. If date_only, if more than 1 date the output is ‘machinequery’. Converts
gestation age (duration in weeks) into ’LABS’ - gest. Checks that there is only one gestational
age. Checks that sysbp is greater than diabp. Checks that dateprev and datenext refer to a
clinical event

Arguments: maybe_pregnant – Boolean (Optional)
labtest – String (Optional)

Subs and functions called: strfunc.words subsection 17.4 on page 70
pd.Attr subsection 16.8 on page 62
pd.remove subsection 16.23 on page 67
pd.set_attr subsection 16.11 on page 64
terms.true_term subsection 19.5 on page 79
strfunc.dissect2 subsection 17.13 on page 73
pd.set_mean subsection 16.12 on page 64
strfunc.in_set subsection 17.5 on page 70
pd.mean subsection 16.9 on page 63
pd.remove_from_compressed subsection 16.3 on page 61

Called by: freetext_core.main subsection 12.5 on page 51

16.3. Sub remove_from_compressed

Removes all entries with a certain attribute (lmp etc.) if there is a risk it might be wrong.

Arguments: attr_to_remove – String (Optional) (ByVal)
type_to_remove – String (Optional) (ByVal)

Subs and functions called: pd.remove subsection 16.23 on page 67
strfunc.dissect2 subsection 17.13 on page 73
pd.mean subsection 16.9 on page 63

Called by: pd.check_compressed subsection 16.2 on page 61

16.4. Sub compress

Converts pd into a single list of entries. Used at the end of interpretation.

Arguments: none

Freetext Matching Algorithm: Manual, June 2012 Page 62

Subs and functions called: pd.Attr subsection 16.8 on page 62
strfunc.in_set subsection 17.5 on page 70
pd.mean subsection 16.9 on page 63
pd.set_mean subsection 16.12 on page 64
pd.correct_attr subsection 16.5 on page 62
pd.set_attr subsection 16.11 on page 64
pd.remove subsection 16.23 on page 67

Called by: freetext_core.main subsection 12.5 on page 51

16.5. Function correct_attr As Boolean

Whether the attribute at this position is appropriate

Arguments: pos – Long

Subs and functions called: strfunc.dissect2 subsection 17.13 on page 73
pd.mean subsection 16.9 on page 63
strfunc.in_set subsection 17.5 on page 70
pd.Attr subsection 16.8 on page 62

Called by: pd.compress subsection 16.4 on page 61

16.6. Sub show_all_2

Prints the whole of pd to the debug window

Arguments: none

Subs and functions called: none

Called by: freetext_core.main subsection 12.5 on page 51

16.7. Function true_ As Long)

Arguments: pos – Long

Subs and functions called: pd.Attr subsection 16.8 on page 62

Called by: freetext_core.readscore subsection 12.10 on page 53

16.8. Function Attr As String

Arguments: pos – Long

Subs and functions called: none

Freetext Matching Algorithm: Manual, June 2012 Page 63

Called by: freetext_core.main_termref subsection 12.4 on page 50
freetext_core.attrib_search subsection 12.7 on page 52
freetext_core.analyse_pd subsection 12.8 on page 52
freetext_core.readscore subsection 12.10 on page 53
checkterms.check_all subsection 14.5 on page 56
pd.check_compressed subsection 16.2 on page 61
pd.compress subsection 16.4 on page 61
pd.correct_attr subsection 16.5 on page 62
pd.true_ subsection 16.7 on page 62
synonym.trylink_2 subsection 18.9 on page 76
terms.init subsection 19.4 on page 79
in_out.results_output subsection 21.6 on page 88
in_out.do_text_file subsection 21.7 on page 89
maintenance.delete_long_terms subsection 22.7 on page 91
maintenance.make_wordlist subsection 22.10 on page 92
maintenance.process_termlist subsection 22.15 on page 93

16.9. Function mean As String

Arguments: pos – Long

Subs and functions called: none

Called by: freetext_core.main_termref subsection 12.4 on page 50
freetext_core.attrib_search subsection 12.7 on page 52
freetext_core.analyse_pd subsection 12.8 on page 52
checkterms.check_all subsection 14.5 on page 56
pd.check_compressed subsection 16.2 on page 61
pd.remove_from_compressed subsection 16.3 on page 61
pd.compress subsection 16.4 on page 61
pd.correct_attr subsection 16.5 on page 62
in_out.results_output subsection 21.6 on page 88
in_out.do_text_file subsection 21.7 on page 89

16.10. Sub del_attr

Arguments: pos – Long

Subs and functions called: none

Called by: none

Freetext Matching Algorithm: Manual, June 2012 Page 64

16.11. Sub set_attr

Sets an attribute at a particular position in pd.

Arguments: new_attribute – String
pos – Long

Subs and functions called: none

Called by: freetext_core.attrib_search subsection 12.7 on page 52
freetext_core.analyse_pd subsection 12.8 on page 52
attrib.pd_search2 subsection 13.6 on page 55
checkterms.check_all subsection 14.5 on page 56
pd.check_compressed subsection 16.2 on page 61
pd.compress subsection 16.4 on page 61

16.12. Sub set_mean

Arguments: new_meaning – String
pos – Long

Subs and functions called: none

Called by: freetext_core.analyse_pd subsection 12.8 on page 52
attrib.pd_search2 subsection 13.6 on page 55
pd.check_compressed subsection 16.2 on page 61
pd.compress subsection 16.4 on page 61

16.13. Sub add_attr

If there is already an attribute of any type at this position, exit sub

Arguments: new_attribute – String
pos_start – Long
pos_fin – Long (Optional)
ignore_if_already – Boolean (Optional)

Subs and functions called: none

Called by: freetext_core.initial_search subsection 12.6 on page 51

16.14. Sub add_mean

If there is already an meaning of any type at this position, exit sub

Freetext Matching Algorithm: Manual, June 2012 Page 65

Arguments: new_meaning – String
pos_start – Long
pos_fin – Long (Optional)
ignore_if_already – Boolean (Optional)

Subs and functions called: none

Called by: freetext_core.initial_search subsection 12.6 on page 51

16.15. Function part_nopunc As String

Partdata text only (no punctuation)

Arguments: start – Long (Optional)
fin – Long (Optional) (ByVal)

Subs and functions called: pd.max subsection 16.27 on page 68

Called by: freetext_core.initial_search subsection 12.6 on page 51
freetext_core.readscore subsection 12.10 on page 53
list.bestmatch subsection 15.3 on page 58
synonym.trylink_2 subsection 18.9 on page 76
maintenance.make_std_term_with_attr subsection 22.5 on page 91

16.16. Function part_punc_nospace As String

Includes punctuation but no spaces either side of punctuation

Arguments: start – Long
fin – Long

Subs and functions called: pd.max subsection 16.27 on page 68

Called by: freetext_core.initial_search subsection 12.6 on page 51
attrib.pd_search2 subsection 13.6 on page 55

16.17. Function matchpattern As Boolean

Whether a set of up to 5 words or meanings (w1-w5) with punctuation (p1-p5) match a set of
entries in partdata

Arguments: partdata_pos – Long
w1 – String
p1 – String
w2 – String
p2 – String
w3 – String

Freetext Matching Algorithm: Manual, June 2012 Page 66

p3 – String
w4 – String
p4 – String
w5 – String
p5 – String

Subs and functions called: pd.matchposition subsection 16.18 on page 66

Called by: attrib.pd_search2 subsection 13.6 on page 55

16.18. Function matchposition As Boolean

Word can represent either partdata text, or meaning if enclosed in []. Different data types and
punctuation can be separated by |

Arguments: partdata_pos – Long
word – String (ByVal)
punct – String (ByVal)

Subs and functions called: strfunc.dissect2 subsection 17.13 on page 73
pd.matchoption subsection 16.19 on page 66

Called by: pd.matchpattern subsection 16.17 on page 65

16.19. Function matchoption As Boolean

Match meaning / words

Arguments: partdata_pos – Long
word – String (ByVal)
punct – String (ByVal)

Subs and functions called: strfunc.dissect subsection 17.12 on page 73
strfunc.words subsection 17.4 on page 70
pd.text subsection 16.24 on page 67

Called by: pd.matchposition subsection 16.18 on page 66

16.20. Sub init_read

Initialises partdata and punc using instring. Also converts: + –> ‘and’, –> ‘fracture’

Arguments: instring – String

Subs and functions called: pd.clear subsection 16.22 on page 67
pd.st_type subsection 16.21 on page 67
strfunc.is_numeric subsection 17.14 on page 74

Freetext Matching Algorithm: Manual, June 2012 Page 67

Called by: freetext_core.main subsection 12.5 on page 51
list.test subsection 15.5 on page 59
maintenance.read_attribute subsection 22.3 on page 90
maintenance.make_std_term_with_attr subsection 22.5 on page 91

16.21. Function st_type As Long

Arguments: instring – String

Subs and functions called: strfunc.is_text subsection 17.6 on page 71
strfunc.is_numeric subsection 17.14 on page 74

Called by: pd.init_read subsection 16.20 on page 66

16.22. Sub clear

Arguments: none

Subs and functions called: none

Called by: pd.init_read subsection 16.20 on page 66

16.23. Sub remove

Removes data from specified positions

Arguments: pos1 – Long
pos2 – Long (Optional)

Subs and functions called: none

Called by: freetext_core.main_termref subsection 12.4 on page 50
checkterms.check_all subsection 14.5 on page 56
pd.check_compressed subsection 16.2 on page 61
pd.remove_from_compressed subsection 16.3 on page 61
pd.compress subsection 16.4 on page 61

16.24. Function text As String

Arguments: position – Long

Subs and functions called: none

Called by: freetext_core.initial_search subsection 12.6 on page 51
freetext_core.attrib_search subsection 12.7 on page 52
freetext_core.analyse_pd subsection 12.8 on page 52

Freetext Matching Algorithm: Manual, June 2012 Page 68

freetext_core.readscore subsection 12.10 on page 53
attrib.pd_search2 subsection 13.6 on page 55
list.bestmatch subsection 15.3 on page 58
pd.matchoption subsection 16.19 on page 66
wordlist.init_ignore subsection 20.5 on page 82
in_out.input_string subsection 21.2 on page 87
in_out.import_input_table subsection 21.4 on page 87
in_out.do_input_table subsection 21.5 on page 88

16.25. Sub set_text

Arguments: new_text – String
position – Long

Subs and functions called: none

Called by: freetext_core.initial_search subsection 12.6 on page 51

16.26. Function punct As String

Arguments: position – Long

Subs and functions called: none

Called by: freetext_core.attrib_search subsection 12.7 on page 52
freetext_core.analyse_pd subsection 12.8 on page 52

16.27. Function max As Long

Arguments: none

Subs and functions called: none

Called by: freetext_core.initial_search subsection 12.6 on page 51
freetext_core.attrib_search subsection 12.7 on page 52
freetext_core.analyse_pd subsection 12.8 on page 52
attrib.pd_search2 subsection 13.6 on page 55
checkterms.check_all subsection 14.5 on page 56
list.test subsection 15.5 on page 59
pd.part_nopunc subsection 16.15 on page 65
pd.part_punc_nospace subsection 16.16 on page 65
pd.part_punc subsection 16.28 on page 69
in_out.results_output subsection 21.6 on page 88
in_out.do_text_file subsection 21.7 on page 89

Freetext Matching Algorithm: Manual, June 2012 Page 69

16.28. Function part_punc As String

Includes punctuation with a space either side of punctuation

Arguments: start – Long
fin – Long

Subs and functions called: pd.max subsection 16.27 on page 68

Called by: maintenance.read_attribute subsection 22.3 on page 90

17. Module strfunc

Various functions for manipulating strings

17.1. Global variables and constants

Const max_wd = 30

17.2. Function get_date As String

Attempts to convert a string into a date

Arguments: s – String
get_time – Boolean (Optional)

Subs and functions called: strfunc.in_set subsection 17.5 on page 70
strfunc.dissect2 subsection 17.13 on page 73
strfunc.get_date_average subsection 17.3 on page 69

Called by: freetext_core.initial_search subsection 12.6 on page 51

17.3. Function get_date_average As String

Provides a replacement for first number (s1) from phrases such as 2-3 weeks, 5-6 days etc.
average duration is used, rounded UP (no decimal places).

Arguments: s1 – String
s2 – String

Subs and functions called: none

Called by: strfunc.get_date subsection 17.2 on page 69

Freetext Matching Algorithm: Manual, June 2012 Page 70

17.4. Function words As String

Assume one space between words, and no spaces at the beginning

Arguments: phrase – String (ByVal)
start – Long
numwd – Long (Optional)
finish – Long (Optional)

Subs and functions called: strfunc.dissect2 subsection 17.13 on page 73
strfunc.numwords subsection 17.7 on page 71

Called by: freetext_core.analyse_pd subsection 12.8 on page 52
freetext_core.readscore subsection 12.10 on page 53
list.expand subsection 15.4 on page 58
list.getlist subsection 15.8 on page 60
pd.check_compressed subsection 16.2 on page 61
pd.matchoption subsection 16.19 on page 66
synonym.trylink_2 subsection 18.9 on page 76
wordlist.init subsection 20.4 on page 81
wordlist.pos_doublewords subsection 20.11 on page 83
in_out.results_output subsection 21.6 on page 88
in_out.do_text_file subsection 21.7 on page 89
maintenance.read_attribute subsection 22.3 on page 90
maintenance.make_wordlist subsection 22.10 on page 92

17.5. Function in_set As Boolean

Whether target is one of a, b, c, d, e etc. stops when it encounters the first empty string

Arguments: Target – String
a – String
b – String
c – String (Optional)
d – String (Optional)
e – String (Optional)
f – String (Optional)
g – String (Optional)
h – String (Optional)
i – String (Optional)
j – String (Optional)
k – String (Optional)
l – String (Optional)

Subs and functions called: none

Freetext Matching Algorithm: Manual, June 2012 Page 71

Called by: freetext_core.main_termref subsection 12.4 on page 50
freetext_core.attrib_search subsection 12.7 on page 52
freetext_core.analyse_pd subsection 12.8 on page 52
freetext_core.remove_ignorable subsection 12.9 on page 52
freetext_core.readscore subsection 12.10 on page 53
pd.check_compressed subsection 16.2 on page 61
pd.compress subsection 16.4 on page 61
pd.correct_attr subsection 16.5 on page 62
strfunc.get_date subsection 17.2 on page 69
strfunc.is_numeric subsection 17.14 on page 74
in_out.results_output subsection 21.6 on page 88

17.6. Function is_text As Boolean

Whether a string represents text instead of numbers

Arguments: instring – String

Subs and functions called: none

Called by: pd.st_type subsection 16.21 on page 67
strfunc.phrase_match_pattern subsection 17.15 on page 74
maintenance.read_attribute subsection 22.3 on page 90

17.7. Function numwords As Long

Counts the number of words in a string

Arguments: instring – String (ByVal)

Subs and functions called: none

Called by: freetext_core.remove_ignorable subsection 12.9 on page 52
freetext_core.readscore subsection 12.10 on page 53
list.expand subsection 15.4 on page 58
list.getlist subsection 15.8 on page 60
strfunc.words subsection 17.4 on page 70
strfunc.is_acronym subsection 17.8 on page 72
strfunc.phrase_match_pattern subsection 17.15 on page 74
synonym.add subsection 18.6 on page 76
synonym.add_with_acronym subsection 18.7 on page 76
synonym.trylink_2 subsection 18.9 on page 76
maintenance.read_attribute subsection 22.3 on page 90

Freetext Matching Algorithm: Manual, June 2012 Page 72

17.8. Function is_acronym As Boolean

Whether or not abbrev is an acronym of full abbrev can either have spaces or no spaces

Arguments: abbrev – String (ByVal)
full – String

Subs and functions called: strfunc.numwords subsection 17.7 on page 71
strfunc.dissect subsection 17.12 on page 73

Called by: synonym.add_with_acronym subsection 18.7 on page 76

17.9. Function all_punc As Boolean

Whether a string is entirely punctuation

Arguments: s – String

Subs and functions called: none

Called by: none

17.10. Function matchindex As Single

Gives the percentage of larger word which smaller word matches

Arguments: word1 – String
word2 – String

Subs and functions called: strfunc.num_diff_char subsection 17.11 on page 72

Called by: none

17.11. Function num_diff_char As Long

Counts the number of characters which are different between str1 and str2 only considers up to
the length of the shorter string, and only up to 3 different

Arguments: str1 – String
str2 – String

Subs and functions called: none

Called by: strfunc.matchindex subsection 17.10 on page 72

Freetext Matching Algorithm: Manual, June 2012 Page 73

17.12. Function dissect As String

Splits a string according to a delimiter. Similar to dissect2 (subsection 17.13) but with argu-
ments in a different order.

Arguments: in_string – String
number – Long
delimiter – String (Optional)

Subs and functions called: strfunc.dissect2 subsection 17.13 on page 73

Called by: pd.matchoption subsection 16.19 on page 66
strfunc.is_acronym subsection 17.8 on page 72
in_out.import_input_table subsection 21.4 on page 87
in_out.do_text_file subsection 21.7 on page 89

17.13. Function dissect2 As String

If delimiter is not given it is assumed to be space.

Arguments: in_string – String
delimiter – String (Optional)
number – Long (Optional)

Subs and functions called: none

Called by: freetext_core.main_termref subsection 12.4 on page 50
freetext_core.remove_ignorable subsection 12.9 on page 52
freetext_core.readscore subsection 12.10 on page 53
attrib.pd_search2 subsection 13.6 on page 55
checkterms.check_all subsection 14.5 on page 56
checkterms.if_qualify subsection 14.7 on page 57
checkterms.if_dequalify subsection 14.8 on page 57
pd.check_compressed subsection 16.2 on page 61
pd.remove_from_compressed subsection 16.3 on page 61
pd.correct_attr subsection 16.5 on page 62
pd.matchposition subsection 16.18 on page 66
strfunc.get_date subsection 17.2 on page 69
strfunc.words subsection 17.4 on page 70
strfunc.dissect subsection 17.13 on page 73
strfunc.phrase_match_pattern subsection 17.15 on page 74
synonym.s1_priority subsection 18.14 on page 78
maintenance.read_attribute subsection 22.3 on page 90
maintenance.process_termlist subsection 22.15 on page 93

Freetext Matching Algorithm: Manual, June 2012 Page 74

17.14. Function is_numeric As Boolean

Determines whether a string contains only a single number or part of a single number. If
lab_results_mode is TRUE, words like ‘normal’, ‘abnormal’ etc. are considered to be numbers.

Arguments: instring – String
lab_results_mode – Boolean (Optional)

Subs and functions called: strfunc.in_set subsection 17.5 on page 70

Called by: freetext_core.initial_search subsection 12.6 on page 51
pd.init_read subsection 16.20 on page 66
pd.st_type subsection 16.21 on page 67

17.15. Function phrase_match_pattern As Long

Whether or not strings 1 and 2 match (word by word) - used by maintenance.rm_attr. =number,
*=text, ?=anything - for a whole word

Arguments: instring – String
pattern – String

Subs and functions called: strfunc.numwords subsection 17.7 on page 71
strfunc.dissect2 subsection 17.13 on page 73
strfunc.is_text subsection 17.6 on page 71

Called by: maintenance.rm_attr subsection 22.6 on page 91

18. Module synonym

Priority codes: 5 = exact match (both ways) e.g. chronic obstructive pulmonary disease = copd;
4 = almost exact match (both ways) e.g. cancer = malignant neoplasm; 3 = moderate match
(s1 is) e.g. b pne = bronchopneumonia; e.g. carcinoma (is a type of) = malignant neoplasm; 2
= non-standard abbreviation or distorted form; possible one-way match (s2 wider than s1) e.g.
rsi = repetitive strain injury; 1 = loosely associated (s2 wider than s1) e.g. foot (is a part of) =
lower limb; -100 = opposite.

18.1. Global variables and constants

Const maxsynonym = 2000
s_used – Long
s1_sorted(maxsynonym) – String
s1_result(maxsynonym) – String (priority and numwords, used for get_search_summary)
s1_s2(maxsynonym) – String (not sorted)

Freetext Matching Algorithm: Manual, June 2012 Page 75

s2_sorted(maxsynonym) – String (first sort order)
s2_s2num(maxsynonym) – Long (2nd sort desc)
s2_s1num(maxsynonym) – Long (3rd sort desc)
s2_priority(maxsynonym) – String (4th sort desc)
s2_s1(maxsynonym) – String (not sorted)

18.2. Sub infile

Inputs everything from filenumber 1

Arguments: none

Subs and functions called: none

Called by: freetext_core.init_all subsection 12.2 on page 49

18.3. Sub outfile

Outputs arrays to filenumber 1

Arguments: none

Subs and functions called: none

Called by: freetext_core.outfile_all subsection 12.3 on page 50

18.4. Sub init

Initialises synonym arrays

Arguments: none

Subs and functions called: synonym.s2 subsection 18.13 on page 78
synonym.s1 subsection 18.13 on page 78

Called by: freetext_core.outfile_all subsection 12.3 on page 50

18.5. Sub del

Deletes entry

Arguments: s1 – String (ByVal)
s2 – String (ByVal)

Subs and functions called: none

Called by: none

Freetext Matching Algorithm: Manual, June 2012 Page 76

18.6. Sub add

Adds a term to the synonym list updates priority if term already exists s1 and s2 are combined
primary key - therefore there cannot be any duplicates

Arguments: s1 – String (ByVal)
s2 – String (ByVal)
priority – Long (Optional)
bothways – Boolean (Optional)

Subs and functions called: strfunc.numwords subsection 17.7 on page 71
wordlist.init_ignore subsection 20.5 on page 82
freetext_core.remove_ignorable subsection 12.9 on page 52

Called by: synonym.add_with_acronym subsection 18.7 on page 76

18.7. Sub add_with_acronym

Automatically add spaced-out version of acronym (e.g. mi would also add m i)

Arguments: s1 – String (ByVal)
s2 – String (ByVal)
priority – Long (Optional)
bothways – Boolean (Optional)

Subs and functions called: synonym.add subsection 18.6 on page 76
strfunc.is_acronym subsection 17.8 on page 72
strfunc.numwords subsection 17.7 on page 71

Called by: none

18.8. Function get_search_summary As String

Searches for instring in s1 synonym array

Arguments: instring – String

Subs and functions called: none

Called by: freetext_core.initial_search subsection 12.6 on page 51

18.9. Function trylink_2 As String

Tries to match a Read term segment to pd (between pd_start and pd_fin). Starts from
the beginning of the Read term segment; tries to match the whole of pd between pd_start

Freetext Matching Algorithm: Manual, June 2012 Page 77

and pd_fin, then tries to get the largest possible match. If not possible, tries smaller seg-
ments of the Read term but always starting from the beginning. OUTPUT: priority posi-
tion_within_pd_start position_within_pd_fin read_fin (space separated). Give output with pri-
ority 6 if read_term_segment = pdstring

Arguments: read_term_segment – String (ByVal)
pd_start – Long
pd_fin – Long
cur_true – Boolean

Subs and functions called: pd.part_nopunc subsection 16.15 on page 65
strfunc.numwords subsection 17.7 on page 71
strfunc.words subsection 17.4 on page 70
pd.Attr subsection 16.8 on page 62
synonym.s2_pos subsection 18.11 on page 77

Called by: freetext_core.readscore subsection 12.10 on page 53

18.10. Function s2_pos As Long

Returns the first position of s2 text in s2 sorted list

Arguments: s2_text – String

Subs and functions called: none

Called by: synonym.trylink_2 subsection 18.9 on page 76

18.11. Function s1_pos As Long

Returns the first position of s1 text in s1 sorted list

Arguments: s1_text – String

Subs and functions called: none

Called by: list.expand subsection 15.4 on page 58

18.12. Function s2 As String

Arguments: s1_pos – Long

Subs and functions called: none

Called by: list.expand subsection 15.4 on page 58
synonym.init subsection 18.4 on page 75

Freetext Matching Algorithm: Manual, June 2012 Page 78

18.13. Function s1 As String

Arguments: s1_pos – Long

Subs and functions called: none

Called by: list.expand subsection 15.4 on page 58
synonym.init subsection 18.4 on page 75

18.14. Function s1_priority As Long

Arguments: s1_pos – Long

Subs and functions called: strfunc.dissect2 subsection 17.13 on page 73

Called by: list.expand subsection 15.4 on page 58

19. Module terms

Contains the list of Read terms for the purposes of the program

19.1. Global variables and constants

Const max_usedterms = 100000
Const max_allterms = 150000
a_std_term(max_usedterms) – String (table of std_term (ordered) to get termref)
a_termref(max_usedterms) – Long (table of std_term (ordered) to get termref)
a_terms_used – Long
b_termref(max_allterms) – Long (to get std_term or attrib_str. All termrefs included)
b_std_term(max_allterms) – String
b_attrib_str(max_allterms) – String
b_type(max_allterms) – String (data type of Read term (pregnancy, labtest, death etc.))
b_terms_used – Long

19.2. Sub infile

Inputs everything from filenumber 1

Arguments: none

Subs and functions called: none

Called by: freetext_core.init_all subsection 12.2 on page 49

Freetext Matching Algorithm: Manual, June 2012 Page 79

19.3. Sub outfile

Outputs arrays to filenumber 1

Arguments: none

Subs and functions called: none

Called by: freetext_core.outfile_all subsection 12.3 on page 50

19.4. Sub init

Arguments: none

Subs and functions called: terms.std_term subsection 19.8 on page 80
pd.Attr subsection 16.8 on page 62

Called by: freetext_core.outfile_all subsection 12.3 on page 50
list.test subsection 15.5 on page 59
maintenance.delete_superfluous_terms subsection 22.8 on page 91

19.5. Function true_term As Boolean

Whether a term contains a true part

Arguments: Termref – Long

Subs and functions called: terms.attrib_str subsection 19.9 on page 80

Called by: pd.check_compressed subsection 16.2 on page 61

19.6. Function exact_read_termref As Long

Attempts to find an exact match to Read (using std_terms), returning termref. NB Terms in
std_term column have spaces before and after the words.

Arguments: search_term – String

Subs and functions called: none

Called by: list.bestmatch subsection 15.3 on page 58
maintenance.find_similar_term subsection 22.9 on page 92

19.7. Function read_type As String

Returns the type code of the Read Term (whether pregnancy, death, labtest etc.)

Freetext Matching Algorithm: Manual, June 2012 Page 80

Arguments: Termref – Long

Subs and functions called: none

Called by: freetext_core.main_termref subsection 12.4 on page 50

19.8. Function std_term As String

Standardised term for a termref

Arguments: Termref – Long

Subs and functions called: none

Called by: freetext_core.main_termref subsection 12.4 on page 50
freetext_core.readscore subsection 12.10 on page 53
terms.init subsection 19.4 on page 79
maintenance.delete_superfluous_terms subsection 22.8 on page 91
maintenance.make_wordlist subsection 22.10 on page 92
maintenance.process_termlist subsection 22.15 on page 93
maintenance.expand_rightleft subsection 22.16 on page 94

19.9. Function attrib_str As String

Attribute string for a termref

Arguments: Termref – Long

Subs and functions called: none

Called by: freetext_core.readscore subsection 12.10 on page 53
terms.true_term subsection 19.5 on page 79

20. Module wordlist

3 tables for rapid lookup

20.1. Global variables and constants

Const maxsingle = 200000
Const maxdouble = 300000
Const maxwords = 100000
Const maxignore = 100
s_termref(maxsingle) – Long
s_words(maxsingle) – String

Freetext Matching Algorithm: Manual, June 2012 Page 81

s_numwd(maxsingle) – Byte
s_max – Long
d_termref(maxdouble) – Long
d_words(maxdouble) – String
d_numwd(maxdouble) – Byte
d_max – Long
w_words(maxwords) – String
w_clinical(maxwords) – Boolean (whether the word is possibly part of a Clinical Term)
w_top(40) – Long (start position for words of different lengths)
w_max – Long
ignorelist(maxignore) – String (words which can be ignored e.g. if, and, of, the)
ignorelistnum – Long
ignorephrase(maxignore) – String (words which can be ignored e.g. if, and, of, the)
ignorephrasenum – Long

20.2. Sub infile

Inputs everything from filenumber 1

Arguments: none

Subs and functions called: none

Called by: freetext_core.init_all subsection 12.2 on page 49

20.3. Sub outfile

Outputs arrays to filenumber 1

Arguments: none

Subs and functions called: none

Called by: freetext_core.outfile_all subsection 12.3 on page 50

20.4. Sub init

Initialises the wordlist arrays

Arguments: none

Subs and functions called: strfunc.words subsection 17.4 on page 70
wordlist.init_ignore subsection 20.5 on page 82

Called by: freetext_core.outfile_all subsection 12.3 on page 50
list.test subsection 15.5 on page 59

Freetext Matching Algorithm: Manual, June 2012 Page 82

20.5. Sub init_ignore

Ignorable list

Arguments: none

Subs and functions called: pd.text subsection 16.24 on page 67

Called by: synonym.add subsection 18.6 on page 76
wordlist.init subsection 20.4 on page 81
maintenance.init_read_attr_tables subsection 22.2 on page 89
maintenance.process_termlist subsection 22.15 on page 93

20.6. Function in_wordlist As String

Returns CLIN or WORD depending whether the word is clinical whether a word is in the
wordlist list (sorted by wordlength, then word)

Arguments: instring – String

Subs and functions called: none

Called by: wordlist.in_wordlist_OLD subsection 20.7 on page 82
wordlist.wordsearch subsection 20.19 on page 85

20.7. Function in_wordlist_OLD As Boolean

Whether a word is in the wordlist list (sorted by wordlength, then word)

Arguments: instring – String

Subs and functions called: wordlist.in_wordlist subsection 20.6 on page 82

Called by: none

20.8. Function approx_wordlist As Long

Approximate position of a word in the wordlist list (sorted by wordlength, then word)

Arguments: instring – String

Subs and functions called: none

Called by: wordlist.wordsearch subsection 20.19 on page 85

Freetext Matching Algorithm: Manual, June 2012 Page 83

20.9. Function pos_wordlist As Long

Chooses either singlewords or doublewords depending on number of words in instring instring
must contain either one or two words.

Arguments: search_top – Boolean
instring – String
min_numwd – Long
max_numwd – Long

Subs and functions called: wordlist.pos_doublewords subsection 20.11 on page 83
wordlist.pos_singlewords subsection 20.10 on page 83

Called by: none

20.10. Function pos_singlewords As Long

Position of first or last termref in singlewords. If result zero, the word is not in singlewords.
search_top = True means look for the top one

Arguments: search_top – Boolean
instring – String
min_numwd – Long
max_numwd – Long

Subs and functions called: none

Called by: list.getlist subsection 15.8 on page 60
list.wordtermrefs_count subsection 15.9 on page 60
wordlist.pos_wordlist subsection 20.9 on page 83
wordlist.termref_in_singlewords subsection 20.16 on page 84

20.11. Function pos_doublewords As Long

Position of first or last termref in doublewords. If result zero, the word is not in doublewords.
search_top = True means look for the top one

Arguments: search_top – Boolean
instring – String (ByVal)
min_numwd – Long
max_numwd – Long

Subs and functions called: strfunc.words subsection 17.4 on page 70

Called by: list.getlist subsection 15.8 on page 60
wordlist.pos_wordlist subsection 20.9 on page 83
wordlist.termref_in_doublewords1 subsection 20.17 on page 85
wordlist.termref_in_doublewords2 subsection 20.17 on page 85

Freetext Matching Algorithm: Manual, June 2012 Page 84

20.12. Function sng_termref As Long

Arguments: pos – Long

Subs and functions called: none

Called by: none

20.13. Function dbl_termref As Long

Arguments: pos – Long

Subs and functions called: none

Called by: list.getlist subsection 15.8 on page 60

20.14. Function dbl_numwd As Long

Arguments: pos – Long

Subs and functions called: none

Called by: none

20.15. Function wordlist_termref As Long

If numwd greater then 1, uses doublewords dictionary

Arguments: pos – Long
numwd – Long

Subs and functions called: none

Called by: list.getlist subsection 15.8 on page 60

20.16. Function termref_in_singlewords As Boolean

Whether a termref appears in a defined list within singlewords. top and bot must be at the top
or bottom of a list with numwd

Arguments: Termref – Long
top – Long
bot – Long

Subs and functions called: wordlist.pos_singlewords subsection 20.10 on page 83

Called by: none

Freetext Matching Algorithm: Manual, June 2012 Page 85

20.17. Function termref_in_doublewords1 As Boolean

Whether a termref appears in a defined list within doublewords. There are two copies of this
function with different static variables, enabling fast searching with two different parts of the
list. The variables top and bot must be at the top and bottom of the list.

Arguments: Termref – Long
top – Long
bot – Long

Subs and functions called: wordlist.pos_doublewords subsection 20.11 on page 83

Called by: list.getlist subsection 15.8 on page 60

20.18. Function termref_in_doublewords2 As Boolean

Whether a termref appears in a defined list within doublewords (second copy of this function).

Arguments: Termref – Long
top – Long
bot – Long

Subs and functions called: wordlist.pos_doublewords subsection 20.11 on page 83

Called by: list.getlist subsection 15.8 on page 60

20.19. Function wordsearch As String

Tries to convert a word into a standard form (or without spelling mistakes) which is in wordlist.
Returns CLIN (for a clinical word) or WORD (for any other word) followed by the correctly
spelled word; blank if the spelling cannot be corrected. See subsection 4.4 for more information.

Arguments: word – String (ByVal)
do_spellcheck – Boolean (Optional)

Subs and functions called: wordlist.in_wordlist subsection 20.6 on page 82
wordlist.approx_wordlist subsection 20.8 on page 82
freetext_core.fuzzylink subsection 12.11 on page 53

Called by: freetext_core.initial_search subsection 12.6 on page 51

20.20. Function ignorable As Boolean

Whether or not a word is in the ignorable list for Read matching

Arguments: instring – String

Subs and functions called: none

Freetext Matching Algorithm: Manual, June 2012 Page 86

Called by: freetext_core.initial_search subsection 12.6 on page 51
freetext_core.remove_ignorable subsection 12.9 on page 52
freetext_core.readscore subsection 12.10 on page 53
maintenance.read_attribute subsection 22.3 on page 90

20.21. Function ignore_max As ignore_max()

Arguments: none

Subs and functions called: none

Called by: maintenance.read_attribute subsection 22.3 on page 90

20.22. Function ignore_words As String

Arguments: pos – Long

Subs and functions called: none

Called by: maintenance.read_attribute subsection 22.3 on page 90

20.23. Function remove_ignore_phrases As String

Removes phrases which are found in ‘ignorable’ list

Arguments: instring – String

Subs and functions called: wordlist.initial_process subsection 20.24 on page 86

Called by: freetext_core.main subsection 12.5 on page 51
maintenance.read_attribute subsection 22.3 on page 90
maintenance.make_std_term_with_attr subsection 22.5 on page 91

20.24. Function initial_process As String

Initial processing of wordlist

Arguments: instring – String

Subs and functions called: none

Called by: wordlist.remove_ignore_phrases subsection 20.23 on page 86

Freetext Matching Algorithm: Manual, June 2012 Page 87

21. Module in_out

21.1. Function filepath As filepath()

Analyses a single text. Uses input and output tables

Arguments: none

Subs and functions called: list.test subsection 15.5 on page 59
in_out.input_string subsection 21.2 on page 87
freetext_core.init_all subsection 12.2 on page 49
freetext_core.main subsection 12.5 on page 51
freetext_core.main_termref subsection 12.4 on page 50
in_out.results_output subsection 21.6 on page 88

Called by: none

21.2. Function input_string As String

Arguments: id – Long

Subs and functions called: pd.text subsection 16.24 on page 67

Called by: in_out.filepath subsection 21.1 on page 87

21.3. Function read_term As String

Returns the actual Read or OXMIS term (not std_term) for a termref

Arguments: Termref – Long

Subs and functions called: none

Called by: list.display subsection 15.6 on page 59
in_out.results_output subsection 21.6 on page 88

21.4. Sub import_input_table

Imports texts from a tab delimited table: id, text (no text qualifier; no header row); deletes
current input and output table

Arguments: filepath – String
text_col – Long
id_col – Long (Optional)
delimiter – String (Optional)

Freetext Matching Algorithm: Manual, June 2012 Page 88

termref_col – Long (Optional)
has_header – Boolean (Optional)

Subs and functions called: strfunc.dissect subsection 17.12 on page 73
pd.text subsection 16.24 on page 67

Called by: none

21.5. Sub do_input_table

Analyses input table

Arguments: with_termref – Boolean (Optional)
death_ – Boolean (Optional)
pregnant_ – Boolean (Optional)
debug_ – Boolean (Optional)
append – Boolean (Optional)
labtest – String (Optional)
date_only – Boolean (Optional)
sicknote – Boolean (Optional)

Subs and functions called: freetext_core.init_all subsection 12.2 on page 49
freetext_core.main_termref subsection 12.4 on page 50
pd.text subsection 16.24 on page 67
freetext_core.main subsection 12.5 on page 51
in_out.results_output subsection 21.6 on page 88

Called by: none

21.6. Sub results_output

Places the results in the output table

Arguments: id – Long
debug_ – Boolean

Subs and functions called: pd.max subsection 16.27 on page 68
strfunc.words subsection 17.4 on page 70
pd.mean subsection 16.9 on page 63
in_out.read_term subsection 21.3 on page 87
pd.Attr subsection 16.8 on page 62
strfunc.in_set subsection 17.5 on page 70

Called by: in_out.filepath subsection 21.1 on page 87
in_out.do_input_table subsection 21.5 on page 88

Freetext Matching Algorithm: Manual, June 2012 Page 89

21.7. Sub do_text_file

Analyses text file

Arguments: infile – String
outfile – String
id_col – Long
text_col – Long
delimiter – String (Optional)
has_header – Boolean (Optional)
termref_col – Long (Optional)
death_ – Boolean (Optional)
pregnant_ – Boolean (Optional)
append – Boolean (Optional)
labtest – String (Optional)
date_only – Boolean (Optional)
sicknote – Boolean (Optional)

Subs and functions called: freetext_core.init_all subsection 12.2 on page 49
strfunc.dissect subsection 17.12 on page 73
freetext_core.main_termref subsection 12.4 on page 50
freetext_core.main subsection 12.5 on page 51
pd.max subsection 16.27 on page 68
strfunc.words subsection 17.4 on page 70
pd.mean subsection 16.9 on page 63
pd.Attr subsection 16.8 on page 62

Called by: none

22. Module maintenance

22.1. Global variables and constants

r1_raw_pattern(50) – String (read_attr1 table, stored as arrays for faster processing)
r1_position(50) – String
r1_replacement(50) – String
r1_num – Long
r2_pattern(100) – String (read_attr2 table, stored as arrays)
r2_attr(100) – String
r2_num – Long

22.2. Sub init_read_attr_tables

Imports all data from Read attribute tables into arrays

Freetext Matching Algorithm: Manual, June 2012 Page 90

Arguments: none

Subs and functions called: wordlist.init_ignore subsection 20.5 on page 82

Called by: maintenance.read_attribute subsection 22.3 on page 90
maintenance.make_std_term_with_attr subsection 22.5 on page 91

22.3. Function read_attribute As String

Generates a string characterising the important words of each standardised Read term (Read
read_std_term). For example, ‘TTIIFF’ means first two words are true, next two can be ignored,
and last two are false. Results stored in the attr column of the terms table.

Arguments: read_std_term – String (Optional)
dont_init_pd – Boolean (Optional)
init_lookup – Boolean (Optional)

Subs and functions called: maintenance.init_read_attr_tables subsection 22.2 on
page 89
pd.init_read subsection 16.20 on page 66
wordlist.remove_ignore_phrases subsection 20.23 on page 86
pd.part_punc subsection 16.28 on page 69
strfunc.numwords subsection 17.7 on page 71
strfunc.is_text subsection 17.6 on page 71
strfunc.dissect2 subsection 17.13 on page 73
wordlist.ignorable subsection 20.20 on page 85
strfunc.words subsection 17.4 on page 70
wordlist.ignore_max subsection 20.21 on page 86
wordlist.ignore_words subsection 20.22 on page 86
maintenance.rm_attr subsection 22.6 on page 91

Called by: maintenance.make_std_term_with_attr subsection 22.5 on page 91

22.4. Function make_std_term As String

Creates standardised Read term (std_term) - also converts a/n, c/o, h/o etc.

Arguments: raw_term – String (ByVal)
init_lookup – Boolean (Optional)

Subs and functions called: maintenance.make_std_term_with_attr subsection 22.5
on page 91

Called by: none

Freetext Matching Algorithm: Manual, June 2012 Page 91

22.5. Function make_std_term_with_attr As String

Creates standardised Read term (std_term) with attribute (e.g. negation)

Arguments: raw_term – String (ByVal)
init_lookup – Boolean (Optional)

Subs and functions called: maintenance.init_read_attr_tables subsection 22.2 on
page 89
pd.init_read subsection 16.20 on page 66
wordlist.remove_ignore_phrases subsection 20.23 on page 86
maintenance.read_attribute subsection 22.3 on page 90
pd.part_nopunc subsection 16.15 on page 65

Called by: maintenance.make_std_term subsection 22.4 on page 90
maintenance.process_termlist subsection 22.15 on page 93

22.6. Sub rm_attr

Output is the new attribute string. Instring is the Read term with punctuation

Arguments: instring – String
pattern – String
cur_attr – String
new_attr – String

Subs and functions called: strfunc.phrase_match_pattern subsection 17.15 on page
74

Called by: maintenance.read_attribute subsection 22.3 on page 90

22.7. Sub delete_long_terms

Deletes all terms with >6 non-ignorable words from ‘terms’ table and wordlist.

Arguments: none

Subs and functions called: maintenance.term_remove_NEW subsection 22.13 on page 93
pd.Attr subsection 16.8 on page 62

Called by: none

22.8. Sub delete_superfluous_terms

Deletes all superfluous terms from ‘terms’ table and wordlist.

Arguments: none

Freetext Matching Algorithm: Manual, June 2012 Page 92

Subs and functions called: terms.init subsection 19.4 on page 79
terms.std_term subsection 19.8 on page 80
maintenance.term_remove_NEW subsection 22.13 on page 93
maintenance.find_similar_term subsection 22.9 on page 92

Called by: none

22.9. Function find_similar_term As Long

Returns the termref of a similar term without the or of an identical term

Arguments: interm – String
start_phrase – String (Optional)
end_phrase – String (Optional)

Subs and functions called: terms.exact_read_termref subsection 19.6 on page 79

Called by: maintenance.delete_superfluous_terms subsection 22.8 on page 91

22.10. Sub make_wordlist

Generates 3 tables: singlewords, doublewords, wordlist. Also generates the lookup table file.

Arguments: none

Subs and functions called: terms.std_term subsection 19.8 on page 80
pd.Attr subsection 16.8 on page 62
maintenance.count_t subsection 22.11 on page 92
strfunc.words subsection 17.4 on page 70
freetext_core.outfile_all subsection 12.3 on page 50

Called by: none

22.11. Function count_t As Integer

Counts number of TRUE words in attr_string

Arguments: attr_string – String

Subs and functions called: none

Called by: maintenance.make_wordlist subsection 22.10 on page 92

22.12. Sub term_remove_BATCH

Removes termrefs from lookup tables; supply a comma separated list of termrefs

Freetext Matching Algorithm: Manual, June 2012 Page 93

Arguments: Termref_list – String
Comment – String (Optional)

Subs and functions called: none

Called by: none

22.13. Sub term_remove_NEW

Removes a single Read/OXMIS term

Arguments: Termref – Long
Comment – String (Optional)

Subs and functions called: none

Called by: maintenance.delete_long_terms subsection 22.7 on page 91
maintenance.delete_superfluous_terms subsection 22.8 on page 91

22.14. Function read_code_oxmis As String

Arguments: oxmis_termref – Long

Subs and functions called: none

Called by: maintenance.process_termlist subsection 22.15 on page 93

22.15. Sub process_termlist

Processes the termlist and regenerates lookup tables

Arguments: blank_only – Boolean (Optional)
not_readcode – Boolean (Optional)
termlist – String (Optional)

Subs and functions called: wordlist.init_ignore subsection 20.5 on page 82
maintenance.read_code_oxmis subsection 22.14 on page 93
maintenance.make_std_term_with_attr subsection 22.5 on page 91
terms.std_term subsection 19.8 on page 80
pd.Attr subsection 16.8 on page 62
strfunc.dissect2 subsection 17.13 on page 73

Called by: none

Freetext Matching Algorithm: Manual, June 2012 Page 94

22.16. Sub expand_rightleft

Processes termlist: converts l and lt to left, and vice versa for right; only if the termlist contains
terms for BOTH RIGHT AND LEFT. Need to regenerate wordlists afterwards.

Arguments: none

Subs and functions called: terms.std_term subsection 19.8 on page 80

Called by: none

	GENERAL DESCRIPTION AND USER GUIDE
	Overview
	Analysis modes
	Rationale for design of the system
	Standardisation of Read/OXMIS terms
	Selection of terms
	Why we included OXMIS terms
	Adding new codes

	Analysis sequence
	Sub main_termref
	Sub main
	Negation
	Spelling correction
	Scoring of candidate Read term matches
	Technical details of readscore scoring system.

	Database tables
	Core tables
	Terms table
	Attrib2 table
	Synonym table
	Checkterms table
	Ignore table
	Ignore_phrase table

	Machine-generated tables
	Singlewords
	Doublewords
	Wordlist

	Input and output tables
	Maintenance
	List of common English words: 2of4brif table
	Read_attr1 table
	Read_attr2 table
	Oxmis_termref table

	How to use the program
	Form freetext
	Analysing a single text
	Viewing the results
	Analysing a set of texts
	Importing texts to the input table
	Using text files

	Examples of analysis
	Normal mode
	Append mode
	Death mode `D'
	Lab test mode `L'
	Investigation result mode `N'
	Pregnancy mode `P'
	Sicknote mode `S'
	Time or date mode `T'

	Attributes
	Read terms
	Dates
	Duration
	Lab tests

	How to modify the algorithm tables
	Form terms2: terms
	Form terms2: synonyms
	Data entry fields
	Buttons
	How to add a new synonym

	Form add_termlist
	Set Include=TRUE for a single term
	Set Include=TRUE for a set of terms
	Set the Read term category for a set of terms
	To regenerate the terms table

	Form attrib2
	Buttons
	Format of attribute patterns
	Data entry fields
	How to add a new pattern for an existing attribute
	How to add a new attribute

	Other tables

	Testing the algorithm
	Using the freetext form
	Analysis reports
	Overall analysis
	Readscore

	Aggregate reports

	Program development
	Overview
	Major changes
	Information extracted
	User interface
	Changes made to increase speed

	GUIDE TO VISUAL BASIC CODE
	Module freetext_core
	Global variables and constants
	Sub init_all
	Function outfile_all As Boolean
	Sub main_termref
	Sub main
	Sub initial_search
	Sub attrib_search
	Sub analyse_pd
	Function remove_ignorable As String
	Function readscore As Single
	Function fuzzylink As Long

	Module attrib
	Global variables and constants
	Sub init
	Sub infile
	Sub outfile
	Function dissect2_options As String
	Sub pd_search2

	Module checkterms
	Global variables and constants
	Sub init
	Sub infile
	Sub outfile
	Sub check_all
	Function in_list As Long
	Function if_qualify As Boolean
	Function if_dequalify As Boolean

	Module list
	User-defined data types
	Global variables and constants
	Function bestmatch As String
	Function expand As termlist
	Sub test
	Sub display
	Function add_termlists As termlist
	Function getlist As termlist
	Function wordtermrefs_count As Long

	Module pd
	Global variables and constants
	Sub check_compressed
	Sub remove_from_compressed
	Sub compress
	Function correct_attr As Boolean
	Sub show_all_2
	Function true_ As Long)
	Function Attr As String
	Function mean As String
	Sub del_attr
	Sub set_attr
	Sub set_mean
	Sub add_attr
	Sub add_mean
	Function part_nopunc As String
	Function part_punc_nospace As String
	Function matchpattern As Boolean
	Function matchposition As Boolean
	Function matchoption As Boolean
	Sub init_read
	Function st_type As Long
	Sub clear
	Sub remove
	Function text As String
	Sub set_text
	Function punct As String
	Function max As Long
	Function part_punc As String

	Module strfunc
	Global variables and constants
	Function get_date As String
	Function get_date_average As String
	Function words As String
	Function in_set As Boolean
	Function is_text As Boolean
	Function numwords As Long
	Function is_acronym As Boolean
	Function all_punc As Boolean
	Function matchindex As Single
	Function num_diff_char As Long
	Function dissect As String
	Function dissect2 As String
	Function is_numeric As Boolean
	Function phrase_match_pattern As Long

	Module synonym
	Global variables and constants
	Sub infile
	Sub outfile
	Sub init
	Sub del
	Sub add
	Sub add_with_acronym
	Function get_search_summary As String
	Function trylink_2 As String
	Function s2_pos As Long
	Function s1_pos As Long
	Function s2 As String
	Function s1 As String
	Function s1_priority As Long

	Module terms
	Global variables and constants
	Sub infile
	Sub outfile
	Sub init
	Function true_term As Boolean
	Function exact_read_termref As Long
	Function read_type As String
	Function std_term As String
	Function attrib_str As String

	Module wordlist
	Global variables and constants
	Sub infile
	Sub outfile
	Sub init
	Sub init_ignore
	Function in_wordlist As String
	Function in_wordlist_OLD As Boolean
	Function approx_wordlist As Long
	Function pos_wordlist As Long
	Function pos_singlewords As Long
	Function pos_doublewords As Long
	Function sng_termref As Long
	Function dbl_termref As Long
	Function dbl_numwd As Long
	Function wordlist_termref As Long
	Function termref_in_singlewords As Boolean
	Function termref_in_doublewords1 As Boolean
	Function termref_in_doublewords2 As Boolean
	Function wordsearch As String
	Function ignorable As Boolean
	Function ignore_max As ignore_max()
	Function ignore_words As String
	Function remove_ignore_phrases As String
	Function initial_process As String

	Module in_out
	Function filepath As filepath()
	Function input_string As String
	Function read_term As String
	Sub import_input_table
	Sub do_input_table
	Sub results_output
	Sub do_text_file

	Module maintenance
	Global variables and constants
	Sub init_read_attr_tables
	Function read_attribute As String
	Function make_std_term As String
	Function make_std_term_with_attr As String
	Sub rm_attr
	Sub delete_long_terms
	Sub delete_superfluous_terms
	Function find_similar_term As Long
	Sub make_wordlist
	Function count_t As Integer
	Sub term_remove_BATCH
	Sub term_remove_NEW
	Function read_code_oxmis As String
	Sub process_termlist
	Sub expand_rightleft

